HW 1

Remember that you may (and should!) talk about the problems amongst yourselves, or discuss them with me, providing attribution for any good ideas you might get – but your final write-up should be your own.

1: A problem of performance. Implement the band matrix multiply in algorithm 1.2.2 in MATLAB. For a variety of square matrix sizes n and bandwidths b, compare the speed of

1. Your matrix multiply

2. Ordinary matrix multiply with a MATLAB dense matrix

3. Matrix multiply with a sparse matrix (use $A_s = \text{sparse}(A)$ to make the sparse matrix object).

What do you observe about the relative performance of these three options?

2: Seeking structure. Given n points (x_i, y_i), define the square distance matrix D by

$$d_{ij} = (x_i - x_j)^2 + (y_i - y_j)^2.$$

Write MATLAB code for an $O(n)$ algorithm to multiply the distance matrix with a random vector. Your program should have the interface

function $[Dv] = \text{dist2prod}(x,y,v)$

% Quickly compute $Dv = D*v$, where
% $D(i,j) := (x(i)-x(j))^2 + (y(i)-y(j))^2$.

3: Something with singular values. Suppose $A \in \mathbb{R}^{n \times m}$ is a fixed matrix and $z \in \mathbb{R}^m$ is a random vector with independent standard normal entries, i.e., $z_j \sim N(0,1)$. Find a simple closed-form expression for $E[\|AZ\|^2]$. Write an (efficient) MATLAB script to verify your computation.

$Hint$: Note that for any fixed orthogonal matrix Q, the entries of Qz are independent standard normal random variables. Then use the SVD.
4: Error in a classic recurrence. The following routine estimates π by recursively computing the semiperimeter of a sequence of 2^{k+1}-gons embedded in the unit circle:

```matlab
N = 4;
L(1) = sqrt(2);
s(1) = N*L(1)/2;
for k = 1:30
    N = N*2;
    L(k+1) = sqrt( 2*(1-sqrt(1-L(k)^2/4)) );
    s(k+1) = N*L(k+1)/2;
end
```

Plot the error $|s_k - \pi|$ against k. Explain why the algorithm behaves as it does. For extra credit, suggest a reformulation of the recurrence that does not suffer from this problem.