
Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

1 Deriving SPH

The Navier-Stokes equations with gravity are

ρa = −∇p+ µ∇2v + ρg.

The acceleration is the material derivative of velocity, and we usually take an
Eulerian perspective and write this as

a =
Dv

Dt
=
∂v

∂t
+ v · ∇v.

In smoothed particle hydrodynamics, though, we take a Lagrangian perspective,
and actually associate computational particles with material points. This makes
it easy to deal with the left-hand side of the Navier-Stokes equation.

To compute the spatial derivatives on the right hand side of the equation,
we interpolate pressures and velocities at the material particles to get smoothed
fields (hence the name). Then we differentiate the smoothed fields. For example,
suppose we care about some scalar field A(r). Each particle j has a mass mj , a
location rj , and a value Aj = A(rj). Between particles, we write

(1) AS(r) =
∑
j

mj
Aj

ρj
W (r− rj , h),

where W is a smoothing kernel with radius h. The densities ρj that appear in
(1) are themselves are computed using (1):

ρi = ρS(ri) =
∑
j

mj
ρj
ρj
W (r− rj , h) =

∑
j

mjW (r− rj , h).

Putting everything together, the SPH approximation computes field quanti-
ties at locations associated with computational particles. The governing equa-
tions for the particles and the associated quantities are then

ρiai = fpressurei + fviscosityi + ρig(2)

fpressurei = −
∑
j

mj
pi + pj

2ρj
∇W (ri − rj , h)(3)

fviscosityi = µ
∑
j

mj
vj − vi

ρj
∇2W (ri − rj , h),(4)

where the pressure and viscous interaction terms have been symmetrized to
ensure that particle i acts on particle j in the same way j acts on i.

To compute the pressure, we use the ideal gas equation of state

(5) pi = k(ρi − ρ0).

Of course, this is not the right equation of state for a liquid! This equation
is best regarded as a non-physical approximation that is legitimate as long as
the artificial speed of sound is much greater than the velocities of interest in
the problem (as is the case with the incompressible approximation that is more
commonly used in other settings).

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

2 Smoothing kernels

One of the key numerical decisions in SPH is the choice of kernels used to
interpolate the fields. We follow the strategy described by Müller, Charypar,
and Gross in Particle-based fluid simulation for interactive applications. In
this paper, the authors use three radially symmetric different kernels for 3D
simulation, each with the form

W (r, h) =
1

Chd

{
f(q), 0 ≤ q ≤ 1

0, otherwise

where q = r/h = ‖r‖/h and d = 3 is the dimension. The kernels are based on
the choices fpoly6(q) = (1−q2)3 for general interpolation, fspiky(q) = (1−q)3 for
interpolating pressures, and fviscosity(q) = −q3/2 + q2 + q−1/2− 1 for viscosity
computations. The gradients are given by

∇W (r, h) =
r

Chd+2

{
q−1f ′(q), 0 ≤ q ≤ 1

0, otherwise

and the Laplacians are

∇2W (r, h) =
1

Chd+2

{
f ′′(q) + (d− 1)q−1f ′(q), 0 ≤ q ≤ 1

0, otherwise

The pressure kernel is designed with relatively steep gradients close to the
origin to prevent the clustering of computational particles that occurs when
pressures are interpolated with Wpoly6. The viscosity kernel is designed so that
the Laplacian will be positive definite, ensuring that we don’t accidentally get
negative viscous contributions that add energy to the system (and compromise
stability).

3 Condensed interaction force expressions

Making things completely explicit for the cases we care about most, we have
(for 0 ≤ q ≤ 1)

Wpoly6(r, h) =
315

64πh3
(1− q2)3(6)

∇Wpoly6(r, h) =
945

32πh5
(1− q2)2r(7)

∇2Wpoly6(r, h) =
945

32πh5
(1− q2)(7q2 − 3)(8)

∇Wspiky(r, h) = − 45

πh5
(1− q)2

q
r(9)

∇2Wviscosity(r, h) =
45

πh5
(1− q)(10)

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

If we substitute (9), (10), and the equation of state (5) into (3) and (4), we have

fpressurei =
45k

πh5

∑
j∈Ni

mj
ρi + ρj − 2ρ0

2ρj

(1− qij)2

qij
rij

fviscosityi =
45µ

πh5

∑
j∈Ni

mj
vi − vj

ρj
(1− qij)

where Ni is the set of particles within h of particle i and qij = ‖rij‖/h, rij =
ri − rj . Putting these terms together, we have

fpressurei + fviscosityi =
∑
j∈Ni

f interactij

where

f interactij =
45

πh5
mj

ρj
(1− qij)

[
k

2
(ρi + ρj − 2ρ0)

(1− qij)
qij

rij − µvij

]
,

and vij = vi − vj . We then rewrite (2) as

ai =
1

ρi

∑
j∈Ni

f interactij + g.

4 Sanity checks

I fairly regularly make typographical and copying errors when I do algebra and
implement it in code. In order to stay sane when I actually write something
somewhat complicated, I find it helpful to put together little test scripts to check
my work numerically. For your edification, in this section I give my MATLAB
test script corresponding to the derivation in these notes. The test script is
done in MATLAB.

I begin by implementing the functions f(q), the normalizing constants, and
the kernel functions for each of the three kernels.

fp6 = @(q) (1-q.^2).^3;

fsp = @(q) (1-q).^3;

fvi = @(q) q.^2 - 0.5*q.^3 + 0.5./q - 1;

Cp6 = 64*pi/315;

Csp = pi/15;

Cvi = 2*pi/15;

Wp6 = @(r,h) 1/Cp6/h^3 * fp6(norm(r)/h);

Wsp = @(r,h) 1/Csp/h^3 * fsp(norm(r)/h);

Wvi = @(r,h) 1/Cvi/h^3 * fvi(norm(r)/h);

I computed the normalization constants analytically, but I’m prone to alge-
bra mistakes when I compute integrals by hand. Let’s check against MATLAB’s
quad function.

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

fprintf(’Relerr for normalization constants:\n’);

nerr_p6 = quad(@(q) 4*pi*q.^2.*fp6(q)/Cp6, 0, 1) - 1;

nerr_sp = quad(@(q) 4*pi*q.^2.*fsp(q)/Csp, 0, 1) - 1;

nerr_vi = quad(@(q) 4*pi*q.^2.*fvi(q)/Cvi, 1e-12, 1) - 1;

fprintf(’ Cp6: %g\n’, nerr_p6);

fprintf(’ Csp: %g\n’, nerr_sp);

fprintf(’ Cvi: %g\n’, nerr_vi);

Now check that I did the calculus right for the gradient and Laplacian of
the Wpoly6 kernel, the gradient of the pressure kernel, and the Laplacian of the
viscosity kernel

h = rand(1);

r = rand(3,1)*h/4;

q = norm(r)/h;

r2 = r’*r;

h2 = h^2;

dr = norm(r)*1e-4;

gWp6_fd = fd_grad(@(r) Wp6(r,h), r, dr);

gWsp_fd = fd_grad(@(r) Wsp(r,h), r,dr);

lWp6_fd = fd_laplace(@(r) Wp6(r,h), r, dr);

lWvi_fd = fd_laplace(@(r) Wvi(r,h), r, dr);

gWp6_ex = -(945/32/pi)/h^5 *(1-q^2)^2 * r;

gWsp_ex = -45/pi/h^5*(1-q)^2/q * r;

lWp6_ex = (945/32/pi)/h^5 * (1-q^2)*(7*q^2-3);

lWvi_ex = 45/pi/h^5 * (1-q);

fprintf(’Check kernel derivatives:\n’);

fprintf(’ grad Wp6: %g\n’, norm(gWp6_fd-gWp6_ex)/norm(gWp6_ex));

fprintf(’ grad Wsp: %g\n’, norm(gWsp_fd-gWsp_ex)/norm(gWsp_ex));

fprintf(’ lapl Wp6: %g\n’, (lWp6_fd-lWp6_ex)/lWp6_ex);

fprintf(’ lapl Wvi: %g\n’, (lWvi_fd-lWvi_ex)/lWvi_ex);

Now check that fviscosity(q) satisfies the boundary conditions

f(1) = 0

f ′(1) = 0

The first two conditions we check directly.

dq = 1e-4;

fprintf(’Relerr for viscosity kernel checks:\n’);

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

fprintf(’ fvi (1): %g\n’, fvi(1));

fprintf(’ dfvi(1): %g\n’, fd_deriv(fvi,1,dq));

Now, let me check that I did the algebra right in getting the condensed
formula for the interaction forces.

% Set up random parameter choices

r_ij = rand(3,1);

v_ij = rand(3,1);

k = rand(1);

rho0 = rand(1);

rhoi = rand(1);

rhoj = rand(1);

mass = rand(1);

mu = rand(1);

q = norm(r_ij)/h;

% Compute pressures via equation of state

Pi = k*(rhoi-rho0);

Pj = k*(rhoj-rho0);

% Differentiate the kernels

Wsp_x = -45/pi/h^5*(1-q)^2/q * r_ij;

LWvi = 45/pi/h^5*(1-q);

% Do the straightforward computation

fpressure = -mass*(Pi+Pj)/2/rhoj * Wsp_x;

fviscous = -mu*mass*v_ij/rhoj * LWvi;

finteract1 = fpressure + fviscous;

% Do the computation based on my condensed formula

finteract2 = 45*mass/pi/h^5/rhoj * (1-q) * ...

(k/2*(rhoi+rhoj-2*rho0)*(1-q)/q * r_ij - mu * v_ij);

% Compare

fprintf(’Relerr in interaction force check:\n’);

fprintf(’ fint: %g\n’, norm(finteract1-finteract2)/norm(finteract1));

Of course, all the above is supported by a number of little second-order
accurate finite difference calculations.

function fp = fd_deriv(f,r,h)

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

fp = (f(r+h)-f(r-h))/2/h;

function fpp = fd_deriv2(f,r,h)

fpp = (f(r+h)-2*f(r)+f(r-h))/h/h;

function del2f = fd_laplace_radial(f,r,h)

del2f = fd_deriv2(f,r,h) + 2*fd_deriv(f,r,h)/r;

function del2f = fd_laplace(f,r,h)

e1 = [1; 0; 0];

e2 = [0; 1; 0];

e3 = [0; 0; 1];

del2f = (-6*f(r)+...

f(r+h*e1)+f(r+h*e2)+f(r+h*e3)+...

f(r-h*e1)+f(r-h*e2)+f(r-h*e3))/h/h;

function gradf = fd_grad(f,r,h)

e1 = [1; 0; 0];

e2 = [0; 1; 0];

e3 = [0; 0; 1];

gradf = [f(r+h*e1)-f(r-h*e1);

f(r+h*e2)-f(r-h*e2);

f(r+h*e3)-f(r-h*e3)] / 2 / h;

	Deriving SPH
	Smoothing kernels
	Condensed interaction force expressions
	Sanity checks

