
Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

1 The SPH equations

Smoothed particle hydrodynamics (SPH) is a particle-based method for simulat-
ing the behavior of fluids. Each computational particle carries along information
about the fluid in a little region, such as the velocity and density; and during
the course of the simulation, these particles interact with each other in a way
that models the dynamics of a fluid. In this project, we will tune a simple 3D
SPH method described by Müller et al for use in graphics [1]. There are better
methods for this problem (and this implementation is arguably incomplete –
we left out the surface tension forces), but this method does illustrate common
issues in particle-based methods.

Our simulation basically solves a system of ordinary differential equations1

for a collection of particles with equal masses m and interaction radii h. Each
particle i has a position ri, a velocity vi, and a density ρi. Particle i interacts
with the set Ni of particles within radius h of i. The density is computed at
each step by

ρi =
4m

πh8

∑
j∈Ni

(h2 − r2)3.

The acceleration is computed by the rule

ai =
1

ρi

∑
j∈Ni

f interactij + g,

where

f interactij =
45

πh5
mj

ρj
(1− qij)

[
k

2
(ρi + ρj − 2ρ0)

(1− qij)
qij

rij − µvij

]
,

where rij = ri − rj , vij = vi − vj , and qij = ‖rij‖/h. The parameters in these
expressions are

ρ0 = reference mass density

k = bulk modulus

µ = viscosity

g = gravitational vector

By default, we choose most of these parameters to be appropriate to a liquid
like water. The exception is the bulk modulus, which is chosen so that the
computational speed of sound

cs =

√
k

ρ0

is large relative to the typical velocities we expect to see in the simulation, but
not too large. Choosing k to be very large (e.g. on the scale of the bulk modulus
for water) severely limits the time step size needed for stable simulation.

1We describe the derivation of the equations in a separate document. It may interest those
of you who care about fluid dynamics, but it is not critical to understand the derivation in
order to do the assignment.

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

2 System parameters

The sim param t structure holds the parameters that describe the simulation.
These parameters are filled in by the get params function (described later).

typedef struct sim_param_t {

char* fname; /* File name */

int nframes; /* Number of frames */

int npframe; /* Steps per frame */

float h; /* Particle size */

float dt; /* Time step */

float rho0; /* Reference density */

float k; /* Bulk modulus */

float mu; /* Viscosity */

float g; /* Gravity strength */

} sim_param_t;

int get_params(int argc, char** argv, sim_param_t* params);

3 System state

The sim state t structure holds the information for the current state of the
system and of the integration algorithm.

The alloc state and free state functions take care of storage for the local
simulation state.

typedef struct particle_t {

float rho; /* Particle density */

float x[3]; /* Particle positions */

float v[3]; /* Particle velocities (full step) */

float vh[3]; /* Particle velocities (half step) */

float a[3]; /* Particle accelerations */

struct particle_t* next; /* List link for spatial hashing */

} particle_t;

typedef struct sim_state_t {

int n; /* Number of particles */

float mass; /* Particle mass */

particle_t* part; /* Particles */

particle_t** hash; /* Hash table */

} sim_state_t;

sim_state_t* alloc_state(int n);

void free_state(sim_state_t* s);

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

3.1 Density computations

The formula for density is

ρi =
∑
j

mjWp6(ri − rj , h) =
315m

64πh9

∑
j∈Ni

(h2 − r2)3.

We search for neighbors of node i by checking every particle, which is not
very efficient. We do at least take advange of the symmetry of the update (i
contributes to j in the same way that j contributes to i).

inline

void update_density(particle_t* pi, particle_t* pj, float h2, float C)

{

float r2 = vec3_dist2(pi->x, pj->x);

float z = h2-r2;

if (z > 0) {

float rho_ij = C*z*z*z;

pi->rho += rho_ij;

pj->rho += rho_ij;

}

}

void compute_density(sim_state_t* s, sim_param_t* params)

{

int n = s->n;

particle_t* p = s->part;

particle_t** hash = s->hash;

float h = params->h;

float h2 = h*h;

float h3 = h2*h;

float h9 = h3*h3*h3;

float C = (315.0/64.0/M_PI) * s->mass / h9;

// Clear densities

for (int i = 0; i < n; ++i)

p[i].rho = 0;

// Accumulate density info

#ifdef USE_BUCKETING

/* BEGIN TASK */

/* END TASK */

#else

for (int i = 0; i < n; ++i) {

particle_t* pi = s->part+i;

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

pi->rho += 4 * s->mass / M_PI / h3;

for (int j = i+1; j < n; ++j) {

particle_t* pj = s->part+j;

update_density(pi, pj, h2, C);

}

}

#endif

}

3.2 Computing forces

The acceleration is computed by the rule

ai =
1

ρi

∑
j∈Ni

f interactij + g,

where the pair interaction formula is as previously described. Like compute density,
the compute accel routine takes advantage of the symmetry of the interaction
forces (f interactij = −f interactji) but it does a very expensive brute force search for
neighbors.

inline

void update_forces(particle_t* pi, particle_t* pj, float h2,

float rho0, float C0, float Cp, float Cv)

{

float dx[3];

vec3_diff(dx, pi->x, pj->x);

float r2 = vec3_len2(dx);

if (r2 < h2) {

const float rhoi = pi->rho;

const float rhoj = pj->rho;

float q = sqrt(r2/h2);

float u = 1-q;

float w0 = C0 * u/rhoi/rhoj;

float wp = w0 * Cp * (rhoi+rhoj-2*rho0) * u/q;

float wv = w0 * Cv;

float dv[3];

vec3_diff(dv, pi->v, pj->v);

// Equal and opposite pressure forces

vec3_saxpy(pi->a, wp, dx);

vec3_saxpy(pj->a, -wp, dx);

// Equal and opposite viscosity forces

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

vec3_saxpy(pi->a, wv, dv);

vec3_saxpy(pj->a, -wv, dv);

}

}

void compute_accel(sim_state_t* state, sim_param_t* params)

{

// Unpack basic parameters

const float h = params->h;

const float rho0 = params->rho0;

const float k = params->k;

const float mu = params->mu;

const float g = params->g;

const float mass = state->mass;

const float h2 = h*h;

// Unpack system state

particle_t* p = state->part;

particle_t** hash = state->hash;

int n = state->n;

// Rehash the particles

hash_particles(state, h);

// Compute density and color

compute_density(state, params);

// Start with gravity and surface forces

for (int i = 0; i < n; ++i)

vec3_set(p[i].a, 0, -g, 0);

// Constants for interaction term

float C0 = 45 * mass / M_PI / ((h2)*(h2)*h);

float Cp = k/2;

float Cv = -mu;

// Accumulate forces

#ifdef USE_BUCKETING

/* BEGIN TASK */

/* END TASK */

#else

for (int i = 0; i < n; ++i) {

particle_t* pi = p+i;

for (int j = i+1; j < n; ++j) {

particle_t* pj = p+j;

update_forces(pi, pj, h2, rho0, C0, Cp, Cv);

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

}

}

#endif

}

4 Spatial hashing

We conceptually partition our computational domain into bins that are at least
h on a side, and label each with integer coordinates (ix, iy, iz). In three dimen-
sions, the bin size doesn’t have to be all that small before the number of such
bins is quite large, and most bins will be empty. Rather than represent each
bin explicitly, we will map the bins to locations into a hash table, allowing the
possibility that different bins can map to the same location in the hash table
(though ideally this should not happen too often). We compute the hash func-
tion by mapping (ix, iy, iz) to a Z-Morton integer index, which we then associate
with a hash bucket. By figuring out the hash buckets in which the neighbor of
a given particle could possibly lie, we significantly reduce the cost of checking
interactions.

In the current implementation, we set the bin size equal to h, which implies
that particles interacting with a given particle might lie in any of 27 possible
neighbors. If you use a bin of size 2h, you may have more particles in each bin,
but you would only need to check eight bins (at most) for possible interactions.
In order to allow for the possibility of more or fewer possible bins containing
neighbors, we define MAX NBR BINS to be the maximum number of bins we will
ever need to check for interactions, and let particle neighborhood return both
which bins are involved (as an output argument) and the number of bins needed
(via the return value).

We also currently use the last few bits of each of the ix, iy, iz indices to
form the Z-Morton index. You may want to change the number of bits used,
or change to some other hashing scheme that potentially spreads the bins more
uniformly across the table.

#define HASH_DIM 0x10

#define HASH_SIZE (HASH_DIM*HASH_DIM*HASH_DIM)

#define MAX_NBR_BINS 27

unsigned particle_bucket(particle_t* p, float h);

unsigned particle_neighborhood(unsigned* buckets, particle_t* p, float h);

void hash_particles(sim_state_t* s, float h);

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

4.1 Z-Morton encoding

We use a Z-Morton encoding to map a triple of integer indices (ix, iy, iz) to a
single integer. If you want to see a picture of the Z-Morton ordering, I rec-
ommend the Wikipedia page! In terms of computation, though, the Z-Morton
ordering simply interleaves the bits of the three independent indices. That is, if
ijx is the bit in the 2j place for index ix, the bit pattern for the Z-Morton code
looks like

c = (. . . i1z i
1
y i

1
x i

0
z i

0
y i

0
x)2.

While this is not as good a space-filling curve as a Hilbert curve, it’s very cheap.
The concrete code combines three 10-bit (max) indices into a single 32-bit

Z-Morton code. The code is adapted from

http://fgiesen.wordpress.com/2009/12/13/decoding-morton-codes/

inline unsigned zm_part1by2(unsigned x)

{

x &= 0x000003ff;

x = (x ^ (x << 16)) & 0xff0000ff;

x = (x ^ (x << 8)) & 0x0300f00f;

x = (x ^ (x << 4)) & 0x030c30c3;

x = (x ^ (x << 2)) & 0x09249249;

return x;

}

inline unsigned zm_compact1by2(unsigned x)

{

x &= 0x09249249;

x = (x ^ (x >> 2)) & 0x030c30c3;

x = (x ^ (x >> 4)) & 0x0300f00f;

x = (x ^ (x >> 8)) & 0xff0000ff;

x = (x ^ (x >> 16)) & 0x000003ff;

return x;

}

inline unsigned zm_encode(unsigned x, unsigned y, unsigned z)

{

return (zm_part1by2(z) << 2) + (zm_part1by2(y) << 1) + zm_part1by2(x);

}

inline void zm_decode(unsigned code, unsigned* x, unsigned* y, unsigned* z)

{

*x = zm_compact1by2(code);

*y = zm_compact1by2(code >> 1);

*z = zm_compact1by2(code >> 2);

http://fgiesen.wordpress.com/2009/12/13/decoding-morton-codes/

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

}

4.2 Spatial hashing implementation

In the current implementation, we assume HASH DIM is 2b, so that computing a
bitwise of an integer with HASH DIM extracts the b lowest-order bits. We could
make HASH DIM be something other than a power of two, but we would then
need to compute an integer modulus or something of that sort.

#define HASH_MASK (HASH_DIM-1)

unsigned particle_bucket(particle_t* p, float h)

{

unsigned ix = p->x[0]/h;

unsigned iy = p->x[1]/h;

unsigned iz = p->x[2]/h;

return zm_encode(ix & HASH_MASK, iy & HASH_MASK, iz & HASH_MASK);

}

unsigned particle_neighborhood(unsigned* buckets, particle_t* p, float h)

{

/* BEGIN TASK */

/* END TASK */

}

void hash_particles(sim_state_t* s, float h)

{

/* BEGIN TASK */

/* END TASK */

}

5 Leapfrog integration

The leapfrog time integration scheme is frequently used in particle simulation
algorithms because

• It is explicit, which makes it easy to code.

• It is second-order accurate.

• It is symplectic, which means that it conserves certain properties of the
continuous differential equation for Hamiltonian systems. In practice, this
means that it tends to conserve energy where energy is supposed to be
conserved, assuming the time step is short enough for stability.

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

Of course, our system is not Hamiltonian – viscosity is a form of damping, so
the system loses energy. But we’ll stick with the leapfrog integration scheme
anyhow.

The leapfrog time integration algorithm is named because the velocities are
updated on half steps and the positions on integer steps; hence, the two leap
over each other. After computing accelerations, one step takes the form

vi+1/2 = vi−1/2 + ai∆t

ri+1 = ri + vi+1/2∆t,

This is straightforward enough, except for two minor points.

1. In order to compute the acceleration at time t, we need the velocity at
time t. But leapfrog only computes velocities at half steps! So we cheat
a little: when we compute the half-step velocity velocity vi+1/2 (stored
in vh), we simultaneously compute an approximate integer step velocity
ṽi+1 (stored in v) by taking another half step using the acceleration ai.

2. We don’t explicitly represent the boundary by fixed particles, so we need
some way to enforce the boundary conditions. We take the simple ap-
proach of explicitly reflecting the particles using the reflect bc routine
discussed below.

void leapfrog_step(sim_state_t* s, double dt)

{

int n = s->n;

for (int i = 0; i < n; ++i) {

particle_t* p = s->part + i;

vec3_saxpy(p->vh, dt, p->a);

vec3_copy(p->v, p->vh);

vec3_saxpy(p->v, dt/2, p->a);

vec3_saxpy(p->x, dt, p->vh);

}

reflect_bc(s);

}

At the first step, the leapfrog iteration only has the initial velocities v0, so we
need to do something special.

v1/2 = v0 + a0∆t/2

r1 = r0 + v1/2∆t.

void leapfrog_start(sim_state_t* s, double dt)

{

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

int n = s->n;

for (int i = 0; i < n; ++i) {

particle_t* p = s->part + i;

vec3_copy(p->vh, p->v);

vec3_saxpy(p->vh, dt/2, p->a);

vec3_saxpy(p->v, dt, p->a);

vec3_saxpy(p->x, dt, p->vh);

}

reflect_bc(s);

}

6 Reflection boundary conditions

Our boundary condition corresponds to hitting an inelastic boundary with a
specified coefficient of restitution less than one. When a particle hits a bar-
rier, we process it with damp reflect. This reduces the total distance traveled
based on the time since the collision reflected, damps the velocities, and reflects
whatever solution components should be reflected.

static void damp_reflect(int which, float barrier,

float* x, float* v, float* vh)

{

// Coefficient of resitiution

const float DAMP = 0.75;

// Ignore degenerate cases

if (v[which] == 0)

return;

// Scale back the distance traveled based on time from collision

float tbounce = (x[which]-barrier)/v[which];

vec3_saxpy(x, -(1-DAMP)*tbounce, v);

// Reflect the position and velocity

x[which] = 2*barrier-x[which];

v[which] = -v[which];

vh[which] = -vh[which];

// Damp the velocities

vec3_scalev(v, DAMP);

vec3_scalev(vh, DAMP);

}

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

For each particle, we need to check for reflections on each of the four walls
of the computational domain.

static void reflect_bc(sim_state_t* s)

{

// Boundaries of the computational domain

const float XMIN = 0.0;

const float XMAX = 1.0;

const float YMIN = 0.0;

const float YMAX = 1.0;

const float ZMIN = 0.0;

const float ZMAX = 1.0;

int n = s->n;

for (int i = 0; i < n; ++i) {

float* vh = s->part[i].vh;

float* v = s->part[i].v;

float* x = s->part[i].x;

if (x[0] < XMIN) damp_reflect(0, XMIN, x, v, vh);

if (x[0] > XMAX) damp_reflect(0, XMAX, x, v, vh);

if (x[1] < YMIN) damp_reflect(1, YMIN, x, v, vh);

if (x[1] > YMAX) damp_reflect(1, YMAX, x, v, vh);

if (x[2] < ZMIN) damp_reflect(2, ZMIN, x, v, vh);

if (x[2] > ZMAX) damp_reflect(2, ZMAX, x, v, vh);

}

}

7 Initialization

We’ve hard coded the computational domain to a unit box, but we’d prefer to
do something more flexible for the initial distribution of fluid. In particular,
we define the initial geometry of the fluid in terms of an indicator function
that is one for points in the domain occupied by fluid and zero elsewhere. A
domain fun t is a pointer to an indicator for a domain, which is a function that
takes two floats and returns 0 or 1. Two examples of indicator functions are a
little box of fluid in the corner of the domain and a circular drop.

typedef int (*domain_fun_t)(float, float, float);

int box_indicator(float x, float y, float z)

{

return (x < 0.5) && (y < 0.75) && (z < 0.5);

}

int circ_indicator(float x, float y, float z)

{

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

float dx = (x-0.5);

float dy = (y-0.5);

float dz = (z-0.5);

float r2 = dx*dx + dy*dy + dz*dz;

return (r2 < 0.25*0.25*0.25);

}

The place particles routine fills a region (indicated by the indicatef

argument) with fluid particles. The fluid particles are placed at points inside
the domain that lie on a regular mesh with cell sizes of h/1.3. This is close
enough to allow the particles to overlap somewhat, but not too much.

sim_state_t* place_particles(sim_param_t* param,

domain_fun_t indicatef)

{

float h = param->h;

float hh = h/1.3;

// Count mesh points that fall in indicated region.

int count = 0;

for (float x = 0; x < 1; x += hh)

for (float y = 0; y < 1; y += hh)

for (float z = 0; z < 1; z += hh)

count += indicatef(x,y,z);

// Populate the particle data structure

sim_state_t* s = alloc_state(count);

int p = 0;

for (float x = 0; x < 1; x += hh) {

for (float y = 0; y < 1; y += hh) {

for (float z = 0; z < 1; z += hh) {

if (indicatef(x,y,z)) {

vec3_set(s->part[p].x, x, y, z);

vec3_set(s->part[p].v, 0, 0, 0);

++p;

}

}

}

}

return s;

}

The place particle routine determines the initial particle placement, but
not the desired mass. We want the fluid in the initial configuration to exist
roughly at the reference density. One way to do this is to take the volume in

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

the indicated body of fluid, multiply by the mass density, and divide by the
number of particles; but that requires that we be able to compute the volume of
the fluid region. Alternately, we can simply compute the average mass density
assuming each particle has mass one, then use that to compute the particle
mass necessary in order to achieve the desired reference density. We do this
with normalize mass.

void normalize_mass(sim_state_t* s, sim_param_t* param)

{

s->mass = 1;

hash_particles(s, param->h);

compute_density(s, param);

float rho0 = param->rho0;

float rho2s = 0;

float rhos = 0;

for (int i = 0; i < s->n; ++i) {

rho2s += (s->part[i].rho)*(s->part[i].rho);

rhos += s->part[i].rho;

}

s->mass *= (rho0*rhos / rho2s);

}

sim_state_t* init_particles(sim_param_t* param)

{

sim_state_t* s = place_particles(param, box_indicator);

normalize_mass(s, param);

return s;

}

8 The main event

The main routine actually runs the time step loop, writing out files for visual-
ization every few steps. For debugging convenience, we use check state before
writing out frames, just so that we don’t spend a lot of time on a simulation
that has gone berserk.

void check_state(sim_state_t* s)

{

for (int i = 0; i < s->n; ++i) {

float xi = s->part[i].x[0];

float yi = s->part[i].x[1];

float zi = s->part[i].x[2];

assert(xi >= 0 || xi <= 1);

assert(yi >= 0 || yi <= 1);

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

assert(zi >= 0 || zi <= 1);

}

}

int main(int argc, char** argv)

{

sim_param_t params;

if (get_params(argc, argv, ¶ms) != 0)

exit(-1);

sim_state_t* state = init_particles(¶ms);

FILE* fp = fopen(params.fname, "w");

int nframes = params.nframes;

int npframe = params.npframe;

float dt = params.dt;

int n = state->n;

double t_start = omp_get_wtime();

//write_header(fp, n);

write_header(fp, n, nframes, params.h);

write_frame_data(fp, n, state, NULL);

compute_accel(state, ¶ms);

leapfrog_start(state, dt);

check_state(state);

for (int frame = 1; frame < nframes; ++frame) {

for (int i = 0; i < npframe; ++i) {

compute_accel(state, ¶ms);

leapfrog_step(state, dt);

check_state(state);

}

printf("Frame: %d of %d - %2.1f%%\n",frame, nframes,

100*(float)frame/nframes);

write_frame_data(fp, n, state, NULL);

}

double t_end = omp_get_wtime();

printf("Ran in %g seconds\n", t_end-t_start);

fclose(fp);

free_state(state);

}

9 Option processing

The print usage command documents the options to the nbody driver program,
and default params sets the default parameter values. You may want to add
your own options to control other aspects of the program. This is about as

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

many options as I would care to handle at the command line — maybe more!
Usually, I would start using a second language for configuration (e.g. Lua) to
handle anything more than this.

static void default_params(sim_param_t* params)

{

params->fname = "run.out";

params->nframes = 400;

params->npframe = 100;

params->dt = 1e-4;

params->h = 5e-2;

params->rho0 = 1000;

params->k = 1e3;

params->mu = 0.1;

params->g = 9.8;

}

static void print_usage()

{

sim_param_t param;

default_params(¶m);

fprintf(stderr,

"nbody\n"

"\t-h: print this message\n"

"\t-o: output file name (%s)\n"

"\t-F: number of frames (%d)\n"

"\t-f: steps per frame (%d)\n"

"\t-t: time step (%e)\n"

"\t-s: particle size (%e)\n"

"\t-d: reference density (%g)\n"

"\t-k: bulk modulus (%g)\n"

"\t-v: dynamic viscosity (%g)\n"

"\t-g: gravitational strength (%g)\n",

param.fname, param.nframes, param.npframe,

param.dt, param.h, param.rho0,

param.k, param.mu, param.g);

}

The get params function uses the getopt package to handle the actual ar-
gument processing. Note that getopt is not thread-safe! You will need to do
some synchronization if you want to use this function safely with threaded code.

int get_params(int argc, char** argv, sim_param_t* params)

{

extern char* optarg;

const char* optstring = "ho:F:f:t:s:d:k:v:g:";

Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

int c;

#define get_int_arg(c, field) \

case c: params->field = atoi(optarg); break

#define get_flt_arg(c, field) \

case c: params->field = (float) atof(optarg); break

default_params(params);

while ((c = getopt(argc, argv, optstring)) != -1) {

switch (c) {

case ’h’:

print_usage();

return -1;

case ’o’:

strcpy(params->fname = malloc(strlen(optarg)+1), optarg);

break;

get_int_arg(’F’, nframes);

get_int_arg(’f’, npframe);

get_flt_arg(’t’, dt);

get_flt_arg(’s’, h);

get_flt_arg(’d’, rho0);

get_flt_arg(’k’, k);

get_flt_arg(’v’, mu);

get_flt_arg(’g’, g);

default:

fprintf(stderr, "Unknown option\n");

return -1;

}

}

return 0;

}

References

[1] M. Müller, D. Charypar, and M. Gross. Particle-based fluid sim-
ulation for interactive applications, in Proceedings of Eurographics/SIG-
GRAPH Symposium on Computer Animation.

	The SPH equations
	System parameters
	System state
	Density computations
	Computing forces

	Spatial hashing
	Z-Morton encoding
	Spatial hashing implementation

	Leapfrog integration
	Reflection boundary conditions
	Initialization
	The main event
	Option processing

