
Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

Spatial binning and hashing

In the smoothed particle hydrodynamics simulation, particles interact
only with those particles that are within a circle of radius h of them. In
the naive reference code, a substantial fraction of the total time is spend
finding which pairs of particles interact, and the cost of finding interacting
pairs scales quadratically with the number of particles in the simulation. But
the particles in the simulation never get too close together, and so any given
particle will typically only interact with a bounded number of neighbors. We
can therefore make the simulation much faster by checking for interactions
only between particles that are close enough that they could conceivably
interact.

One simple way to limit the number of interactions we check is to partition
space into fixed-size bins. In particular, if we partition space into bins with
side length l ≥ h, then a particle in a particular bin can interact with at most
the other particles in that bin and in the 26 neighboring bins. If l ≥ 2h, then
a particle in a particular bin can interact with at most the other particles in
that bin and particles in 7 other neighboring bins; see Figure 1

I do something very simple: I represent each particle as a structure and
use a linked list structure for each bin. The particle structure has the form

typedef struct particle_t {

// Position, velocity, acceleration, etc.

struct particle_t* next; // Next in bin

} particle_t;

and I have an array of head pointers particle_t* hash[], one for each bin.
Before computing interactions at each time step, I clear the bins pointers,
and then re-build the bins with a loop of the form

for (int i = 0; i < n; ++i) {

// Figure out bin for particle i

int b = ...;

// Add particle to the start of the list for bin b

part[i].next = bins[b];

bins[b] = part[i];

}



Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

2h
h

Figure 1: In 2D, if we partition space into bins of width 2h, we need to
check four bins for particles that might interact with a given particle (left).
If we use bins of width h, we need to check eight bins, though the total area
covered is smaller (right). In 3D, we would need to check eight or 27 bins,
respectively.

Then when I want to compute interactions for particle i, I only need to
look up those particles in the bin where particle i resides, along with a few
neighboring bins.

Partitioning space into bins that are 2h on a side is reasonable when a
large fraction of the total volume is filled with particles, as is the case for
the dam break simulation that we run by default. But this is not such a rea-
sonable approach if only a small fraction of the volume in the computational
domain is filled with particles. In this case, we could spend an inordinate
amount of memory on empty bins if we were to represent them all explicitly.
Instead, we could use spatial hashing, which is a fancy way of saying that we
index the buckets by a hash of the bin identifier. As long as the hash table
is around the same size as the number of particles, we expect not to have
too many collisions; and for any given particle, it is still easy to look up the
hash buckets that would contain any particles with which it might interact.

For partitioning work across processors, or to get a good key for spatial
hashing, it makes sense to map each triple of bin indices (or pairs in 2D) into
a single index in a way that maintains some spatial locality. A particularly
good choice is the Hilbert index (a classic space-filling curve), but a choice
that is both easy to understand and to compute is the Z-Morton curve. We
show a two-dimensional example in Figure 2. The Z-Morton curve effectively
interlaces the bits of the individual coordinate indices in order to get a com-



Bindel, Spring 2014 Applications of Parallel Computers (CS 5220)

00

00

10

10

01

01

11

11

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

Figure 2: Z-Morton ordering in 2D. By interleaving the bits of the x and y
bin indices, we obtain a bin ordering that maintains some spatial locality.

bined index; visually, this gives a curve that looks like a collection of nested
“Z”s, which explains the name. The bit-fiddling to actually accomplish this
index is a bit opaque, but I’ve provided you with some routines to take care
of it in the reference code.

Of course, giving you this much code still leaves you with a number of
practical issues to address, such as how to index the bins and how to keep
using symmetry in the computations of the interactions between particles!
And there’s nothing that says that you have to structure your computation
in the same way that I do. For example, you could eschew pointers entirely
and just use a bucket sort algorithm1 to re-order your particles at each step
so that particles in the same bin are in contiguous array locations2. Or
you could use a Hilbert curve rather than a Z-Morton curve. Or you could
periodically compute a list of potential interactions for the next several steps,
and partition the interaction forces rather than partitioning particles.

1I’m happy to tell you about bucket sort if you come ask me, but you might be better
of just doing a Google search (or looking in a favorite algorithms textbook).

2I actually do a sort in my code in order to improve locality, but only once every
hundred steps or so


