Logistics

- Have until May 2 for topic mining
 - You *should not* need all that time
 - You *should* start early anyhow
 - This should *not* block work on your final project
- Guest lectures: two of 4/22, 4/24, 4/29
 - One on CUDA programming
 - One on FFT
 - One for you to work on your final project!
Project logistics

- Project proposal feedback posted
 - Common theme: Don’t be too ambitious!
 - Focusing on a key kernel is fine
- Project presentations outside class (May 1–May 7)
 - Think about 5 minutes of you talking
 - Give me some background and preliminary results
 - I will set up a schedule
- Project write-up: by morning of May 15 (one month)
Easiest way to run on N processors (all one node):

```bash
ompsub -n N julia -p N driver.jl
```

Run twice and take the second timing

- Julia uses a JIT compiler – adds to initial run time

You may want to try a bigger data set

- I recommend the NIPS data
Choosing a good η is nontrivial

- I chose $\eta_k = 2000\tau^k$ for $\tau = 0.99$
- This is really large!
- You may have a better strategy

Warm start may help

- Warning: EG gets stuck when start vector has zeros!

Feel free to use a mixed strategy (EG + active set fallback)

- Idea: use EG + rounding to get AS start point
- Main cost in active set is finding which entries are zero
I’ve further tuned the active set code (and pushed to Bitbucket). Commentary

- Be aware of temporaries
- Prefer destructive operations
- Don’t fear loops as appropriate (it’s not MATLAB)
- Algorithmic improvements still trump tuning

Tuning resources:

- http://julialang.org/blog/2013/09/fast-numeric/
Reminders

- Read the code and the prompt
- Apply what you’ve learned in class
- Start early to ask questions
- Leave time for your project
And now for something completely different.
Graph partitioning

Given:

- Graph $G = (V, E)$
- Possibly weights (W_V, W_E).
- Possibly coordinates for vertices (e.g. for meshes).

We want to partition G into k pieces such that

- Node weights are balanced across partitions.
- Weight of cut edges is minimized.

Important special case: $k = 2$.
Types of separators

- *Edge* separators: remove edges to partition
- *Node* separators: remove nodes (and adjacent edges)

Can go from one to the other (easiest if graph is degree-bounded).
Why partitioning?

- Physical network design (telephone layout, VLSI layout)
- Sparse matvec
- Preconditioners for PDE solvers
- Sparse Gaussian elimination
- Data clustering
- Image segmentation
How many partitionings are there? If n is even,

\[
\binom{n}{n/2} = \frac{n!}{((n/2)!)^2} \approx 2^n \sqrt{2/(\pi n)}.
\]

Finding the optimal one is NP-complete.

We need heuristics!
Partitioning with coordinates

- Lots of partitioning problems from “nice” meshes
 - Planar meshes (maybe with regularity condition)
 - k-ply meshes (works for $d > 2$)
 - Nice enough \Rightarrow partition with $O(n^{1-1/d})$ edge cuts (Tarjan, Lipton; Miller, Teng, Thurston, Vavasis)
 - Edges link nearby vertices

- Get useful information from vertex density
- Ignore edges (but can use them in later refinement)
Recursive coordinate bisection

Idea: Choose a cutting hyperplane parallel to a coordinate axis.

- **Pro:** Fast and simple
- **Con:** Not always great quality
Inertial bisection

Idea: Optimize cutting hyperplane based on vertex density

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

\[\bar{r}_i = x_i - \bar{x} \]

\[I = \sum_{i=1}^{n} \left[\|r_i\|^2 I - r_i r_i^T \right] \]

Let \((\lambda_n, n)\) be the minimal eigenpair for the inertia tensor \(I\), and choose the hyperplane through \(\bar{x}\) with normal \(n\).

- **Pro:** Still simple, more flexible than coordinate planes
- **Con:** Still restricted to hyperplanes
Random circles (Gilbert, Miller, Teng)

- Stereographic projection
- Find centerpoint (any plane is an even partition)
 In practice, use an approximation.
- Conformally map sphere, moving centerpoint to origin
- Choose great circle (at random)
- Undo stereographic projection
- Convert circle to separator

May choose best of several random great circles.
Coordinate-free methods

- Don’t always have natural coordinates
 - Example: the web graph
 - Can sometimes add coordinates (metric embedding)
- So use edge information for geometry!
Breadth-first search

- Pick a start vertex v_0
 - Might start from several different vertices
- Use BFS to label nodes by distance from v_0
 - We’ve seen this before – remember RCM?
 - Could use a different order – minimize edge cuts locally (Karypis, Kumar)
- Partition by distance from v_0
Greedy refinement

Start with a partition $V = A \cup B$ and refine.

- Gain from swapping (a, b) is $D(a) + D(b)$, where

$$D(a) = \sum_{b' \in B} w(a, b') - \sum_{a' \in A, a' \neq a} w(a, a')$$

$$D(b) = \sum_{a' \in A} w(b, a') - \sum_{b' \in B, b' \neq b} w(b, b')$$

- Purely greedy strategy:
 - Choose swap with most gain
 - Repeat until no positive gain

- Local minima are a problem.
Kernighan-Lin

In one sweep:

While no vertices marked
 Choose \((a, b)\) with greatest gain
 Update \(D(v)\) for all unmarked \(v\) as if \((a, b)\) were swapped
 Mark \(a\) and \(b\) (but don’t swap)
Find \(j\) such that swaps 1, \ldots, \(j\) yield maximal gain
Apply swaps 1, \ldots, \(j\)

Usually converges in a few (2-6) sweeps. Each sweep is \(O(N^3)\). Can be improved to \(O(|E|)\) (Fiduccia, Mattheyses).

Further improvements (Karypis, Kumar): only consider vertices on boundary, don’t complete full sweep.
Spectral partitioning

Label vertex i with $x_i = \pm 1$. We want to minimize

$$\text{edges cut} = \frac{1}{4} \sum_{(i,j) \in E} (x_i - x_j)^2$$

subject to the even partition requirement

$$\sum_i x_i = 0.$$

But this is NP hard, so we need a trick.
Spectral partitioning

Write

\[
\text{edges cut} = \frac{1}{4} \sum_{(i,j) \in E} (x_i - x_j)^2 = \frac{1}{4} \|Cx\|^2 = \frac{1}{4} x^T L x
\]

where \(C \) is the incidence matrix and \(L = C^T C \) is the graph Laplacian:

\[
C_{ij} = \begin{cases}
1, & e_j = (i, k) \\
-1, & e_j = (k, i) \\
0, & \text{otherwise,}
\end{cases} \quad
L_{ij} = \begin{cases}
d(i), & i = j \\
-1, & i \neq j, (i, j) \in E, \\
0, & \text{otherwise.}
\end{cases}
\]

Note that \(Ce = 0 \) (so \(Le = 0 \)), \(e = (1, 1, 1, \ldots, 1)^T \).
Now consider the relaxed problem with $x \in \mathbb{R}^n$:

$$\text{minimize } x^T L x \text{ s.t. } x^T e = 0 \text{ and } x^T x = 1.$$

Equivalent to finding the second-smallest eigenvalue λ_2 and corresponding eigenvector x, also called the \textit{Fiedler vector}. Partition according to sign of x_i.

How to approximate x? Use a Krylov subspace method (Lanczos)! Expensive, but gives high-quality partitions.
Multilevel ideas

Basic idea (same will work in other contexts):
- Coarsen
- Solve coarse problem
- Interpolate (and possibly refine)

May apply recursively.
Maximal matching

One idea for coarsening: maximal matchings

- **Matching** of $G = (V, E)$ is $E_m \subset E$ with no common vertices.
- **Maximal** if no more edges can be added and remain matching.
- Constructed by an obvious greedy algorithm.
- Maximal matchings are non-unique; some may be preferable to others (e.g. choose heavy edges first).
Coarsening via maximal matching

- Collapse nodes connected in matching into coarse nodes
- Add all edge weights between connected coarse nodes
Software

All these use some flavor(s) of multilevel:

- METIS/ParMETIS (Kapyris)
- PARTY (U. Paderborn)
- Chaco (Sandia)
- Scotch (INRIA)
- Jostle (now commercialized)
- Zoltan (Sandia)
Is this it?

Consider partitioning for sparse matvec:

- Edge cuts \neq communication volume
- Haven’t looked at minimizing maximum communication volume
- Looked at communication volume – what about latencies?

Some work beyond graph partitioning (e.g. hypergraph in Zoltan).
Is this it?

Additional work on:
- Partitioning power law graphs
- Covering sets with small overlaps

Also: Classes of graphs with no small cuts (expanders)