
Lecture 2:
Tiling matrix-matrix multiply, code tuning

David Bindel

1 Feb 2010

Logistics

I Lecture notes and slides for first two lectures are up:
http://www.cs.cornell.edu/~bindel/class/
cs5220-s10.

I You should receive cluster information soon for
crocus.csuglab.cornell.edu. When you do, make
sure you can log in!

I We will be setting up a wiki for the class — among other
things, this will be a way to form groups.

I Hope to have the first assignment ready by Wednesday.

http://www.cs.cornell.edu/~bindel/class/cs5220-s10
http://www.cs.cornell.edu/~bindel/class/cs5220-s10

Reminder: Matrix multiply

Consider naive square matrix multiplication:

#define A(i,j) AA[j*n+i]
#define B(i,j) BB[j*n+i]
#define C(i,j) CC[j*n+i]

for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j) {
C(i,j) = 0;
for (k = 0; k < n; ++k)
C(i,j) += A(i,k)*B(k,j);

}
}

How fast can this run?

Why matrix multiply?

I Key building block for dense linear algebra
I Same pattern as other algorithms (e.g. transitive closure

via Floyd-Warshall)
I Good model problem (well studied, illustrates ideas)
I Easy to find good libraries that are hard to beat!

1000-by-1000 matrix multiply on my laptop

I Theoretical peak: 10 Gflop/s using both cores
I Naive code: 330 MFlops (3.3% peak)
I Vendor library: 7 Gflop/s (70% peak)

Tuned code is 20× faster than naive!

Simple model

Consider two types of memory (fast and slow) over which we
have complete control.

I m = words read from slow memory
I tm = slow memory op time
I f = number of flops
I tf = time per flop
I q = f/m = average flops / slow memory access

Time:

ftf + mtm = ftf

(
1 +

tm/tf
q

)
Two important ratios:

I tm/tf = machine balance (smaller is better)
I q = computational intensity (larger is better)

How big can q be?

1. Dot product: n data, 2n flops
2. Matrix-vector multiply: n2 data, 2n2 flops
3. Matrix-matrix multiply: 2n2 data, 2n2 flops

These are examples of level 1, 2, and 3 routines in Basic Linear
Algebra Subroutines (BLAS). We like building things on level 3
BLAS routines.

q for naive matrix multiply

q ≈ 2 (on board)

Better locality through blocking

Basic idea: rearrange for smaller working set.

for (I = 0; I < n; I += bs) {
for (J = 0; J < n; J += bs) {
block_clear(&(C(I,J)), bs, n);
for (K = 0; K < n; K += bs)
block_mul(&(C(I,J)), &(A(I,K)), &(B(K,J)),

bs, n);
}

}

Q: What do we do with “fringe” blocks?

q for naive matrix multiply

q ≈ b (on board). If Mf words of fast memory, b ≈
√

Mf /3.

Th: (Hong/Kung 1984, Irony/Tishkin/Toledo 2004): Any
reorganization of this algorithm that uses only associativity and
commutativity of addition is limited to q = O(

√
Mf)

Note: Strassen uses distributivity...

Better locality through blocking

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600 700 800 900 1000 1100

M
flo

p/
s

Dimension

Timing for matrix multiply

Naive
Blocked

DSB

Truth in advertising

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000 1100

M
flo

p/
s

Dimension

Timing for matrix multiply

Naive
Blocked

DSB
Vendor

Recursive blocking

I Can use blocking idea recursively (for L2, L1, registers)
I Best blocking is not obvious!
I Need to tune bottom level carefully...

Idea: Cache-oblivious algorithms

Index via Z-Morton ordering (“space-filling curve”)
I Pro: Works well for any cache size
I Con: Expensive index calculations

Good idea for ordering meshes?

Copy optimization

Copy blocks into contiguous memory
I Get alignment for SSE instructions (if applicable)
I Unit stride even across bottom
I Avoid conflict cache misses

Auto-tuning

Several different parameters:
I Loop orders
I Block sizes (across multiple levels)
I Compiler flags?

Use automated search!

Idea behind ATLAS (and earlier efforts like PhiPAC).

My last matrix multiply

I Good compiler (Intel C compiler) with hints involving
aliasing, loop unrolling, and target architecture. Compiler
does auto-vectorization.

I L1 cache blocking
I Copy optimization to aligned memory
I Small (8× 8× 8) matrix-matrix multiply kernel found by

automated search. Looped over various size parameters.

On that machine, I got 82% peak. Here... less than 50% so far.

Tips on tuning

“We should forget bout small efficiences, say about
97% of the time: premature optimization is the root of
all evil.”
– C.A.R. Hoare (quoted by Donald Knuth)

I Best case: good algorithm, efficient design, obvious code
I Tradeoff: speed vs readability, debuggability,

maintainability...
I Only optimize when needful
I Go for low-hanging fruit first: data layouts, libraries,

compiler flags
I Concentrate on the bottleneck
I Concentrate on inner loops
I Get correctness (and a test framework) first

Tuning tip 0: use good tools

I We have gcc. The Intel compilers are better.
I Fortran compilers often do better than C compilers (less

aliasing)
I Intel VTune, cachegrind, and Shark can provide useful

profiling information (including information about cache
misses)

Tuning tip 1: use libraries!

I Tuning is painful! You will see...
I Best to build on someone else’s efforts when possible

Tuning tip 2: compiler flags

I -O3: Aggressive optimization
I -march=core2: Tune for specific architecture
I -ftree-vectorize: Automatic use of SSE (supposedly)
I -funroll-loops: Loop unrolling
I -ffast-math: Unsafe floating point optimizations

Sometimes profiler-directed optimization helps. Look at the gcc
man page for more.

Tuning tip 3: Attend to memory layout

I Arrange data for unit stride access
I Arrange algorithm for unit stride access!
I Tile for multiple levels of cache
I Tile for registers (loop unrolling + “register” variables)

Tuning tip 4: Use small data structures

I Smaller data types are faster
I Bit arrays vs int arrays for flags?
I Minimize indexing data — store data in blocks
I Some advantages to mixed precision calculation (float for

large data structure, double for local calculation) — more
later in the semester!

I Sometimes recomputing is faster than saving!

Tuning tip 5: Inline judiciously

I Function call overhead often minor...
I ... but structure matters to optimizer!
I C++ has inline keyword to indicate inlined functions

Tuning tip 6: Avoid false dependencies

Arrays in C can be aliased:

a[i] = b[i] + c;
a[i+1] = b[i+1] * d;

Can’t reorder – what if a[i+1] refers to b[i]? But:

float b1 = b[i];
float b2 = b[i+1];
a[i] = b1 + c;
a[i+1] = b2 * d;

Declare no aliasing via restrict pointers, compiler flags,
pragmas...

Tuning tip 7: Beware inner loop branches!

I Branches slow down code if hard to predict
I May confuse optimizer that only deals with basic blocks

Tuning tip 8: Preload into local variables

while (...) {

*res++ = filter[0]*signal[0] +
filter[1]*signal[1] +
filter[2]*signal[2];

signal++;
}

Tuning tip 8: Preload into local variables

... becomes

float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while (...) {

*res++ = f0*signal[0] +
f1*signal[1] +
f2*signal[2];

signal++;
}

Tuning tip 9: Loop unrolling plus software pipelining

float s0 = signal[0], s1 = signal[1],
s2 = signal[2];

*res++ = f0*s0 + f1*s1 + f2*s2;
while (...) {
signal += 3;
s0 = signal[0];
res[0] = f0*s1 + f1*s2 + f2*s0;
s1 = signal[1];
res[1] = f0*s2 + f1*s0 + f2*s1;
s2 = signal[2];
res[2] = f0*s0 + f1*s1 + f2*s2;
res += 3;

}

Note: more than just removing index overhead!
Remember: -funroll-loops!

Tuning tip 10: Expose independent operations

I Use local variables to expose independent computations
I Balance instruction mix for different functional units

f1 = f5 * f9;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;

Examples

What to use for high performance?
I Function calculation or table of precomputed values?
I Several (independent) passes over a data structure or one

combined pass?
I Parallel arrays vs array of records?
I Dense matrix vs sparse matrix (only nonzeros indexed)?
I MATLAB vs C for dense linear algebra codes?

Your assignment (out Weds)

I Learn to log into cluster.
I Find someone to work with (wiki should help? assigned?)
I Optimize square matrix-matrix multiply.

Details and pointers to resources in next couple days.

