Lecture 2:
Single processor architecture and memory

David Bindel

27 Jan 2010
Logistics

- If we’re still overcrowded today, will request different room.
- Hope to have cluster account information on Monday.
The idealized machine

- Address space of named words
- Basic operations are register read/write, logic, arithmetic
- Everything runs in the program order
- High-level language translates into "obvious" machine code
- All operations take about the same amount of time
The real world

- Memory operations are *not* all the same!
 - Registers and caches lead to variable access speeds
 - Different memory layouts dramatically affect performance
- Instructions are non-obvious!
 - Pipelining allows instructions to overlap
 - Different functional units can run in parallel (and out of order)
 - Instructions take different amounts of time
 - Different costs for different orders and instruction mixes

Our goal: enough understanding to help the compiler out.
Pipelining

- Patterson’s example: laundry folding
- Pipelining improves *bandwidth*, but not *latency*
- Potential speedup = number of stages
Example: My laptop

2.5 GHz MacBook Pro with Intel Core 2 Duo T9300 processor.

- 14 stage pipeline (note: P4 was 31, but longer isn’t always better)
- Wide dynamic execution: up to four full instructions at once
- Operations internally broken down into “micro-ops”
 - Cache micro-ops – like a hardware JIT?!

In principle, two cores can handle twenty billion ops per second?
SIMD

- Single *Instruction Multiple Data*
- Old idea had a resurgence in mid-late 90s (for graphics)
- Now short vectors are ubiquitous...
My laptop

- SSE (Streaming SIMD Extensions)
 - Operates on 128 bits of data at once
 1. Two 64-bit floating point or integer ops
 2. Four 32-bit floating point or integer ops
 3. Eight 16-bit integer ops
 4. Sixteen 8-bit ops
 - Floating point handled slightly differently from “main” FPU
 - Requires care with data alignment

Also have vector processing on GPU
Lots of special features: SIMD instructions, maybe FMAs, ...

Compiler understands how to utilize these *in principle*
 ▶ Rearranges instructions to get a good mix
 ▶ Tries to make use of FMAs, SIMD instructions, etc

In practice, needs some help:
 ▶ Set optimization flags, pragmas, etc
 ▶ Rearrange code to make things obvious
 ▶ Use special intrinsics or library routines
 ▶ Choose data layouts, algorithms that suit the machine
Cache basics

Programs usually have *locality*

- *Spatial locality*: things close to each other tend to be accessed consecutively
- *Temporal locality*: use a “working set” of data repeatedly

Cache hierarchy built to use locality.
Cache basics

- Memory \textit{latency} = how long to get a requested item
- Memory \textit{bandwidth} = how fast memory can provide data
- Bandwidth improving faster than latency

Caches help:
- Hide memory costs by reusing data
 - Exploit temporal locality
- Use bandwidth to fetch a \textit{cache line} all at once
 - Exploit spatial locality
- Use bandwidth to support multiple outstanding reads
- Overlap computation and communication with memory
 - Prefetching

This is mostly automatic and implicit.
We have $N = 10^6$ two-dimensional coordinates, and want their centroid. Which of these is faster and why?

1. Store an array of (x_i, y_i) coordinates. Loop i and simultaneously sum the x_i and the y_i.

2. Store an array of (x_i, y_i) coordinates. Loop i and sum the x_i, then sum the y_i in a separate loop.

3. Store the x_i in one array, the y_i in a second array. Sum the x_i, then sum the y_i.

Let’s see!
Cache basics

- Store cache *lines* of several bytes
- Cache *hit* when copy of needed data in cache
- Cache *miss* otherwise. Three basic types:
 - *Compulsory* miss: never used this data before
 - *Capacity* miss: filled the cache with other things since this was last used – working set too big
 - *Conflict* miss: insufficient associativity for access pattern

Associativity

- Direct-mapped: each address can only go in one cache location (e.g. store address xxxx1101 only at cache location 1101)
- *n*-way: each address can go into one of *n* possible cache locations (store up to 16 words with addresses xxxx1101 at cache location 1101).

Higher associativity is more expensive.
Caches on my laptop (I think)

- 32K L1 data and memory caches (per core)
 - 8-way set associative
 - 64-byte cache line
- 6 MB L2 cache (shared by both cores)
 - 16-way set associative
 - 64-byte cache line
A memory benchmark (membench)

for array A of length L from 4 KB to 8MB by 2x
for stride s from 4 bytes to L/2 by 2x
time the following loop
 for i = 0 to L by s
 load A[i] from memory
membench on my laptop
Visible features

- Line length at 64 bytes (prefetching?)
- L1 latency around 4 ns, 8 way associative
- L2 latency around 14 ns
- L2 cache size between 4 MB and 8 MB (actually 6 MB)
- 4K pages, 256 entries in TLB
The moral

Even for simple programs, performance is a complicated function of architecture!

- Need to understand at least a little in order to write fast programs
- Would like simple models to help understand efficiency
- Would like common tricks to help design fast codes
 - Example: *blocking* (also called *tiling*)
Matrix multiply

Consider naive square matrix multiplication:

```c
#define A(i,j) AA[j*n+i]
#define B(i,j) BB[j*n+i]
#define C(i,j) CC[j*n+i]

for (i = 0; i < n; ++i) {
    for (j = 0; j < n; ++j) {
        C(i,j) = 0;
        for (k = 0; k < n; ++k)
            C(i,j) += A(i,k)*B(k,j);
    }
}
```

How fast can this run?
Note on storage

Two standard matrix layouts:

- Column-major (Fortran): $A(i,j)$ at $A+j*n+i$
- Row-major (C): $A(i,j)$ at $A+i*n+j$

I default to column major.

Also note: C doesn’t really support matrix storage.
1000-by-1000 matrix multiply on my laptop

- Theoretical peak: 10 Gflop/s using both cores
- Naive code: 330 MFlops (3.3% peak)
- Vendor library: 7 Gflop/s (70% peak)

Tuned code is $20 \times$ faster than naive!

Can we understand naive performance in terms of membench?
1000-by-1000 matrix multiply on my laptop

- Matrix sizes: about 8 MB.
- Repeatedly scans B in memory order (column major)
- 2 flops/element read from B
- 3 ns/flop = 6 ns/element read from B
- Check membench — gives right order of magnitude!
Simple model

Consider two types of memory (fast and slow) over which we have complete control.

- $m =$ words read from slow memory
- $t_m =$ slow memory op time
- $f =$ number of flops
- $t_f =$ time per flop
- $q = f/m =$ average flops / slow memory access

Time:

$$ft_f + mt_m = ft_f \left(1 + \frac{t_m}{t_f} \frac{1}{q} \right)$$

Larger q means better time.
How big can q be?

1. Dot product: n data, $2n$ flops
2. Matrix-vector multiply: n^2 data, $2n^2$ flops
3. Matrix-matrix multiply: $2n^2$ data, $2n^2$ flops

These are examples of level 1, 2, and 3 routines in *Basic Linear Algebra Subroutines* (BLAS). We like building things on level 3 BLAS routines.