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A High Level Perspective...



Blocking For Performance

A =








A11 A12 · · · A1q

A21 A22 · · · A2q
... ... . . . ...

Ap1 Ap2 · · · Apq








}n1

}n2

}nq

︸︷︷︸ ︸︷︷︸ ︸︷︷︸

n1 n2 nq

A well known strategy for high-performance Ax = b and Ax = λx
solvers.



Factoring for Performance

One way to execute a matrix-vector product

y = Fnx

when Fn = At · · ·A2A1 is as follows:

y = x
for k = 1:t

y = Akx
end

A different factorization Fn = Ãt̃ · · · Ã1 would yield a different
algorithm.



The Discrete Fourier Transform (n = 8)

y = F8x =
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8

ω0
8 ω7

8 ω14
8 ω21

8 ω28
8 ω35

8 ω42
8 ω49
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




















x

ω8 = cos(2π/8) − i · sin(2π/8)



The DFT Matrix In General...

If ωn = cos(2π/n)− i · sin(2π/n) then

[Fn]pq = ω
pq
n

= (cos(2π/n) − i · sin(2π/n))pq

= cos(2pqπ/n) − i · sin(2pqπ/n)

Fact:

FH
n Fn = nIn

Thus, Fn/
√

n is unitary.



Data Sparse Matrices

An n-by-n matrix A is data sparse if it can be represented with
many fewer than n2 numbers.

Example 1.
A has lots of zeros. (“Traditional Sparse”)

Example 2.
A is Toeplitz...

A =







a b c d
e a b c
f e a b
g f e a









More Examples of Data Sparse Matrices

A is a Kronecker Product B ⊗ C, e.g.,

A =

[

b11C b12C

b21C b22C

]

If B ∈ IRm1×m1 and C ∈ IRm2×m2 then A = B ⊗ C has m2
1m

2
2

entries but is parameterized by just m2
1 + m2

2 numbers.



Extreme Data Sparsity

A =

n∑

i=1

n∑

j=1

n∑

k=1

n∑

`=1

S(i, j, k, `) · (2-by-2)⊗ · · · ⊗ (2-by-2)
︸ ︷︷ ︸

d times

A is 2d -by-2d but is parameterized by O(dn4) numbers.



Factorization of Fn

The DFT matrix can be factored into a short product of sparse
matrices, e.g.,

F1024 = A10 · · ·A2A1P1024

where each A-matrix has 2 nonzeros per row and P1024 is a per-
mutation.



From Factorization to Algorithm

If n = 210 and

Fn = A10 · · ·A2A1Pn

then

y = Pnx

for k = 1:10

y = Akx ← 2n flops.

end

computes y = Fnx and requires O(n log n) flops.



Recursive Block Structure

F8(:, [ 0 2 4 6 1 3 5 7 ]) =















1 0 0 0 1 0 0 0
0 1 0 0 0 ω8 0 0

0 0 1 0 0 0 ω2
8 0

0 0 0 1 0 0 0 ω3
8

1 0 0 0 −1 0 0 0
0 1 0 0 0 −ω8 0 0

0 0 1 0 0 0 −ω2
8 0

0 0 0 1 0 0 0 −ω3
8
















[
F4 0

0 F4

]

Fn/2 “shows up” when you permute the columns of Fn so that
the odd-indexed columns come first.



Recursion...

We build an 8-point DFT from two 4-point DFTs...

F8 x =
















1 0 0 0 1 0 0 0
0 1 0 0 0 ω8 0 0

0 0 1 0 0 0 ω2
8 0

0 0 0 1 0 0 0 ω3
8

1 0 0 0 −1 0 0 0
0 1 0 0 0 −ω8 0 0

0 0 1 0 0 0 −ω2
8 0

0 0 0 1 0 0 0 −ω3
8
















[
F4x(0:2:7)

F4x(1:2:7)

]



Radix-2 FFT: Recursive Implementation

function y =fft(x, n)
if n = 1

y = x
else

m = n/2; ω = exp(−2πi/n)

Ω = diag(1, ω, . . . , ωm−1)

zT = fft(x(0:2:n− 1),m)

zB = Ω· fft(x(1:2:n− 1),m)

y =

[
Im Im

Im −Im

] [
zT

zB

]

Overall: 5n log n flops.

end



The Divide-and-Conquer Picture
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Towards a Nonrecursive Implementation

The Radix-2 Factorization...

If n = 2m and

Ωm = diag(1, ωn, . . . , ωm−1
n ),

then

FnΠn =

[
Fm ΩmFm

Fm −ΩmFm

]

=

[
Im Ωm

Im −Ωm

]

(I2⊗ Fm).

where Πn = In(:, [0:2:n 1:2:n]).

Note: I2 ⊗ Fm =

[
Fm 0
0 Fm

]

.



The Cooley-Tukey Factorization

n = 2t

Fn = At · · ·A1Pn

Pn = the n-by-n “bit reversal ” permutation matrix

Aq = Ir ⊗
[

IL/2 ΩL/2

IL/2 −ΩL/2

]

L = 2q, r = n/L

ΩL/2 = diag(1, ωL, . . . , ω
L/2−1
L ) ωL = exp(−2πi/L)



The Bit Reversal Permutation
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Bit Reversal


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

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→
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




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
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




Butterfly Operations

This matrix is block diagonal...

Aq = Ir ⊗
[

IL/2 ΩL/2

IL/2 −ΩL/2

]

L = 2q, r = n/L

r copies of things like this















1 ×
1 ×

1 ×
1 ×

1 ×
1 ×

1 ×
1 ×

















At the Scalar Level...
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Signal Flow Graph (n = 8)
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The Transposed Stockham Factorization

If n = 2t, then

Fn = St · · ·S2S1,

where for q = 1:t the factor Sq = AqΓq−1 is defined by

Aq = Ir ⊗BL, L = 2q, r = n/L,

Γq−1 = Πr∗ ⊗ IL∗, L∗ = L/2, r∗ = 2r,

BL =

[
IL∗ ΩL∗
IL∗ −ΩL∗

]

,

ΩL∗ = diag(1, ωL, . . . , ωL∗−1
L ).



Perfect Shuffle

(Π4 ⊗ I2)


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









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x1
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x6
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













=


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









x0
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
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Cooley-Tukey Array Interpretation

Step q:

︸ ︷︷ ︸

r=n/L

k






L=2
q−→

2k 2k+1

︸ ︷︷ ︸

r∗=n/L∗

L∗=2
q−1

8

>

<

>

:



Reshaping

x =

















×
×
×
×
×
×
×
×
×

















→ x2×4 =

[
× × × ×
× × × ×

]



Transposed Stockham Array Interp

k k+r

x
(q−1)
L∗×r∗ = FL∗

xT
r∗×L∗

=

︸ ︷︷ ︸

r∗=n/L∗

9

>

=

>

;

L∗=2
q−1 .

x(q) = Sqx
(q−1)

k

x
(q)
L×r = FLxT

r×L =

︸ ︷︷ ︸

r=n/L

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

L=2
q



2× 2× 2 Basic Radix-2 Versions

Store intermediate DFTs by row or column

Intermediate DFTs adjacent or not.

How the two butterfly loops are ordered.

x =

(

Ir ⊗
[

IL/2 ΩL/2

IL/2 −ΩL/2

])

x L = 2q, r = n/L



The Gentleman-Sande Idea

It can be shown that FT
n = Fn and so if

Fn = At · · ·A1P
T
n

then

Fn = FT
n = PnAT

1 · · ·AT
t

and we can compute y = Fnx as follows...

y = x
for k = t:− 1:1

y = AT
k x

end
y = Pny



Convolution and Other Aps

From “problem space” to “DFT space” via
for k = t:− 1:1

x = AT
k x

end
x = Pnx

Do your thing in DFT space. Then inverse transform back to
Problem space via

x = PT
n x

for k = 1:t
x = Akx

end
x = x/n

Can avoid the Pn ops by working in “scrambled” DFT space.



Radix-4

Can combine four quarter-length DFTs to produce a single full-
length DFT:

v =







I I I I
I−iI−I iI
I −I I −I
I iI−I−iI













a
b
c
d







=







(a + c)+ (b + d)
(a− c)−i(b− d)
(a + c)− (b + d)
(a− c)+i(b− d)







,

The radix-4 butterfly.

Better re-use of data.

Fewer flops. Radix-4 FFT is 4.25n log n (instead of 5n log n).



Mixed Radix
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Multiple DFTs

Given: n1-by-n2 matrix X .

Multicolumn DFT Problem...

X ← Fn1X

Multirow DFT Problem...

X ← XFn2



Blocked Multiple DFTs

X ← Fn1X becomes

[
X1 | X2 | · · · | Xp

]
←
[
Fn1X1 | Fn1X2 | · · · | Fn1Xp

]



The 4-Step Framework

A matrix reshaping of the x← Fnx operation when n = n1n2:

xn1×n2 ← xn1×n2Fn2 Multiple row DFT

xn1×n2 ← Fn(0:n1 − 1, 0:n2 − 1).∗ xn1×n2 Pointwise multiply

xn2×n1 ← xT
n1×n2

Transpose

xn2×n1 ← xn2×n1Fn1 Multiple row DFT .

Can be arranged so communication is concentrated in the trans-
pose step.



Distributed Transpose: Example

Initial:

X =







X00 X01 X02 X03
X10 X11 X12 X13
X20 X21 X22 X23
X30 X31 X32 X33







.

Transpose each block:

X ←










XT
00 XT

01 XT
02 XT

03

XT
10 XT

11 XT
12 XT

13

XT
20 XT

21 XT
22 XT

23

XT
30 XT

31 XT
32 XT

33










.



Now regard as 2-by-2 and block transpose each block:

X ←











XT
00 XT

10 XT
02 XT

12

XT
01 XT

11 XT
03 XT

13

XT
20 XT

30 XT
22 XT

32

XT
21 XT

31 XT
23 XT

33











.

Now do a 2-by-2 block transpose:

X ←











XT
00 XT

10 XT
20 XT

30

XT
01 XT

11 XT
21 XT

31

XT
02 XT

12 XT
22 XT

32

XT
03 XT

13 XT
23 XT

33











.



Factorization and Transpose

xn×m ← xT
m×n

corresponds to

x← P (m,n)x

where P (m,n) is a perfect shuffle permutation, e.g.,

P (3, 4) = I12(:, [0 3 6 9 1 4 7 10 2 5 8 11])

Different multi-pass transposition algorithms correspond to differ-
ent factorizations of P (m,n).



Two-Dimensional FFTs

If X is an n1-by-n2 matrix then is 2D DFT is

X ← Fn1XFn2

Option 1.

X ← Fn1X

X ← XFn2

Option 2. Assume n1 = n2 and Fn1 = At · · ·A1.

for q = 1:t

X ← AqXAT
q

end

Interminlgling the column and row butterfly computations can
result in better locality.



3-Dimensional DFTs

Given X(1:n1, 1:n2, 1:n3), apply DFT in each of the three dimen-
sions.

If

x = reshape(X(1:n1, 1:n2, 1:n3), n1n2n3, 1)

then the problem is to compute

x ← (Fn3
⊗ Fn2

⊗ Fn1)x

i.e.,
x ← (In3

⊗ In2
⊗ Fn1)x

x ← (In3
⊗ Fn2

⊗ In1)x
x ← (Fn3

⊗ In2
⊗ In1)x



d-Dimensional DFTs

Sample for d = 5:

µ = 1
X(α1, α2, α3, α4, α5)
X(α2, α3, α4, α5, α1)

Fn1

ΠT
n1,n

µ = 2
X(α2, α3, α4, α5, α1)
X(α3, α4, α5, α1, α2)

Fn2

ΠT
n2,n

µ = 3
X(α3, α4, α5, α1, α2)
X(α4, α5, α1, α2, α3)

Fn3

ΠT
n3,n

µ = 4
X(α4, α5, α1, α2, α3)
X(α5, α1, α2, α3, α4)

Fn4

ΠT
n4,n

µ = 5
X(α5, α1, α2, α3, α4)
X(α1, α2, α3, α4, α5)

Fn5

ΠT
n5,n

Intemingling of component DFTs and tensor transpositions.
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