The FFT

Via Matrix Factorizations

A Key to Designing High Performance Implementations

Charles Van Loan

Department of Computer Science
Cornell University

A High Level Perspective...

Blocking For Performance

$$
A=\underbrace{\left.\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 q} \\
A_{21} & A_{22} & \cdots & A_{2 q} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p 1} & A_{p 2} & \cdots & A_{p q}
\end{array}\right]\right\} n_{n_{2}} \underbrace{}_{n_{q}}\} n_{2}}_{n_{1}} \begin{gathered}
\\
n_{2}
\end{gathered}
$$

A well known strategy for high-performance $A x=b$ and $A x=\lambda x$ solvers.

Factoring for Performance

One way to execute a matrix-vector product

$$
y=F_{n} x
$$

when $F_{n}=A_{t} \cdots A_{2} A_{1}$ is as follows:

$$
\begin{aligned}
& y=x \\
& \text { for } k=1: t \\
& \quad y=A_{k} x \\
& \text { end }
\end{aligned}
$$

A different factorization $F_{n}=\tilde{A}_{\tilde{t}} \cdots \tilde{A}_{1}$ would yield a different algorithm.

The Discrete Fourier Transform ($n=8$)

$$
\begin{aligned}
& y=F_{8} x= {\left[\begin{array}{cccccccc}
\omega_{8}^{0} & \omega_{8}^{0} \\
\omega_{8}^{0} & \omega_{8}^{1} & \omega_{8}^{2} & \omega_{8}^{3} & \omega_{8}^{4} & \omega_{8}^{5} & \omega_{8}^{6} & \omega_{8}^{7} \\
\omega_{8}^{0} & \omega_{8}^{2} & \omega_{8}^{4} & \omega_{8}^{6} & \omega_{8}^{8} & \omega_{8}^{10} & \omega_{8}^{12} & \omega_{8}^{14} \\
\omega_{8}^{0} & \omega_{8}^{3} & \omega_{8}^{6} & \omega_{8}^{9} & \omega_{8}^{12} & \omega_{8}^{15} & \omega_{8}^{18} & \omega_{8}^{21} \\
\omega_{8}^{0} & \omega_{8}^{4} & \omega_{8}^{8} & \omega_{8}^{12} & \omega_{8}^{16} & \omega_{8}^{20} & \omega_{8}^{24} & \omega_{8}^{28} \\
\omega_{8}^{0} & \omega_{8}^{5} & \omega_{8}^{10} & \omega_{8}^{15} & \omega_{8}^{20} & \omega_{8}^{25} & \omega_{8}^{30} & \omega_{8}^{35} \\
\omega_{8}^{0} & \omega_{8}^{6} & \omega_{8}^{12} & \omega_{8}^{18} & \omega_{8}^{24} & \omega_{8}^{30} & \omega_{8}^{36} & \omega_{8}^{42} \\
\omega_{8}^{0} & \omega_{8}^{7} & \omega_{8}^{14} & \omega_{8}^{21} & \omega_{8}^{28} & \omega_{8}^{35} & \omega_{8}^{42} & \omega_{8}^{49}
\end{array}\right] x } \\
& \omega_{8}=\cos (2 \pi / 8)-i \cdot \sin (2 \pi / 8)
\end{aligned}
$$

The DFT Matrix In General...

If $\omega_{n}=\cos (2 \pi / n)-i \cdot \sin (2 \pi / n)$ then

$$
\begin{aligned}
{\left[F_{n}\right]_{p q} } & =\omega_{n}^{p q} \\
& =(\cos (2 \pi / n)-i \cdot \sin (2 \pi / n))^{p q} \\
& =\cos (2 p q \pi / n)-i \cdot \sin (2 p q \pi / n)
\end{aligned}
$$

Fact:

$$
F_{n}^{H} F_{n}=n I_{n}
$$

Thus, F_{n} / \sqrt{n} is unitary.

Data Sparse Matrices

An n-by- n matrix A is data sparse if it can be represented with many fewer than n^{2} numbers.

Example 1.
A has lots of zeros. ("Traditional Sparse")

Example 2.
A is Toeplitz...

$$
A=\left[\begin{array}{llll}
a & b & c & d \\
e & a & b & c \\
f & e & a & b \\
g & f & e & a
\end{array}\right]
$$

More Examples of Data Sparse Matrices

A is a Kronecker Product $B \otimes C$, e.g.,

$$
A=\left[\begin{array}{c|c}
b_{11} C & b_{12} C \\
\hline b_{21} C & b_{22} C
\end{array}\right]
$$

If $B \in \mathbb{R}^{m_{1} \times m_{1}}$ and $C \in \mathbb{R}^{m_{2} \times m_{2}}$ then $A=B \otimes C$ has $m_{1}^{2} m_{2}^{2}$ entries but is parameterized by just $m_{1}^{2}+m_{2}^{2}$ numbers.

Extreme Data Sparsity

$$
A=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{\ell=1}^{n} S(i, j, k, \ell) \cdot \underbrace{(2 \text {-by- } 2) \otimes \cdots \otimes(2 \text {-by- } 2)}_{d \text { times }}
$$

A is 2^{d}-by- 2^{d} but is parameterized by $O\left(d n^{4}\right)$ numbers.

Factorization of F_{n}

The DFT matrix can be factored into a short product of sparse matrices, e.g.,

$$
F_{1024}=A_{10} \cdots A_{2} A_{1} P_{1024}
$$

where each A-matrix has 2 nonzeros per row and P_{1024} is a permutation.

From Factorization to Algorithm

If $n=2^{10}$ and

$$
F_{n}=A_{10} \cdots A_{2} A_{1} P_{n}
$$

then

$$
\begin{aligned}
& y=P_{n} x \\
& \text { for } k=1: 10 \\
& \quad y=A_{k} x \quad \leftarrow 2 n \text { flops. } \\
& \text { end }
\end{aligned}
$$

computes $y=F_{n} x$ and requires $O(n \log n)$ flops.

Recursive Block Structure

$$
F_{8}(:,[02461357])=
$$

$$
\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \omega_{8} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & \omega_{8}^{2} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \omega_{8}^{3} \\
\hline 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -\omega_{8} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -\omega_{8}^{2} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -\omega_{8}^{3}
\end{array}\right]\left[\begin{array}{cc}
F_{4} & 0 \\
0 & F_{4}
\end{array}\right]
$$

$F_{n / 2}$ "shows up" when you permute the columns of F_{n} so that the odd-indexed columns come first.

Recursion...

We build an 8-point DFT from two 4-point DFTs...

$$
F_{8} x=\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \omega_{8} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & \omega_{8}^{2} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \omega_{8}^{3} \\
\hline 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -\omega_{8} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -\omega_{8}^{2} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -\omega_{8}^{3}
\end{array}\right]\left[\begin{array}{l}
F_{4} x(0: 2: 7) \\
F_{4} x(1: 2: 7)
\end{array}\right]
$$

Radix-2 FFT: Recursive Implementation

function $y=\operatorname{fft}(x, n)$
if $n=1$

$$
y=x
$$

else

$$
\begin{aligned}
& m=n / 2 ; \quad \omega=\exp (-2 \pi i / n) \\
& \Omega=\operatorname{diag}\left(1, \omega, \ldots, \omega^{m-1}\right) \\
& z_{T}=\operatorname{fft}(x(0: 2: n-1), m) \\
& z_{B}=\Omega \cdot \operatorname{fft}(x(1: 2: n-1), m) \\
& y=\left[\begin{array}{rr}
I_{m} & I_{m} \\
I_{m} & -I_{m}
\end{array}\right]\left[\begin{array}{l}
z_{T} \\
z_{B}
\end{array}\right] \quad \text { Overall: } 5 n \log n \text { flops. }
\end{aligned}
$$

end

The Divide-and-Conquer Picture

Towards a Nonrecursive Implementation

The Radix-2 Factorization...
If $n=2 m$ and

$$
\Omega_{m}=\operatorname{diag}\left(1, \omega_{n}, \ldots, \omega_{n}^{m-1}\right)
$$

then

$$
F_{n} \Pi_{n}=\left[\begin{array}{cc}
F_{m} & \Omega_{m} F_{m} \\
F_{m} & -\Omega_{m} F_{m}
\end{array}\right]=\left[\begin{array}{cc}
I_{m} & \Omega_{m} \\
I_{m} & -\Omega_{m}
\end{array}\right]\left(I_{2} \otimes F_{m}\right)
$$

where $\Pi_{n}=I_{n}(:,[0: 2: n 1: 2: n])$.

Note: $\quad I_{2} \otimes F_{m}=\left[\begin{array}{cc}F_{m} & 0 \\ 0 & F_{m}\end{array}\right]$.

The Cooley-Tukey Factorization

$$
\begin{aligned}
& n=2^{t} \\
& F_{n}=A_{t} \cdots A_{1} P_{n} \\
& P_{n}=\text { the } n \text {-by- } n \text { "bit reversal" permutation matrix } \\
& A_{q}=I_{r} \otimes\left[\begin{array}{cc}
I_{L / 2} & \Omega_{L / 2} \\
I_{L / 2} & -\Omega_{L / 2}
\end{array}\right] \quad L=2^{q}, r=n / L \\
& \Omega_{L / 2}=\operatorname{diag}\left(1, \omega_{L}, \ldots, \omega_{L}^{L / 2-1}\right) \quad \omega_{L}=\exp (-2 \pi i / L)
\end{aligned}
$$

The Bit Reversal Permutation

Bit Reversal

$\left[\begin{array}{l}x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7) \\ x(8) \\ x(9) \\ x(10) \\ x(11) \\ x(12) \\ x(13) \\ x(14) \\ x(15)\end{array}\right]=\left[\begin{array}{l}x(0000) \\ x(0001) \\ x(0010) \\ x(0011) \\ x(0100) \\ x(0101) \\ x(0110) \\ x(0111) \\ x(1000) \\ x(1001) \\ x(1010) \\ x(1011) \\ x(1100) \\ x(1101) \\ x(1110) \\ x(1111)\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{c}x(0000) \\ x(1000) \\ x(0100) \\ x(1100) \\ x(0010) \\ x(1010) \\ x(0110) \\ x(1110) \\ x(0001) \\ x(1001) \\ x(0101) \\ x(1101) \\ x(0011) \\ x(1011) \\ x(0111) \\ x(1111)\end{array}\right]=\left[\begin{array}{c}x(0) \\ x(8) \\ x(4) \\ x(12) \\ x(2) \\ x(10) \\ x(6) \\ x(14) \\ x(1) \\ x(9) \\ x(5) \\ x(13) \\ x(3) \\ x(11) \\ x(7) \\ x(15)\end{array}\right]$

Butterfly Operations

This matrix is block diagonal...

$$
A_{q}=I_{r} \otimes\left[\begin{array}{rr}
I_{L / 2} & \Omega_{L / 2} \\
I_{L / 2} & -\Omega_{L / 2}
\end{array}\right] \quad L=2^{q}, r=n / L
$$

r copies of things like this

$$
\left[\begin{array}{llll|llll}
1 & & & & \times & & & \\
& 1 & & & & \times & & \\
& & 1 & & & & \times & \\
& & & 1 & & & & \times \\
\hline 1 & & & & \times & & & \\
& 1 & & & & \times & & \\
& & 1 & & & & \times & \\
& & & 1 & & & & \times
\end{array}\right]
$$

At the Scalar Level...

Signal Flow Graph ($n=8$)

The Transposed Stockham Factorization

If $n=2^{t}$, then

$$
F_{n}=S_{t} \cdots S_{2} S_{1}
$$

where for $q=1$:t the factor $S_{q}=A_{q} \Gamma_{q-1}$ is defined by

$$
\begin{array}{rlr}
A_{q}=I_{r} \otimes B_{L}, & L=2^{q}, r=n / L \\
\Gamma_{q-1}=\Pi_{r_{*}} \otimes I_{L_{*}}, & L_{*}=L / 2, r_{*}=2 r, \\
B_{L} & =\left[\begin{array}{cc}
I_{L_{*}} & \Omega_{L_{*}} \\
I_{L_{*}} & -\Omega_{L_{*}}
\end{array}\right], & \\
\Omega_{L_{*}} & =\operatorname{diag}\left(1, \omega_{L}, \ldots, \omega_{L}^{L_{*}-1}\right) .
\end{array}
$$

Perfect Shuffle

$$
\left(\Pi_{4} \otimes I_{2}\right)\left[\begin{array}{l}
x_{0} \\
\frac{x_{1}}{x_{2}} \\
\frac{x_{3}}{x_{4}} \\
\frac{x_{5}}{x_{6}} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
\frac{x_{1}}{x_{4}} \\
\frac{x_{5}}{x_{2}} \\
\frac{x_{3}}{x_{6}} \\
x_{7}
\end{array}\right]
$$

Cooley-Tukey Array Interpretation

Step q :

Reshaping

$$
x=\left[\begin{array}{c}
\times \\
\times
\end{array}\right] \quad \rightarrow \quad x_{2 \times 4}=\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]
$$

Transposed Stockham Array Interp

$2 \times 2 \times 2$ Basic Radix-2 Versions

Store intermediate DFTs by row or column
Intermediate DFTs adjacent or not.
How the two butterfly loops are ordered.

$$
x=\left(I_{r} \otimes\left[\begin{array}{rr}
I_{L / 2} & \Omega_{L / 2} \\
I_{L / 2} & -\Omega_{L / 2}
\end{array}\right]\right) x \quad L=2^{q}, r=n / L
$$

The Gentleman-Sande Idea

It can be shown that $F_{n}^{T}=F_{n}$ and so if

$$
F_{n}=A_{t} \cdots A_{1} P_{n}^{T}
$$

then

$$
F_{n}=F_{n}^{T}=P_{n} A_{1}^{T} \cdots A_{t}^{T}
$$

and we can compute $y=F_{n} x$ as follows...

$$
\begin{aligned}
& y=x \\
& \text { for } k=t:-1: 1 \\
& \quad y=A_{k}^{T} x \\
& \text { end } \\
& y=P_{n} y
\end{aligned}
$$

Convolution and Other Aps

From "problem space" to "DFT space" via

$$
\begin{aligned}
& \text { for } k=t:-1: 1 \\
& \quad x=A_{k}^{T} x \\
& \text { end }
\end{aligned}
$$

$$
x=P_{n} x
$$

Do your thing in DFT space. Then inverse transform back to Problem space via

$$
\begin{aligned}
& x=P_{n}^{T} x \\
& \text { for } k=1: t \\
& \quad x=A_{k} x \\
& \text { end } \\
& x=x / n
\end{aligned}
$$

Can avoid the P_{n} ops by working in "scrambled" DFT space.

Radix-4

Can combine four quarter-length DFTs to produce a single fulllength DFT:

$$
v=\left[\begin{array}{rrrr}
I & I & I & I \\
I-i I-I & i I \\
I & -I & I & -I \\
I & i I-I-i I
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
(a+c)+(b+d) \\
(a-c)-i(b-d) \\
(a+c)-(b+d) \\
(a-c)+i(b-d)
\end{array}\right],
$$

The radix-4 butterfly.
Better re-use of data.
Fewer flops. Radix-4 FFT is $4.25 n \log n$ (instead of $5 n \log n$).

Mixed Radix

Multiple DFTs

Given: n_{1}-by- n_{2} matrix X.
Multicolumn DFT Problem...

$$
X \leftarrow F_{n_{1}} X
$$

Multirow DFT Problem...

$$
X \leftarrow X F_{n_{2}}
$$

Blocked Multiple DFTs

$X \leftarrow F_{n_{1}} X$ becomes

$$
\left[X_{1}\left|X_{2}\right| \cdots \mid X_{p}\right] \leftarrow\left[F_{n_{1}} X_{1}\left|F_{n_{1}} X_{2}\right| \cdots \mid F_{n_{1}} X_{p}\right]
$$

The 4-Step Framework

A matrix reshaping of the $x \leftarrow F_{n} x$ operation when $n=n_{1} n_{2}$:

$$
\begin{aligned}
& x_{n_{1} \times n_{2}} \leftarrow x_{n_{1} \times n_{2}} F_{n_{2}} \quad \text { Multiple row DFT } \\
& x_{n_{1} \times n_{2}} \leftarrow F_{n}\left(0: n_{1}-1,0: n_{2}-1\right) . * x_{n_{1} \times n_{2}} \quad \text { Pointwise multiply } \\
& x_{n_{2} \times n_{1}} \leftarrow x_{n_{1} \times n_{2}}^{T} \quad \text { Transpose } \\
& x_{n_{2} \times n_{1}} \leftarrow x_{n_{2} \times n_{1}} F_{n_{1}} \quad \text { Multiple row DFT } .
\end{aligned}
$$

Can be arranged so communication is concentrated in the transpose step.

Distributed Transpose: Example

Initial:

$$
X=\left[\begin{array}{llll}
X_{00} & X_{01} & X_{02} & X_{03} \\
X_{10} & X_{11} & X_{12} & X_{13} \\
X_{20} & X_{21} & X_{22} & X_{23} \\
X_{30} & X_{31} & X_{32} & X_{33}
\end{array}\right]
$$

Transpose each block:

$$
X \leftarrow\left[\begin{array}{cccc}
X_{00}^{T} & X_{01}^{T} & X_{02}^{T} & X_{03}^{T} \\
X_{10}^{T} & X_{11}^{T} & X_{12}^{T} & X_{13}^{T} \\
X_{20}^{T} & X_{21}^{T} & X_{22}^{T} & X_{23}^{T} \\
X_{30}^{T} & X_{31}^{T} & X_{32}^{T} & X_{33}^{T}
\end{array}\right]
$$

Now regard as 2-by-2 and block transpose each block:

$$
X \leftarrow\left[\begin{array}{cc|cc}
X_{00}^{T} & X_{10}^{T} & X_{02}^{T} & X_{12}^{T} \\
X_{01}^{T} & X_{11}^{T} & X_{03}^{T} & X_{13}^{T} \\
\hline X_{20}^{T} & X_{30}^{T} & X_{22}^{T} & X_{32}^{T} \\
X_{21}^{T} & X_{31}^{T} & X_{23}^{T} & X_{33}^{T}
\end{array}\right]
$$

Now do a 2-by-2 block transpose:

$$
X \leftarrow\left[\begin{array}{cc|cc}
X_{00}^{T} & X_{10}^{T} & X_{20}^{T} & X_{30}^{T} \\
X_{01}^{T} & X_{11}^{T} & X_{21}^{T} & X_{31}^{T} \\
\hline X_{02}^{T} & X_{12}^{T} & X_{22}^{T} & X_{32}^{T} \\
X_{03}^{T} & X_{13}^{T} & X_{23}^{T} & X_{33}^{T}
\end{array}\right]
$$

Factorization and Transpose

$$
x_{n \times m} \leftarrow x_{m \times n}^{T}
$$

corresponds to

$$
x \leftarrow P(m, n) x
$$

where $P(m, n)$ is a perfect shuffle permutation, e.g.,

$$
P(3,4)=I_{12}(:,[03691471025811])
$$

Different multi-pass transposition algorithms correspond to different factorizations of $P(m, n)$.

Two-Dimensional FFTs

If X is an n_{1}-by- n_{2} matrix then is 2 D DFT is

$$
X \leftarrow F_{n_{1}} X F_{n_{2}}
$$

Option 1.

$$
\begin{aligned}
& X \leftarrow F_{n_{1}} X \\
& X \leftarrow X F_{n_{2}}
\end{aligned}
$$

Option 2. Assume $n_{1}=n_{2}$ and $F_{n_{1}}=A_{t} \cdots A_{1}$.
for $q=1: t$

$$
X \leftarrow A_{q} X A_{q}^{T}
$$

end
Interminlgling the column and row butterfly computations can result in better locality.

3-Dimensional DFTs

Given $X\left(1: n_{1}, 1: n_{2}, 1: n_{3}\right)$, apply DFT in each of the three dimensions.

If

$$
x=\operatorname{reshape}\left(X\left(1: n_{1}, 1: n_{2}, 1: n_{3}\right), n_{1} n_{2} n_{3}, 1\right)
$$

then the problem is to compute

$$
x \leftarrow\left(F_{n_{3}} \otimes F_{n_{2}} \otimes F_{n_{1}}\right) x
$$

i.e.,

$$
\begin{aligned}
& x \leftarrow\left(I_{n_{3}} \otimes I_{n_{2}} \otimes F_{n_{1}}\right) x \\
& x \leftarrow\left(I_{n_{3}} \otimes F_{n_{2}} \otimes I_{n_{1}}\right) x \\
& x \leftarrow\left(F_{n_{3}} \otimes I_{n_{2}} \otimes I_{n_{1}}\right) x
\end{aligned}
$$

d-Dimensional DFTs

Sample for $d=5$:

$\mu=1$	$X\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)$	$F_{n_{1}}$
	$X\left(\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{1}\right)$	$\Pi_{n_{1}, n}^{T}$
$\mu=2$	$X\left(\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{1}\right)$	$F_{n_{2}}$
	$X\left(\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{1}, \alpha_{2}\right)$	$\Pi_{n_{2}, n}^{T}$
$\mu=3$	$X\left(\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{1}, \alpha_{2}\right)$	$F_{n_{3}}$
	$X\left(\alpha_{4}, \alpha_{5}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$	$\Pi_{n_{3}, n}^{T}$
$\mu=4$	$X\left(\alpha_{4}, \alpha_{5}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$	$F_{n_{4}}$
	$X\left(\alpha_{5}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$	$\Pi_{n_{4}, n}^{T}$
$\mu=5$	$X\left(\alpha_{5}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$	$F_{n_{5}}$
	$X\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)$	$\Pi_{n_{5}, n}^{T}$

Intemingling of component DFTs and tensor transpositions.

References

FFTW: http:www.fftw.org
C. Van Loan (1992). Computational Frameworks for the Fast Fourier Transform, SIAM Publications, Philadelphia, PA.

