1 Introduction

In this homework we will be working on a solver for a discretization of Poisson’s equation in three dimensions. In particular we are going to work on a three dimensional regular grid. For a set Ω in three dimensions (in our case, $\Omega = [0, 1]^3$), Poisson’s equation takes the form:

$$-\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} = f \text{ for } (x, y, z) \in \text{int } \Omega$$

$$u(p) = 0 \text{ for } p \in \partial \Omega$$

where $\text{int } \Omega$ is the interior of the set Ω and $\partial \Omega$ is the boundary of Ω. Here we will assume, $\Omega = [0, 1]^3$. Let x_{ijk} for $i, j, k = 0, 1, \ldots, n$ be a set of mesh points. We can approximate the Laplacian of u (i.e. the sum of the second
derivatives of u in the above equation), at a point by a finite difference method:

$$\left(-\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} \right)(x_{ijk}) \approx \frac{-u(x_{i-1,jk}) + 2u(x_{ijk}) - u(x_{i+1,jk})}{h^2}$$

$$+ \frac{-u(x_{i,j-1,k}) + 2u(x_{ijk}) - u(x_{i,j+1,k})}{h^2}$$

$$+ \frac{-u(x_{ij,k-1}) + 2u(x_{ijk}) - u(x_{ij,k+1})}{h^2}$$

where $h = 1/(n+1)$ is the mesh spacing. If we replace the Laplacian in the Poisson equation with this finite-difference approximation, we have a scheme for computing $u_{ijk} \approx u(x_{ijk})$:

$$6u(x_{ijk}) - u(x_{i-1,jk}) - u(x_{i+1,jk}) - u(x_{ij-1,k}) - u(x_{ij+1,k}) - u(x_{ij,k-1}) - u(x_{ij,k+1}) = h^2 f_{ijk} \text{ for } 1 \leq i,j,k \leq n-1 \quad u_{ijk} = 0 \text{ for } p \in \{0, n\}$$

We can write this approximation as a matrix equation $Au = h^2 f$. Utilizing the matrix

$$T = \begin{bmatrix}
2 & -1 \\
-1 & 2 & -1 \\
& -1 & 2 & -1 \\
& & \ddots & \ddots & \ddots \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{bmatrix}$$

A can be succinctly expressed as

$$A = I \otimes I \otimes T + I \otimes T \otimes I + T \otimes I \otimes I$$

where $X \otimes Y$ is the Kronecker product of matrices X and Y.

We have given you a serial code, which implements the conjugate gradients method for solving the above linear system. Furthermore, the method accepts a preconditioner. Conceptually, a preconditioner is a matrix that is applied to both sides of a linear system, which leads to a new system for which the method converges more quickly. In practice, the code as arguments a function that applies the Laplacian operator that appears in the Poisson problem, and a second function that does an preconditioner solve. The preconditioner can be as simple as the identity (i.e. the code for it just copies the input to the output), but this will not speed things up. In the code we have given you, the preconditioner is one step of Symmetric Successive OverRelaxation or SSOR, a method that could be used by itself iteratively to solve the problem. As posed, this preconditioner does not parallelize well; however, an additive Schwarz preconditioner built on top of it is more promising.

In the remainder of this prompt, we will sketch the basic (serial) code that you are to parallelize, give a list of tasks that you must complete, and suggest a few additional questions that you may wish to explore.

2 Solver parameters

The `solve_param.t` structure holds the parameters that describe the simulation. These parameters are filled in by the `get_params` function. Details of the parameters are described elsewhere in the code.

```c
enum { /* Types of preconditioners available: */
    PC_ID = 1, /* 1. Identity */
    PC_SSOR = 2, /* 2. SSOR */
};
```
typedef struct solve_param_t {
 int n; /* Mesh size */
 int maxit; /* Maximum PCG iterations */
 double rtol; /* Relative residual convergence tolerance */
 int ptype; /* Preconditioner type */
 double omega; /* SSOR relaxation parameter */
 int overlap; /* Overlap size */
} solve_param_t;

int get_params(int argc, char** argv, solve_param_t* params);

3 Preconditioned CG

The PCG routine multiplies by A and M^{-1} through the $Mfun$ and $Afun$ function pointers (taking a vector length n, an opaque data object, an output buffer, and an input vector as arguments). We also pass $Mdata$ and $Adata$ as a way of getting context into the function calls\(^1\). In addition, we take storage for the solution (set to an initial guess on input) and the right hand side, as well as the maximum number of iterations allowed and a relative error tolerance.

The relative error tolerance is actually slightly subtle; we terminate the iteration when

$$\frac{\|r(k)\|_{M^{-1}}}{\|r(0)\|_{M^{-1}}} < tol,$$

where $\|\cdot\|_{M^{-1}}$ refers to the norm induced by the M^{-1} inner product, i.e. $\|z\|_{M^{-1}}^2 = z^TM^{-1}z$. This may or may not be the norm anyone actually cares about... but it surely is cheap to compute.

\footnote{This could admittedly be more convenient in C}

double pcg(int n,
 mul_fun_t Mfun, void* Mdata,
 mul_fun_t Afun, void* Adata,
 double* restrict x,
 const double* restrict b,
 int maxit,
 double rtol)
{
 double* r = malloc(n*sizeof(double));
 double* z = malloc(n*sizeof(double));
 double* q = malloc(n*sizeof(double));
 double* p = malloc(n*sizeof(double));

 double rho0 = 0;
 double rho = 0;
 double rho_prev = 0;
 double rtol2 = rtol*rtol;
 int is_converged = 0;
 int step;

 tic(0);
/ Form residual */
Afun(n, Adata, r, x);
for (int i = 0; i < n; ++i) r[i] = b[i] - r[i];

for (step = 0; step < maxit && !is_converged; ++step) {
 Mfun(n, Mdata, z, r);
 rho_prev = rho;
 rho = dot(n, r, z);
 if (step == 0) {
 rho0 = rho;
 memcpy(p, z, n*sizeof(double));
 } else {
 double beta = rho/rho_prev;
 for (int i = 0; i < n; ++i) p[i] = z[i] + beta*p[i];
 }
 Afun(n, Adata, q, p);
 double alpha = rho/dot(n, p, q);
 for (int i = 0; i < n; ++i) x[i] += alpha*p[i];
 for (int i = 0; i < n; ++i) r[i] -= alpha*q[i];
 is_converged = (rho/rho0 < rtol2);
}

printf("%d steps, residual reduction %g (%s tol %g); time %g\n",
 step, sqrt(rho/rho0), is_converged ? "<=" : ">", rtol, toc(0));

free(p);
free(q);
free(z);
free(r);

return rho/rho0;

void mul_poisson3d(int N, void* data,
 double* restrict A[ijkt], double* restrict x)
{
 #define X(i,j,k) (x[((k)*n+(j))*n+(i)])
 #define AX(i,j,k) (A[((k)*n+(j))*n+(i)])

4 3D Laplace operator

The 3D Laplacian looks like

\[(Ax)_{ijk} = h^{-2} \left(6x_{ijk} - \sum_{q,r,s:|q-i|+|j-r|+|k-s|} x_{qrs} \right).\]

The mu_poisson3d function applies the 3D Laplacian to an \(n \times n \times n \) mesh of \([0,1]^3\) \((N = n^3, h = 1/(n-1))\), assuming Dirichlet boundary conditions.
int n = *(int*) data;
int inv_h2 = (n-1)*(n-1);
for (int k = 0; k < n; ++k) {
 for (int j = 0; j < n; ++j) {
 for (int i = 0; i < n; ++i) {
 double xx = X(i,j,k);
 double xn = (i > 0) ? X(i-1,j,k) : 0;
 double xs = (i < n-1) ? X(i+1,j,k) : 0;
 double xe = (j > 0) ? X(i,j-1,k) : 0;
 double xw = (j < n-1) ? X(i,j+1,k) : 0;
 double xu = (k > 0) ? X(i,j,k-1) : 0;
 double xd = (k < n-1) ? X(i,j,k+1) : 0;
 AX(i,j,k) = (6*xx - xn - xs - xe - xw - xu - xd)*inv_h2;
 }
 }
}

#undef AX
#undef X

5 Preconditioners for the Laplacian

5.1 The identity preconditioner

The simplest possible preconditioner is the identity (pc_identity):

```c
void pc_identity(int n, void* data, double* Ax, double* x)
{
    memcpy(Ax, x, n*sizeof(double));
}
```

5.2 SSOR preconditioning

In terms of matrix splittings, if \(A = L + D + L^T \) where \(D \) is diagonal and \(L \) is strictly lower triangular, the SSOR preconditioner is given by

\[
M(\omega) = \frac{1}{2-\omega}(D/\omega + L)(D/\omega)^{-1}(D/\omega + L)^T,
\]

where \(\omega \) is a relaxation parameter. More algorithmically, SSOR means looping through the unknowns and updating each by adding \(\omega \) times the Gauss-Seidel step; then doing the same thing, but with the opposite order. Choosing an optimal value of \(\omega \) is not all that easy; there are heuristics when SOR is being used as a stationary method, but I'm not sure that they apply when it is used as a preconditioner. The simplest thing to do is just to play with it.

In order to apply SSOR preconditioning, we need the size \(n \) of the mesh (though in principle we could compute that from the number of mesh points) as well as the parameter \(\omega \). We store these parameters in a `pc_ssor_p3d_t` structure.

```c
typedef struct pc_ssor_p3d_t {
    int n;        /* Number of points in one direction on mesh */
```
double omega; /* SSOR relaxation parameter */

The `ssor_forward_sweep`, `ssor_backward_sweep`, and `ssor_diag_sweep` respectively apply \((D/\omega + L)^{-1}\), \((D/\omega + L)^{-T}\), and \((2 - \omega)D/\omega\). Note that we’re okay with ignoring the \(h^{-2}\) factor for computing the preconditioner — multiplying \(M\) by a scalar constant doesn’t change the preconditioned Krylov subspace. Also note that these functions can operate on just part of the mesh (rather than the whole thing). This will be useful shortly when we discuss additive Schwarz preconditioners.

```c
void ssor_forward_sweep(int n, int i1, int i2, int j1, int j2, int k1, int k2, double* restrict Ax, double w) {
    #define AX(i,j,k) (Ax[((k)*n+(j))*n+(i)])
    for (int k = k1; k < k2; ++k) {
        for (int j = j1; j < j2; ++j) {
            for (int i = i1; i < i2; ++i) {
                double xx = AX(i,j,k);
                double xn = (i > 0) ? AX(i-1,j,k) : 0;
                double xe = (j > 0) ? AX(i,j-1,k) : 0;
                double xu = (k > 0) ? AX(i,j,k-1) : 0;
                AX(i,j,k) = (xx+xn+xe+xu)/6*w;
            }
        }
    }
    #undef AX
}
```

```c
void ssor_backward_sweep(int n, int i1, int i2, int j1, int j2, int k1, int k2, double* restrict Ax, double w) {
    #define AX(i,j,k) (Ax[((k)*n+(j))*n+(i)])
    for (int k = k2-1; k >= k1; --k) {
        for (int j = j2-1; j >= j1; --j) {
            for (int i = i2-1; i >= i1; --i) {
                double xx = AX(i,j,k);
                double xs = (i < n-1) ? AX(i+1,j,k) : 0;
                double xw = (j < n-1) ? AX(i,j+1,k) : 0;
                double xd = (k < n-1) ? AX(i,j,k+1) : 0;
                AX(i,j,k) = (xx+xs+xw+xd)/6*w;
            }
        }
    }
    #undef AX
}
```

```c
void ssor_diag_sweep(int n, int i1, int i2, int j1, int j2, int k1, int k2, double* restrict Ax, double w) {
    #define AX(i,j,k) (Ax[((k)*n+(j))*n+(i)])
    for (int k = k1; k < k2; ++k) {
        for (int j = j1; j < j2; ++j) {
            double xx = AX(i,j,k);
            double xn = (i > 0) ? AX(i-1,j,k) : 0;
            double xe = (j > 0) ? AX(i,j-1,k) : 0;
            double xu = (k > 0) ? AX(i,j,k-1) : 0;
            AX(i,j,k) = (xx+xn+xe+xu)/6*w;
        }
    }
    #undef AX
}
```
for (int i = i1; i < i2; ++i)
 AX(i,j,k) *= (6*(2-w)/w);
#undef AX

Finally, the pc_ssor_poisson3d function actually applies the preconditioner.

void pc_ssor_poisson3d(int N, void* data,
 double* restrict Ax,
 double* restrict x)
{
 pc_ssor_p3d_t* ssor_data = (pc_ssor_p3d_t*) data;
 int n = ssor_data->n;
 double w = ssor_data->omega;
 memcpy(Ax, x, N*sizeof(double));
 ssor_forward_sweep(n, 0,n, 0,n, 0,n, Ax, w);
 ssor_diag_sweep(n, 0,n, 0,n, 0,n, Ax, w);
 ssor_backward_sweep(n, 0,n, 0,n, 0,n, Ax, w);
}

5.3 Additive Schwarz preconditioning

One way of thinking about Jacobi and Gauss-Seidel is as a sequence of local relaxation operations, each of which updates a variable (or a set of variables, in the case of block variants) assuming that the neighboring variables are known. With Jacobi and Gauss-Seidel, we update each variable exactly once in each pass. In Schwarz methods, we can update some variables with multiple relaxation operations in a single pass. To give an example, we will give an additive Schwarz (Jacobi-like) method that updates the bottom half of the domain and the top half of the domain with a little bit of overlap. To update the variables in each of the overlapping subdomains, we use one sweep of the SSOR step described in the previous section.

As mentioned in class, Schwarz-type preconditioners are a fantastic match for distributed memory computation, since the processors only communicate through the data in the overlap region. Note, though, that the specific variant I mentioned in class (restrictive additive Schwarz) can’t be used with conjugate gradient methods, because it does not yield symmetric preconditioners.

We describe the parameters for the Schwarz-type preconditioner with SSOR-based approximate solves in a pc_schwarz_p3d_t structure.

typedef struct pc_schwarz_p3d_t {
 int n; /* Number of mesh points on a side */
 int overlap; /* Number of points through the overlap region */
 double omega; /* SSOR relaxation parameter */
} pc_schwarz_p3d_t;

In order to compute independently on overlapping subdomains, we first get the local data from the vector to which we’re applying the preconditioner; then we do an inexact solve on the local piece of the data; and then we write back the updates from the solve. The data motion is implemented in schwarz_get and schwarz_add.

void schwarz_get(int n, int i1, int i2, int j1, int j2, int k1, int k2,
 double* restrict x_local,
 double* restrict x)


```c
#define X(i,j,k) (x[((k)*n+(j))*n+(i)])
#define XL(i,j,k) (x_local[((k)*n+(j))*n+(i)])

for (int k = k1; k < k2; ++k)
    for (int j = j1; j < j2; ++j)
        for (int i = i1; i < i2; ++i)
            XL(i,j,k) = X(i,j,k);

if (k1 > 0)
    for (int j = j1; j < j2; ++j)
        for (int i = i1; i < i2; ++i)
            XL(i,j,k1-1) = 0;

if (j1 > 0)
    for (int k = k1; k < k2; ++k)
        for (int i = i1; i < i2; ++i)
            XL(i,j1-1,k) = 0;

if (i1 > 0)
    for (int k = k1; k < k2; ++k)
        for (int j = j1; j < j2; ++j)
            XL(i1-1,j,k) = 0;

if (k2 < n-1)
    for (int j = j1; j < j2; ++j)
        for (int i = i1; i < i2; ++i)
            XL(i,j,k2+1) = 0;

if (j2 < n-1)
    for (int k = k1; k < k2; ++k)
        for (int i = i1; i < i2; ++i)
            XL(i,j2+1,k) = 0;

if (i2 < n-1)
    for (int k = k1; k < k2; ++k)
        for (int j = j1; j < j2; ++j)
            XL(i2+1,j,k) = 0;

#undef XL
#undef X

void schwarz_add(int n, int i1, int i2, int j1, int j2, int k1, int k2,
    double* restrict Ax_local,
    double* restrict Ax)
{
    #define AX(i,j,k) (Ax[((k)*n+(j))*n+(i)])
    #define AXL(i,j,k) (Ax_local[((k)*n+(j))*n+(i)])
    for (int k = k1; k < k2; ++k)
        for (int j = j1; j < j2; ++j)
            for (int i = i1; i < i2; ++i)
                AX(i,j,k) += AXL(i,j,k);

    #undef AXL
    #undef AX
}
```
The `pc_schwarz_poisson3d` function applies a preconditioner by combining independent SSOR updates for the bottom half plus an overlap region (a slab $n/2 + o/2$ nodes thick), then updating the top half plus an overlap region (another $n/2 + o/2$ node slab). The same idea could be applied to more regions, or to better approximate solvers.

```c
void pc_schwarz_poisson3d(int N, void* data,
    double* restrict Ax,
    double* restrict x)
{
    double* scratch = malloc(N*sizeof(double));
    pc_schwarz_p3d_t* ssor_data = (pc_schwarz_p3d_t*) data;
    int n = ssor_data->n;
    int o = ssor_data->overlap/2;
    double w = ssor_data->omega;
    memset(Ax, 0, N*sizeof(double));
    schwarz_get (n, 0,n, 0,n, 0,n/2+o, scratch, x);
    ssor_forward_sweep (n, 0,n, 0,n, 0,n/2+o, scratch, w);
    ssor_diag_sweep (n, 0,n, 0,n, 0,n/2+o, scratch, w);
    ssor_backward_sweep(n, 0,n, 0,n, 0,n/2+o, scratch, w);
    schwarz_add (n, 0,n, 0,n, 0,n/2+o, scratch,Ax);

    schwarz_get (n, 0,n, 0,n, n/2-o,n, scratch, x);
    ssor_forward_sweep (n, 0,n, 0,n, n/2-o,n, scratch, w);
    ssor_diag_sweep (n, 0,n, 0,n, n/2-o,n, scratch, w);
    ssor_backward_sweep(n, 0,n, 0,n, n/2-o,n, scratch, w);
    schwarz_add (n, 0,n, 0,n, n/2-o,n, scratch,Ax);
}
```

6 Forcing functions

The convergence of CG depends not only on the operator and the preconditioner, but also on the right hand side. If the error is very high frequency, the convergence will appear relatively fast. Without a good preconditioner, it takes more iterations to correct a smooth error. In order to illustrate these behaviors, we provide two right-hand sides: a vector with one nonzero (computed via `setup_rhs0`) and a vector corresponding to a smooth product of quadratics in each coordinate direction (`setup_rhs1`).

```c
void setup_rhs0(int n, double* b)
{
    int N = n*n*n;
    memset(b, 0, N*sizeof(double));
    b[0] = 1;
}
```

```c
void setup_rhs1(int n, double* b)
{
    int N = n*n*n;
    memset(b, 0, N*sizeof(double));
    for (int i = 0; i < n; ++i) {
```
double x = 1.0*(i+1)/(n+1);
for (int j = 0; j < n; ++j) {
 double y = 1.0*(i+1)/(n+1);
 for (int k = 0; k < n; ++k) {
 double z = 1.0*(i+1)/(n+1);
 b[(k*n+j)*n+i] = x*(1-x) * y*(1-y) * z*(1-z);
 }
}
}

7 The main event

The main driver is pretty simple: read the problem and solver parameters using get_params and then run the preconditioned solve.

I originally thought I’d write your own option routine, but I changed my mind!

int main(int argc, char** argv)
{
 solve_param_t params;
 if (get_params(argc, argv, ¶ms))
 return -1;

 int n = params.n;
 int N = n*n*n;

double* b = malloc(N*sizeof(double));
double* x = malloc(N*sizeof(double));
double* r = malloc(N*sizeof(double));
memset(b, 0, N*sizeof(double));
memset(x, 0, N*sizeof(double));
memset(r, 0, N*sizeof(double));

 /* Set up right hand side */
 setup_rhs1(n,b);

 /* Solve via PCG */
 int maxit = params.maxit;
 double rtol = params.rtol;

 if (params.p_type == PC_SCHWARZ) {
 pc_schwarz_p3d_t pcdata = {n, params.overlap, params.omega};
 pcg(N, pc_schwarz_poisson3d, &pcdata, mul_poisson3d, &n, x, b,
 maxit, rtol);
 } else if (params.p_type == PC_SSOR) {
 pc_ssor_p3d_t ssor_data = {n, params.omega};
 pcg(N, pc_ssor_poisson3d, &ssor_data, mul_poisson3d, &n, x, b,
 maxit, rtol);
 } else {
 pcg(N, pc_identity, NULL, mul_poisson3d, &n, x, b, maxit, rtol);
 }
8 Basic tasks

Your job is as follows:

- Time the unpreconditioned serial code on the crocus cluster. How much time does it take to solve different problem sizes? How much time is spent in multiplying by A and doing dot products?
- Repeat your timing experiments with the preconditioned iteration. How much time is spent in the preconditioners per step? How many steps do the preconditioned iterations take?
- Parallelize the unpreconditioned code. You may use MPI or OpenMP; but if you use OpenMP you should think carefully about organizing your code to avoid contention and synchronization. Often the fastest programs in a shared memory model pretend that it’s a shortcut for message passing! Be guided by what you find in your timing experiments — if you neglect to parallelize the most time-consuming parts of the code, you will not get good performance.
- Parallelize the Schwarz preconditioner. If you find yourself running short on time, at least make sure that you handle the degenerate case of block Jacobi (no overlap).
- Do scaling studies of the time required by your code for different values of n and p.

9 Additional questions

Assuming time permits, take a crack at a couple of the following questions:

1. Is there a more efficient way to code the multiplication by the Laplacian? What about the SSOR update?
2. How does changing the order of the unknowns affect the performance of SSOR? Would you expect SSOR with red-black ordering to significantly accelerate performance in large meshes? (Hint: How fast can information move in each step with a red-black ordered SSOR preconditioner?)
3. Have we chosen a good value of ω? How does the performance change as ω varies in the permissible range $((0, 2))$? Does the “right” value of ω change as n changes?
4. How does the overlap parameter affect the convergence of our Schwarz iteration? What happens in the degenerate case of no overlap (block Jacobi)?
5. How does the serial performance of PCG with SSOR compare to PCG with additive Schwarz? What about the parallel performance?
6. How does the convergence behavior depend on the right hand side?