Lecture 23:
Tree codes

David Bindel

17 Nov 2011
Logistics

Nov 22: Something fun (multigrid?)
Nov 24: Thanksgiving (no class)
Nov 29: Wrap-up lecture
 Dec 1: Project presentations
Dec 16: Projects due
Recurring theme

Lots of problems can be partitioned as

- A “coarse” problem that captures long-range effects
- A “fine” problem that handles local effects

So far: multigrid, multilevel graph partitioning. Today: tree codes.
General algebraic picture

Several problems reduce to one of these:

\[\phi(x) = \int_{\Gamma} K(x, y) w(y) \, dy \]

\[\phi(x) = \sum_{i=1}^{N} K(x, y_i) w_i \]

where the kernel \(K(x, y) \) is “nice.”

- Force evaluations in \(N \)-body codes
- Integral equations (Laplace, Helmholtz, etc)
 - Stokes flows in fluid dynamics
 - Electrostatic fields (e.g. for capacitance)
 - Coulumbic interaction in DFT codes

We want to compute this fast.
Example: Gravitational interaction

Gravitational potential from N bodies (in 3D): $F(x) = -\nabla \phi(x)$,

$$\phi(x) = -\sum_{i=1}^{N} \frac{m_i}{\|x - y_i\|}, \quad F = -\sum_{i=1}^{N} \frac{x - y_i}{\|x - y_i\|^3} m_i.$$

If $x - y_i$ and $x - y_j$ are “close”, then $\|x - y_i\|^{-1} \approx \|x - y_j\|^{-1}$.
Example: Gravitational interaction

Cluster points: \(\{y_{j,i}\} \) for \(i \)th particle in cluster \(j \), \(\bar{y}_j \) for centroid

\[
\phi(x) = - \sum_{j=0}^{N} \sum_{i=1}^{N_j} \frac{m_{j,i}}{\|x - y_{j,i}\|} \approx - \sum_{i=1}^{N_0} \frac{m_{0,i}}{\|x - y_i\|} - \sum_{j=1}^{K} \frac{M_j}{\|x - \bar{y}_j\|}
\]

where \(M_j \) is the total mass in cluster \(j \). How to build good clusters?
Quadtrees and octree

Basic idea: partition space with a quadtree or octtree

- Recursively cut boxes in four (2D) or eight (3D)
- Subdivision become children for parent box
- Can be adaptive (subdivide some children, not others)
- Assign each box a total mass, centroid
- Interact with small boxes nearby, large boxes far off
Adaptive quadtree construction

insert particle j at node n
function quadtree_insert(j,n)
 if n has children
 determine child c to which j belongs
 quadtree_insert(j,c)
 elseif n contains a particle p
 add four children of n
 move p to the appropriate child
 determine child c to which j belongs
 quadtree_insert(j,c)
 else
 store particle j at n
 end

Cost = $O(Nb)$, b is number of bits in particle coordinates.
Uniform case: $O(N \log N)$
Center of mass

Decorate node n with a mass M and center x
function quadtree_mass(n)
 if n has children
 M = 0
 x = 0
 for each child c
 quadtree_mass(c)
 M += mass of c
 x += center of c * mass of c
 x /= M
 else
 M = mass of particle at n
 x = position of particle at n

Cost is number of nodes in quadtree (O(N) in uniform case).
Force computation (Barnes-Hut)

Compute force from particles in node n
on a test mass at position x
function force(n,x)
 y = center of mass of n
 D = size of n
 if D < theta*|x-y|
 compute force using centroid approximation
 else
 f = 0
 for each child c
 f += force(c,x)
 Cost is $O(N \log N)$, potentially large constant.
Barnes-Hut summary

“A hierarchical $O(n \log n)$ force calculation algorithm”, J. Barnes and P. Hut, Nature, 324 (1986)... and many others

- Build adaptive quad/octtree
- Compute center of mass and total mass per node
- Use center-of-mass approximation when accurate enough

This gets expensive at high accuracy requirements...
Beyond Barnes-Hut

Barnes-Hut uses a simple center-of-mass approximation. What if we use more about the particle distribution?
Fast Multipole Method

Basic idea:

- Upward pass: compute outer expansions for far field
- Downward pass: compute inner expansions of far field

Use \textit{multipole} for outer expansion, \textit{Taylor} for inner.
Use \textit{translation operators} to re-center expansions.
Example: 2D electrostatic

Potential and force from particle at origin:

\[\phi(r) = \log ||r|| \]
\[F = -r/||r||^2 \]

Think \(z = x + iy \). Then

\[\phi(z) = \log |z| = \Re(\log z) \]
\[F = -z/|z|^2 \]

Let's just keep complex potential.
Multipole expansion

Basic expansion:

\[\phi(z) = \sum_{k=1}^{n} m_k \log(z - z_k) = M \log(z) + \sum_{j=1}^{\infty} \alpha_j z^{-j} \]

\[= M \log(z) + \sum_{j=1}^{r} \alpha_j z^{-j} + O \left(\max_k \frac{|z_k|}{|z|} \right)^{r+1} \]

If points lie in a \(D \)-by-\(D \) box at origin, than for any point outside a \(3D \)-by-\(3D \) box, error is less than \(2^{-r+1} \)
If points lie in a D-by-D box at origin, than for any point outside a $3D$-by-$3D$ box, error is less than 2^{-r+1}
Translation

- *Translation* operators re-center multipole expansion.
- Can implement as simple matvec on expansion coefficients.
- Use to combine several multipole expansions.
- Build expansions on quadtree as with center-of-mass.
Conversion

- Can *convert* multipole to Taylor for a box
- For each node, local potential is:
 1. Contributions from nearest neighbor boxes at same level
 2. Contributions from nearest neighbors at parent level
 3. Contributions from things further away
- Last two can be computed via outer-to-inner conversion and translation of inner expansions
- And recurse!
- ... using direct evaluation at bottom level.

Total cost: $O(N)$
Kernel-independent FMM

- Takes some coding work to build the expansions, translations!
- But kernel-dependent head-scratching goes into:
 - Computation of the expansions
 - Translating expansions
- Approximate outside potential by point distribution on bounding circle
- Distribution becomes expansion
- Build automatic ways to compute, translate distribution for smooth enough kernels

See KiFMM3D code of Harper Langston.
Parallel implementation

“A massively parallel adaptive fast-multipole method on heterogeneous architectures” Lashuk et al, SC 09.

- Uses kernel-independent FMM for basic algorithm
- Massive MPI code at the top level
- GPU accelerators at the bottom level
Work partitioning

Partition space using the octtree:
- Enumerate leaves in space-filling curve order
- Use sampling to estimate work for different splits
Locally Essential Tree

- Partition work across leaf octants
- Take one processors’s leaf octants
- LET == part of quadtree needed to evaluate those octants
- Sender decides what other processors need its parts, then sends these subsets (via position in quadtree)
- Will set up “ghost” octants to receive neighbor data
Parallel software + reading material

- Papers to get started
 - Original Greengard-Rokhlin paper is quite readable
 - “A short course on fast multipole methods”, Beatson and Greengard

- Software
 - KiFMM3D (Langston)
 - PetFMM (Cruz, Knepley, Barba)

... and all sorts of other packages (some less accessible).
Hierarchical matrices and FMM

FMM says far-range interactions can be summarized via a few intermediate variables. Algebraically, this yields matrices with interesting low-rank structure.

- \mathcal{H}-matrices (Hackbush)
- Semi-separable matrices (see book of Vandebril, Van Barel, Mastronardi)
- Skeletonization and related ideas (see 2009 Acta paper of Greengard, Gueyffier, Martinsson, Rokhlin)
- Freely available parallel solver software?