Lecture 22:
Load balancing

David Bindel

15 Nov 2011
Logistics

- Proj 3 in!
 - Get it in by Monday with penalty.
Inefficiencies in parallel code

- Poor single processor performance
 - Typically in the memory system
 - Saw this in HW 1
- Overhead for parallelism
 - Thread creation, synchronization, communication
 - Saw this in HW 2-3
- Load imbalance
 - Different amounts of work across processors
 - Different speeds / available resources
 - Insufficient parallel work
 - All this can change over phases
Where does the time go?

- Load balance looks like high, uneven time at synchronization
- ... but so does ordinary overhead if synchronization expensive!
- And spin-locks may make synchronization look like useful work
- And ordinary time sharing can confuse things more
- Can get some help from tools like TAU (Timing Analysis Utilities)
Reminder: Graph partitioning

- Graph $G = (V, E)$ with vertex and edge weights
- Try to evenly partition while minimizing edge cut (comm volume)
- Optimal partitioning is NP complete – use heuristics
 - Spectral
 - Kernighan-Lin
 - Multilevel
- Tradeoff quality vs speed
- Good software exists (e.g. METIS)
The limits of graph partitioning

What if

- We don’t know task costs?
- We don’t know the communication pattern?
- These things change over time?

May want dynamic load balancing.
Basic parameters

- **Task costs**
 - Do all tasks have equal costs?
 - When are costs known (statically, at creation, at completion)?

- **Task dependencies**
 - Can tasks be run in any order?
 - If not, when are dependencies known?

- **Locality**
 - Should tasks be on the same processor to reduce communication?
 - When is this information known?
Task costs

- Easy: equal unit cost tasks
 - Branch-free loops
 - Much of HW 3 falls here!
- Harder: different, known times
 - Example: general sparse matrix-vector multiply
- Hardest: task cost unknown until after execution
 - Example: search

Q: Where does HW 2 fall in this spectrum?
Dependencies

- Easy: dependency-free loop (Jacobi sweep)
- Harder: tasks have predictable structure (some DAG)
- Hardest: structure changes dynamically (search, sparse LU)
Locality/communication

- Easy: tasks don’t communicate except at start/end (embarrassingly parallel)
- Harder: communication is in a predictable pattern (elliptic PDE solver)
- Communication is unpredictable (discrete event simulation)
A spectrum of solutions

How much we can do depends on cost, dependency, locality

- **Static scheduling**
 - Everything known in advance
 - Can schedule offline (e.g. graph partitioning)
 - See this in HW 3

- **Semi-static scheduling**
 - Everything known at start of step (or other determined point)
 - Can use offline ideas (e.g. Kernighan-Lin refinement)
 - Saw this in HW 2

- **Dynamic scheduling**
 - Don’t know what we’re doing until we’ve started
 - Have to use online algorithms
 - Example: most search problems
Search problems

- Different set of strategies from physics sims!
- Usually require dynamic load balance
- Example:
 - Optimal VLSI layout
 - Robot motion planning
 - Game playing
 - Speech processing
 - Reconstructing phylogeny
 - ...

Example: Tree search

- Tree unfolds dynamically during search
- May be common subproblems along different paths (graph)
- Graph may or may not be explicit in advance
Search algorithms

Generic search:

Put root in stack/queue
while stack/queue has work
 remove node \(n \) from queue
 if \(n \) satisfies goal, return
 mark \(n \) as searched
 add viable unsearched children of \(n \) to stack/queue
 (Can branch-and-bound)

Variants: DFS (stack), BFS (queue), A* (priority queue), ...
Simple parallel search

- Static load balancing: each new task on an idle processor until all have a subtree
 - Not very effective without work estimates for subtrees!
 - How can we do better?
Centralized scheduling

Idea: obvious parallelization of standard search
 ▶ Shared data structure (stack, queue, etc) protected by locks
 ▶ Or might be a manager task

Teaser: What could go wrong with this parallel BFS?

Put root in queue
fork
 obtain queue lock
 while queue has work
 remove node n from queue
 release queue lock
 process n, mark as searched
 obtain queue lock
 add viable unsearched children of n to queue
 release queue lock
join
Centralized task queue

- Called *self-scheduling* when applied to loops
 - Tasks might be range of loop indices
 - Assume independent iterations
 - Loop body has unpredictable time (or do it statically)
- Pro: dynamic, online scheduling
- Con: centralized, so doesn’t scale
- Con: high overhead if tasks are small
Variations on a theme

How to avoid overhead? Chunks! (Think OpenMP loops)

- Small chunks: good balance, large overhead
- Large chunks: poor balance, low overhead
- Variants:
 - Fixed chunk size (requires good cost estimates)
 - Guided self-scheduling (take $\lceil R/p \rceil$ work, $R =$ tasks remaining)
 - Tapering (estimate variance; smaller chunks for high variance)
 - Weighted factoring (like GSS, but take heterogeneity into account)
Beyond centralized task queue

Basic *distributed* task queue idea:
- Each processor works on part of a tree
- When done, get work from a peer
- *Or* if busy, push work to a peer
- Requires asynch communication

Also goes by work stealing, work crews...

Implemented in Cilk, X10, CUDA, ...
Picking a donor

Could use:

- Asynchronous round-robin
- Global round-robin (keep current donor pointer at proc 0)
- Randomized – optimal with high probability!
Diffusion-based balancing

- Problem with random polling: communication cost!
 - But not all connections are equal
 - Idea: prefer to poll more local neighbors
- Average out load with neighbors \implies diffusion!
Mixed parallelism

- Today: mostly coarse-grain \textit{task} parallelism
- Other times: fine-grain \textit{data} parallelism
- Why not do both?
- \textit{Switched} parallelism: at some level switch from data to task