Logistics

- Project 2 in
 - Can submit up to next Monday with 1 point penalty...
 - ... but be careful it doesn’t pile up against other work
- Project 3 posted (parallel all-pairs shortest paths)
More life lessons from Project 2?

- Start early so you have time to get stuck and unstuck.
- Understand when rounding is a culprit (and when not).
- Test frequently as you work.
- Check against a slow, naive, obvious calculation.
- Synchronization is expensive!
Enter Project 3

The all pairs shortest path problem:

Input: An adjacency matrix for an unweighted graph:

\[A_{ij} = \begin{cases}
1, & \text{edge between } i \text{ and } j \\
0, & \text{otherwise}
\end{cases} \]

Output: A distance matrix

\[L_{ij} = \text{length of shortest path from } i \text{ to } j \]

or \(L_{ij} = 0 \) if \(i \) and \(j \) are not connected.
Shortest paths and matrix multiply

Two methods look like linear algebra:
- Floyd-Warshall ($O(n^3)$, similar to Gaussian elimination)
- Matrix multiply ($O(n^3 \log n)$, similar to matrix squaring)

Project 3: parallel repeated squaring for all-pairs shortest path
- Given an OpenMP implementation – time it!
- Write naive MPI implementation using `MPI_Allgatherv`
- Write a better version with nonblocking send/receives
The repeated squaring algorithm

- $l_{ij}^s \equiv$ shortest path with at most 2^s hops
- Initial step is almost the adjacency matrix:
 $$l_{ij}^0 = \begin{cases}
1, & \text{edge from } i \text{ to } j \\
0, & i = j \\
\infty, & \text{otherwise}
\end{cases}$$
- Update: $l_{ij}^{s+1} = \min_k \{ l_{ik}^s + l_{kj}^s \}$
- Have shortest paths when $L^s = L^{s+1}$ (at most $\lceil \lg n \rceil$ steps)
Project 3 logistics

▶ Goals:
 ▶ Get you some practice with MPI programming
 ▶ And understanding performance tradeoffs!
▶ May be useful to go back to HW 2 for references
▶ Please start earlier this time so that you can ask questions!
▶ If there’s a time tradeoff, final project is more important.
Reordering for bandedness

Natural order

RCM reordering

Reverse Cuthill-McKee

- Select “peripheral” vertex v
- Order according to breadth first search from v
- Reverse ordering
From iterative to direct

- RCM ordering is great for SpMV
- But isn’t narrow banding good for solvers, too?
 - LU takes $O(nb^2)$ where b is bandwidth.
 - Great if there’s an ordering where b is small!
Skylines and profiles

- *Profile* solvers generalize band solvers
- Skyline storage: if storing lower triangle, for each row i:
 - Start and end of storage for nonzeros in row.
 - *Contiguous* nonzero list up to main diagonal.
- In each column, first nonzero defines a profile.
- All fill-in confined to profile.
- RCM is again a good ordering.
Beyond bandedness

- Bandedness only takes us so far
 - Minimum bandwidth for 2D model problem? 3D?
 - Skyline only gets us so much farther
- But more general solvers have similar structure
 - Ordering (minimize fill)
 - Symbolic factorization (where will fill be?)
 - Numerical factorization (pivoting?)
 - ... and triangular solves
Reminder: Matrices to graphs

- $A_{ij} \neq 0$ means there is an edge between i and j
- Ignore self-loops and weights for the moment
- Symmetric matrices correspond to undirected graphs
Troublesome Trees

One step of Gaussian elimination *completely* fills this matrix!
Full Gaussian elimination generates *no* fill in this matrix!
Graphic Elimination

Eliminate a variable, connect all neighbors.
Graphic Elimination

Consider first steps of GE

\[A(2: \text{end}, 1) = A(2: \text{end}, 1) / A(1, 1); \]
\[A(2: \text{end}, 2: \text{end}) = A(2: \text{end}, 2: \text{end}) - \ldots \]
\[\quad A(2: \text{end}, 1) \times A(1, 2: \text{end}); \]

Nonzero in the outer product at \((i, j)\) if \(A(i, 1)\) and \(A(j, 1)\) both nonzero — that is, if \(i\) and \(j\) are both connected to 1.

General: Eliminate variable, connect remaining neighbors.
Order leaves to root \Rightarrow
on eliminating i, parent of i is only remaining neighbor.
Nested Dissection

- Idea: Think of *block* tree structures.
- Eliminate block trees from bottom up.
- Can recursively partition at leaves.
- Rough cost estimate: how much just to factor dense Schur complements associated with separators?
- Notice graph partitioning appears again!
 - And again we want small separators!
Nested Dissection

Model problem: Laplacian with 5 point stencil (for 2D)
 ▶ ND gives optimal complexity in exact arithmetic (George 73, Hoffman/Martin/Rose)
 ▶ 2D: $O(N \log N)$ memory, $O(N^{3/2})$ flops
 ▶ 3D: $O(N^{4/3})$ memory, $O(N^2)$ flops
Minimum Degree

- Locally greedy strategy
 - Want to minimize upper bound on fill-in
 - $\text{Fill} \leq (\text{degree in remaining graph})^2$
- At each step
 - Eliminate vertex with smallest degree
 - Update degrees of neighbors
- Problem: Expensive to implement!
 - But better variants via *quotient graphs*
 - Variants often used in practice
Elimination Tree

- Variables (columns) are nodes in trees
- \(j \) a descendant of \(k \) if eliminating \(j \) updates \(k \)
- Can eliminate disjoint subtrees in parallel!
Basic idea: exploit “supernodal” (dense) structures in factor

- e.g. arising from elimination of separator Schur complements in ND
- Other alternatives exist (multifrontal solvers)
Pivoting is a tremendous pain, particularly in distributed memory!

- Cholesky — no need to pivot!
- Threshold pivoting — pivot when things look dangerous
- Static pivoting — try to decide up front

What if things go wrong with threshold/static pivoting?
Common theme: Clean up sloppy solves with good residuals
Can improve solution by *iterative refinement*:

\[
PAQ \approx LU
\]
\[
x_0 \approx QU^{-1} L^{-1} Pb
\]
\[
r_0 = b - Ax_0
\]
\[
x_1 \approx x_0 + QU^{-1} L^{-1} Pr_0
\]

Looks like approximate Newton on \(F(x) = Ax - b = 0 \).
This is just a stationary iterative method!
Nonstationary methods work, too.
Variations on a theme

If we’re willing to sacrifice some on factorization,

▶ Single precision + refinement on double precision residual?
▶ Sloppy factorizations (marginal stability) + refinement?
▶ Modify m small pivots as they’re encountered (low rank updates), fix with m steps of a Krylov solver?