
Lecture 8: Distributed memory

David Bindel

22 Sep 2011

Logistics

I Interesting CS colloquium tomorrow at 4:15 in Upson B15:
“Trumping the Multicore Memory Hierarchy with Hi-Spade”

I Proj 1 due tomorrow at 11:59! I will be gone after 2-3
tomorrow, so get in your questions now.
(Alternate suggestion: Monday at 11:59?)

I Suggest a two-fold strategy: work on fast kernel (say
16-by-16), and then work on a good blocked code that
employs that kernel. Be careful not to spend too much time
on optimizations that the compiler does better.

I When you submit your Makefile, please make sure that
you copy any changes that you made to the flags in
Makefile.in into the Makefile proper.

I Some good discussions on Piazza – keep it going!

Next HW: a particle dynamics simulation.

Plan for this week

I Last week: shared memory programming
I Shared memory HW issues (cache coherence)
I Threaded programming concepts (pthreads and OpenMP)
I A simple example (Monte Carlo)

I This week: distributed memory programming
I Distributed memory HW issues (topologies, cost models)
I Message-passing programming concepts (and MPI)
I A simple example (“sharks and fish”)

Basic questions

How much does a message cost?
I Latency: time to get between processors
I Bandwidth: data transferred per unit time
I How does contention affect communication?

This is a combined hardware-software question!

We want to understand just enough for reasonable modeling.

Thinking about interconnects

Several features characterize an interconnect:
I Topology: who do the wires connect?
I Routing: how do we get from A to B?
I Switching: circuits, store-and-forward?
I Flow control: how do we manage limited resources?

Thinking about interconnects

I Links are like streets
I Switches are like intersections
I Hops are like blocks traveled
I Routing algorithm is like a travel plan
I Stop lights are like flow control
I Short packets are like cars, long ones like buses?

At some point the analogy breaks down...

Bus topology

Mem

$ $ $ $

P0 P1 P2 P3

I One set of wires (the bus)
I Only one processor allowed at any given time

I Contention for the bus is an issue
I Example: basic Ethernet, some SMPs

Crossbar

P3

P0 P1 P2 P3

P0

P1

P2

I Dedicated path from every input to every output
I Takes O(p2) switches and wires!

I Example: recent AMD/Intel multicore chips
(older: front-side bus)

Bus vs. crossbar

I Crossbar: more hardware
I Bus: more contention (less capacity?)
I Generally seek happy medium

I Less contention than bus
I Less hardware than crossbar
I May give up one-hop routing

Network properties

Think about latency and bandwidth via two quantities:
I Diameter: max distance between nodes
I Bisection bandwidth: smallest bandwidth cut to bisect

I Particularly important for all-to-all communication

Linear topology

I p − 1 links
I Diameter p − 1
I Bisection bandwidth 1

Ring topology

I p links
I Diameter p/2
I Bisection bandwidth 2

Mesh

I May be more than two dimensions
I Route along each dimension in turn

Torus

Torus : Mesh :: Ring : Linear

Hypercube

I Label processors with binary numbers
I Connect p1 to p2 if labels differ in one bit

Fat tree

I Processors at leaves
I Increase link bandwidth near root

Others...

I Butterfly network
I Omega network
I Cayley graph

Current picture

I Old: latencies = hops
I New: roughly constant latency (?)

I Wormhole routing (or cut-through) flattens latencies vs
store-forward at hardware level

I Software stack dominates HW latency!
I Latencies not same between networks (in box vs across)
I May also have store-forward at library level

I Old: mapping algorithms to topologies
I New: avoid topology-specific optimization

I Want code that runs on next year’s machine, too!
I Bundle topology awareness in vendor MPI libraries?
I Sometimes specify a software topology

α-β model

Crudest model: tcomm = α+ βM
I tcomm = communication time
I α = latency
I β = inverse bandwidth
I M = message size

Works pretty well for basic guidance!

Typically α� β � tflop. More money on network, lower α.

LogP model

Like α-β, but includes CPU time on send/recv:
I Latency: the usual
I Overhead: CPU time to send/recv
I Gap: min time between send/recv
I P: number of processors

Assumes small messages (gap ∼ bw for fixed message size).

Communication costs

Some basic goals:
I Prefer larger to smaller messages (avoid latency)
I Avoid communication when possible

I Great speedup for Monte Carlo and other embarrassingly
parallel codes!

I Overlap communication with computation
I Models tell you how much computation is needed to mask

communication costs.

Message passing programming

Basic operations:
I Pairwise messaging: send/receive
I Collective messaging: broadcast, scatter/gather
I Collective computation: sum, max, other parallel prefix ops
I Barriers (no need for locks!)
I Environmental inquiries (who am I? do I have mail?)

(Much of what follows is adapted from Bill Gropp’s material.)

MPI

I Message Passing Interface
I An interface spec — many implementations
I Bindings to C, C++, Fortran

Hello world

#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv) {
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("Hello from %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

Communicators

I Processes form groups
I Messages sent in contexts

I Separate communication for libraries
I Group + context = communicator
I Identify process by rank in group
I Default is MPI_COMM_WORLD

Sending and receiving

Need to specify:
I What’s the data?

I Different machines use different encodings (e.g.
endian-ness)

I =⇒ “bag o’ bytes” model is inadequate
I How do we identify processes?
I How does receiver identify messages?
I What does it mean to “complete” a send/recv?

MPI datatypes

Message is (address, count, datatype). Allow:
I Basic types (MPI_INT, MPI_DOUBLE)
I Contiguous arrays
I Strided arrays
I Indexed arrays
I Arbitrary structures

Complex data types may hurt performance?

MPI tags

Use an integer tag to label messages
I Help distinguish different message types
I Can screen messages with wrong tag
I MPI_ANY_TAG is a wildcard

MPI Send/Recv

Basic blocking point-to-point communication:

int
MPI_Send(void *buf, int count,

MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm);

int
MPI_Recv(void *buf, int count,

MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status *status);

MPI send/recv semantics

I Send returns when data gets to system
I ... might not yet arrive at destination!

I Recv ignores messages that don’t match source and tag
I MPI_ANY_SOURCE and MPI_ANY_TAG are wildcards

I Recv status contains more info (tag, source, size)

Ping-pong pseudocode

Process 0:

for i = 1:ntrials
send b bytes to 1
recv b bytes from 1

end

Process 1:

for i = 1:ntrials
recv b bytes from 0
send b bytes to 0

end

Ping-pong MPI

void ping(char* buf, int n, int ntrials, int p)
{

for (int i = 0; i < ntrials; ++i) {
MPI_Send(buf, n, MPI_CHAR, p, 0,

MPI_COMM_WORLD);
MPI_Recv(buf, n, MPI_CHAR, p, 0,

MPI_COMM_WORLD, NULL);
}

}

(Pong is similar)

Ping-pong MPI

for (int sz = 1; sz <= MAX_SZ; sz += 1000) {
if (rank == 0) {

clock_t t1, t2;
t1 = clock();
ping(buf, sz, NTRIALS, 1);
t2 = clock();
printf("%d %g\n", sz,

(double) (t2-t1)/CLOCKS_PER_SEC);
} else if (rank == 1) {

pong(buf, sz, NTRIALS, 0);
}

}

Running the code

On my laptop (OpenMPI)

mpicc -std=c99 pingpong.c -o pingpong.x
mpirun -np 2 ./pingpong.x

Details vary, but this is pretty normal.

Approximate α-β parameters (2-core laptop)

1.00e-06

2.00e-06

3.00e-06

4.00e-06

5.00e-06

6.00e-06

7.00e-06

8.00e-06

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Ti
m

e/
m

sg

b

Measured
Model

α ≈ 1.46× 10−6, β ≈ 3.89× 10−10

Where we are now

Can write a lot of MPI code with 6 operations we’ve seen:
I MPI_Init

I MPI_Finalize

I MPI_Comm_size

I MPI_Comm_rank

I MPI_Send

I MPI_Recv

... but there are sometimes better ways.

Next time: non-blocking and collective operations!

