HW 1
Due: Fri, Feb 5

The first two problems should be plausible given what you know as of Jan 29. Ideally, the material presented on Monday, Feb 1 will allow you to do the other two problems. Don’t be shy about asking for help in office hours or on Piazza!

1: Placing parens Suppose $A, B \in \mathbb{R}^{n \times n}$ are square matrices, $D = \text{diag}(d) \in \mathbb{R}^{n \times n}$ is a diagonal matrix, and $u, v \in \mathbb{R}^n$ are vectors. Write short fragments of MATLAB to evaluate them as efficiently as possible, and give the complexity in terms of n:

1. $v^T(I + DAD)v$
2. $u^T A^2 v$
3. $\text{tr}(uv^T A)$

2: Recognizing rank Consider the MATLAB fragment

```matlab
function [y] = hw1mult(x)
    n = length(x);
    A = reshape(1:n^2, n, n);
    y = A * x;
end
```

1. What is A for $n = 3$?
2. Show that A has rank two (independent of n).
3. Rewrite `hw1mult` so that it runs in $O(n)$ time.

3: Norms!

1. Show that $x \mapsto \|x\|_1 + \|x\|_\infty$ is a norm.

2. The space \mathcal{P}_3 of polynomials with degree less than or equal to three has a norm $\|p\|$ given by

$$
\|p\|^2 = \int_{-1}^{1} p(x)^2 \, dx
$$
For a general cubic \(p(x) = ax^3 + bx^2 + cx + d \), write \(\|p\| \) in terms of \(a, b, c, d \).

4: Pushing products Suppose \(A \in \mathbb{R}^{n \times n} \) is symmetric and positive definite. The \(A \)-norm of a vector \(v \in \mathbb{R}^n \) is \(\|v\|_A = \sqrt{v^T A v} \). Describe how to reconstruct \(A \) given a function that computes \(\|v\|_A \) for any given vector. Code it up in a function with the following interface:

```matlab
function [A] = hw1normA(normfun, n)
% Given a function to evaluate the Euclidean norm of a length n vector
% v with respect to the A inner product, reconstruct A.
```