HW 2
Due by lecture on Wed, Feb 8

Remember that you may (and should!) talk about the problems amongst yourselves, or discuss them with me or the TA, providing attribution for any good ideas you might get – but your final write-up should be your own.

1: Mr. Fix-It
Consider the fixed point iteration

\[x_{k+1} = \frac{x_k}{4} \left(5 - ax_k^3 \right) \]

- What does the iteration converge to?
- Show the iteration converges linearly and compute the rate constant.

Note: You should be able to work this out purely analytically, but please do check your work against a numerical experiment.

2: Water, water
The dispersion relation for shallow water waves is

\[\omega^2 = k \left(g + \frac{T}{\rho} k^2 \right) \tanh(kh) \]

where

- \(h \) = water depth
- \(k \) = spatial wave number (2\(\pi \) / wave length)
- \(\omega \) = frequency (2\(\pi \) / period)
- \(T \) = surface tension
- \(\rho \) = mass density
- \(g \) = gravitational acceleration.

For water at 25C, \(T/\rho = 7.2 \times 10^{-5} \) N/m\(^4\), and the acceleration due to gravity is \(g = 9.8 \) m/s\(^2\). Assuming these values, write a code using Newton’s method to find \(k \) given \(\omega \) and \(h \), assuming \(kh \ll 1 \). Your routine should take the form

```
function k = hw2p2(omega, h)
```
3: Devilish differences Consider the function

\[f(x) = \sin(x) + \text{erf}(x) \]

where \(\text{erf} \) denotes the error function

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) \, dt. \]

This function has an infinite sequence of positive roots \(0 < r_1 < r_2 < r_3 < \ldots \). Write a function to compute the \(d_1 = r_2 - r_1 \) and \(d_2 = r_4 - r_3 \). Your function should have the interface

\[\text{function } [d1, d2] = hw2p3() \]

Notes: MATLAB provides an \texttt{erf} function, but you will probably find the \texttt{erfc} function (\(\text{erfc}(x) = 1 - \text{erf}(x) \)) more useful if you want to rewrite \(f \) so that you can evaluate it more accurately in the regions of interest. You probably will not want to use \(x \) as the main variable in your computation. I changed variables, used a power series to estimate the relevant roots, and then applied Newton. You may choose another strategy, but you should believe your answers are correct to at least six significant figures.