
Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

Project 3
Due on Friday, May 6

Introduction

Monte Carlo scattering computations appear in many different settings: de-
signing nuclear reactors, planning radiation therapies in medicine, and ren-
dering realistic materials in graphics. The basic picture is the same in each
case. We think of the radiation as a stream of particles (electrons, pho-
tons, or neutrons, depending on the setting). As they travel through matter,
these particles travel some random distance before interacting with an atom
or molecule. Different interactions are possible depending on the context,
including scattering, absorption, or fission. The nature of the individual par-
ticle interactions is random, but the distribution over possibilities can be
measured.

In this project, you are given a simple Monte Carlo code to analyze a
model of a laser shined on a homogeneous material. In the model, photons
that enter the material travel a random distance (an exponentially distributed
random variable) before hitting an atom. When photons from the laser hit
an atom or molecule in the material, they are either

• Absorbed and converted into heat, or

• Scattered at a random angle.

Photons that are scattered back into the surface may also interact there,
either reflecting back into the material or transmitting through the surface
and back into the ambient environment. The Monte Carlo code more-or-
less directly mimics these physical processes of scattering, absorption, and
reflection over many randomly simulated particle trajectories. Based on the
statistical behavior of these trajectories, the code approximates how the ma-
terial absorbs or reflects the energy over time.

Your goal is two-fold:

1. Investigate the properties of the code and extend it in some minor ways.

2. Use the code together with techniques from earlier in the semester to
study some interesting physics!



Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

The code

The code run scatter.m is available on CMS. It is based loosely on a C code
written by Scott Prahl 1:

http://omlc.ogi.edu/software/mc/small_mc.c

The code uses the same basic strategy as the more complete MCML code
(Monte Carlo light transport in Multi-Layered tissues), and there is a reason-
ably comprehensible journal article documenting that code [1]. If you find
this discussion too terse, I recommend looking at that article, or at a more
general article on the more general MCNP code [2].

There are four parameters that describe the physics:

• µa is the expected number of absorption events per cm.

• µs is the expected number of scattering events per cm.

• g is a parameter that describes anisotropy in scattering. When g = 0,
we have isotropic scattering: all directions of travel are equally likely
after a scattering event. When g is close to 1, scattered photons are
more likely to continue going in mostly the same direction. When g is
close to -1, photons are more likely to scatter backward.

• n is the (relative) index of refraction. This is used to determine whether
photons that encounter the surface get reflected, or not.

There are also several parameters that are used to control the algorithm
details. On output, the code returns a histogram of the fraction of photons
absorbed over different z ranges, as well as the fraction of photons that are
reflected either specularly (i.e. just bouncing from the surface) or diffusely
(i.e. after traveling through the medium).

After entering the medium at the origin headed straight in the positive
z direction, a photon’s trajectory is a sequence of random steps. The step
lengths are sampled from an exponential distribution with mean equal to the
mean free path ((µa + µs)

−1). If the step crosses the surface, the photon

1I would not regard this as a stellar example of C style. In particular, it bothers me to
no end that the author assumes that the operating system will clear the global segment
to zero at initialization. That said, it gets the job done, and saves me from reproducing
the code for sampling the Henyey-Greeinstein distribution.

http://omlc.ogi.edu/software/mc/small_mc.c


Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

should either transmit through or reflect from the surface with a probability
that depends on the angle of incidence and the index of refraction. Assuming
that the current step is not the last, the photon is then scattered, which
means it chooses a new direction by sampling from the Henyey-Greenstein
distribution.

For computational purposes, we do not actually process absorption events
by terminating a photon’s trajectory. Instead, we assign to each photon a
probability that it is still alive. This weight is initially 1 − rspecular, where
rspecular is the probability that a photon would bounce from the surface before
even entering the medium. At the end of each successive step, we update
the histogram for the current location with the probability that the photon
should actually have been absorbed, and reduce the weight on the photon by
the same amount; then we pick a new direction and march forward. When
the weight of a photon becomes sufficiently small, so that it no longer makes
much difference, we can terminate the trajectory in an unbiased manner by
a game of Russian roulette: if the photon survives (with probability psurvive),
we increase the weight by a factor of p−1survive and keep going; otherwise, we
decrease the weight to zero and move on to the next photon.

Though we have just described the computation in terms of the behavior
of a single photon, our code actually runs several photon trajectories simul-
taneously (in a “batch”), and plays Russian roulette on an entire batch at
once. We do this in order to play to Matlab’s efficient vector operations2.
Otherwise, running getting good results is painfully slow.

Ignoring batching behavior, the basic algorithm is described in Figure 1.

2I thought about making you do this part, but decided it was sufficient to get you to
walk through the exercise in the last two projects.



Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

for each photon

position = [0; 0; 0]

direction = [0; 0; 1]

weight = 1-rspecular

while weight > 0

s = exponential sample with mean mfp (mean free path)

move in the current direction by a step s

if new z < 0

decrease weight by probability of transmission

increase rdiffuse total by probability of transmission

reflect new direction and position

end

add absorption probability to new location

decrease weight by absorption probability

if weight < wroulette

Russian roulette: weight = weight/ps (prob ps) or 0 (prob 1-ps)

end

choose a new direction

end

end

scale results by total number of trajectories and return

Figure 1: Pseudocode for basic MC simulation



Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

Tasks

Unless you are doing a parameter study, please default to the parameters
µa = 5 cm−1, µs = 95 cm−1, g = 0.5, n = 1.5, and zmax = 0.2 cm.

1. Plot three or four sample trajectories using the default parameters.
Repeat for g = 0.9. This will involve digging through the code to
figure out what does what. You may attempt a three-dimensional plot,
or you may just show something two-dimensional.

2. Currently, the code prints out the diffuse reflectance (the fraction of
photons that enter the medium and then are scattered back out); but
it does not print out error bars. Modify the code so that it does print
error bars for this quantity. An error bar in this context is σ̂/

√
n, where

σ̂ is the variance of one experiment and n is the number of experiments
run; you can approximate σ̂ by the sample variance. You may treat
each photon simulation as one experiment, or you may choose to treat
each batch as an experiment.

3. Plot the absorption profile (call it φ(z)) in terms of absorption per
centimeter as a function of the depth. Note that this is just the heat

histogram scaled by bin widths. It will be useful to have routines to
automatically plot this in both linear scales and on a semilogarithmic
scale (logarithmic in the absorption density, linear in depth).

4. According to a diffusion approximation, the absorption profile in the
absence of surface effects would be proportional to exp(−z/δ), where

δ =
1√

3µa(µa + µs(1− g))
.

Use a semilogarithmic plot of the absorption profile to show graphi-
cally that for z large enough, the absorption really is approximately
proportional to exp(−z/δ).

5. Compare the absorption profile to the diffusion approximation for the
parameters µa = 1 cm−1, µs = 100 cm−1, g = 0.9, n = 1.0, and zmax =
1.0. This will take a longer than the previous simulation, because each
trajectory runs for longer before it is terminated by the Russian roulette
algorithm; can you explain why? Re-run with opt.wroulette = 0.05;



Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

the code will run faster, but the plot may look noisy. What happens
to the error bars on the diffuse reflectance?

6. Using your favorite choice of nonlinear least squares solvers (I sug-
gest Gauss-Newton iteration), fit your computed absorption profile to
a function of the form

φ̂(z) = C1 exp(−z/δ1) + C2 exp(−z/δ2).

To get initial guesses for δ1 and δ2, I suggest using the fact that for any
z we can write

φ̂(z + 2h) = αφ(z + h) + βφ(z),

where

q(t) ≡ t2 − αt− β = (t− exp(−h/δ1)) (t− exp(−h/δ2)) .

We can estimate α and β by a linear system of the form[
φ(z + h) φ(z)
φ(z + 2h) φ(z + h)

] [
α
β

]
=

[
φ(z + 2h)
φ(z + 3h)

]
,

where for φ(z) we use the histogrammed estimate of the density. Once
we have α and β, we can solve a quadratic and take some logarithms to
find δ1 and δ2; and once we have estimates for δ1 and δ2, we can solve
a linear least squares problem to get initial estimates for C1 and C2.

Notes:

(a) In reality, the profile should have the form

φ(z) =
∞∑
j=1

Cj exp(−z/δj),

but as we will see, the first two terms form a perfectly adequate
approximation.

(b) This sort of fitting of exponentials to data is sometimes called
a Prony problem (or a modified Prony problem, since we have
more data than coefficients). You may be able to find existing
software for the problem; if so, you are welcome to use it. I just
coded a little Gauss-Newton routine (with a separate update for
the exactly computable Cj coefficients; also with line search, since
I didn’t want to have to fiddle with the results in the middle of
more interesting experiments).



Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

(c) In order to avoid being tricked by statistical noise, if you use the
above trick for estimating δ1 and δ2, I suggest trying out several
step sizes (usually you will want to try steps h to be an integer
multiple of the bin width hbin). You can compare the quality of the
computed exponents for different steps by looking at the residual
in a fit where only C1 and C2 are left free.

(d) I recommend doing the Gauss-Newton iteration in terms of the
variables ξ1 = exp(−hbin/δ1) and ξ1 = exp(−hbin/δ1) rather than
working directly with δ1 and δ2. It simplifies the algebra.

7. Once you have the fit, you should evaluate its quality. Report both the
maximum absolute error and the maximum relative error. I suggest
that you also plot the fitting error together with the absorption profile
on a semilogarithmic plot so that it is easy to see the whole picture.
Also verify that one of δ1 or δ2 should be close to δ. If δ1 is close to δ,
then δ2 can be interpreted as a characteristic length for the layer where
the surface effects are important.

8. Investigate the convergence of the parameters C1, C2, δ1, and δ2 as a
function of the number of simulations. I am leaving this deliberately
vague. You may show convergence plots, error bars, or whatever else
you feel is appropriate.

Submission

You should submit a report that summarizes your work. This should at least
include all the plots I requested and brief descriptions of your experiments,
but feel free to include extensions of your own devising for up to two points
of extra credit.

You should also submit your modified version of run scatter.m that
includes error bar computations for the diffuse reflection, a code run fit.m

that computes the two-exponential fit (possibly using run scatter.m as a
subroutine).



Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

References

[1] L. Wang, S. Jacques, and L. Zheng. MCML — Monte Carlo modeling
of light transport in multi-layered tissues. Computer Methods and Pro-
grams in Biomedicine, 47 (1995), pp. 131–146.
http://omlc.ogi.edu/software/mc/mcpubs/1995LWCMPBMcml.pdf

[2] J. Hendricks. A Monte Carlo Code for Particle Transport: An Algorithm
for All Seasons. Los Alamos Science 22 (1994), pp. 32–43.
http://www.fas.org/sgp/othergov/doe/lanl/pubs/00326727.pdf

http://omlc.ogi.edu/software/mc/mcpubs/1995LWCMPBMcml.pdf
http://www.fas.org/sgp/othergov/doe/lanl/pubs/00326727.pdf

