
Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

Figure 1: Diagram illustrating ray casting [1].

Project 2
Due on Wednesday, Mar 16

Introduction

Ray-casting is a basic rendering technique. Suppose a viewer at coordinates
(0, 0,−w) is looking through the plane z = 0 at some surface. We pretend
that the screen lives on the plane z = 0, and the pixel at (x, y) is colored
based on where the ray from the viewer through (x, y, 0) first intersects some
surface.

In this project, we will use ray casting to render an implicit surface defined
by an equation f(x, y, z) = 0. This means that for each pixel position (x, y)
in the image, we must find the smallest z > 0 that satisfies the equation

g(z;x, y) = f(x(1 + z/w), y(1 + z/w), z) = 0.

If g(z;x, y) is zero, then we color the screen point (x, y) according to the
illumination of the point (x(1 + z/w), y(1 + z/w), z) on the zero set of f . We
provide code to compute the shading of each pixel based on a simple Phong
shading model with a single light source. Your goal is to efficiently solve the
implicit equation g(z;x, y) = 0 for every pixel position (x, y) in an image.



Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

Defining implicit surfaces

The chief input is a handle for a Matlab function with input arguments x, y,
z that are parallel coordinate arrays and output arguments f, f_x, f_y, f_z
that are the corresponding function values and components of the gradient.
For example, we use the following Matlab function to define a sphere of
radius one centered at (0, 0, 2):

function [f, f x , f y , f z ] = spherel(x,y,z)

f = x.ˆ2+y.ˆ2+(z−2).ˆ2 − 1;
if nargout > 1

f x = 2∗x;
f y = 2∗y;
f z = 2∗(z−2);

end

Basic task

You will be given a template for a function raycast that is only missing the
definition of a helper function ray_intersections. Your goal is to provide
a reasonably efficient, vectorized implementation of ray_intersections. I
recommend the following strategy:

1. Evaluate f for all points along several planes between z = 0 and z =
zmax in order to estimate where each ray first intersects the surface (if
indeed it intersects the surface at all).

2. Using the information obtained by sampling f , take a few steps of
Newton iteration (in parallel for all points in the image).

3. Use bisection or Brent’s method to locate those points where Newton
did not provide sufficient accuracy.

You may use a different approach, but you should make sure that you use a
superlinearly convergent algorithm most of the time. You may not use the
built-in Matlab function fzero in your final version of the code (though it
may be useful for intermediate versions).



Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

Submission

You should submit the completed file raycast.m, as well as a write-up that
includes at least the following:

• Basic tests to demonstrate that your routine to compute intersections
between the ray and surface converges superlinearly. You may use the
intersection with the sphere as a model problem.

• One test image of your choosing (other than the sphere).

• A discussion of which parts of the code take the most time according
to Matlab’s profiler. Use help profile to learn more.

• A description of shortcomings of your root finding code. Though we do
not expect your code to be able to render arbitrary surfaces (though it
should handle “nice” smooth surfaces), we do expect you to understand
what types of surfaces that might cause problems. Think of an audience
who might use this code. Are there artifacts they might see because of
the root finding strategy? Is there anything they can do to the problem
formulation to fix them?

Note: Unless you feel a compelling need to do so from reasons of your
own, you do not need to say anything about the lack of shadows and
other features due to non-recursiveness in the raycasting, nor do you
need to comment on the quality of the shading model.

The write-up is an important part of this project. Please spend the time
necessary to do a good job on it!

References

[1] Wikipedia: Ray casting. Work found at http://en.wikipedia.

org/wiki/File:Ray_trace_diagram.svg / CC BY-SA 3.0 (http://
creativecommons.org/licenses/by-sa/3.0/)

http://en.wikipedia.org/wiki/File:Ray_trace_diagram.svg
http://en.wikipedia.org/wiki/File:Ray_trace_diagram.svg
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

