Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

HW 6
Due at 11:59 by CMS on Monday, April 18

Remember that you may (and should!) talk about the problems amongst
yourselves, or discuss them with me or the TA, providing attribution for any
good ideas you might get — but your final write-up should be your own.

1: Testing Simpson. Implement the following routine:

% I = hwésimpson(f, a, b, n)

%

% Integrate f (passed as a MATLAB function handle) from a to b
% using n—panel Simpson quadrature.

function I = hw6simpson(f, a, b, n)

In addition, write a testing script to check the following features:

e The interval specified by [a,] is used. You should test that your code
works properly for the case a = b, and also for the case where b < a
(using the convention that fabf(x) de = — [f(z)dz.

e The quadrature rule has degree 3 (i.e. cubics are integrated exactly but
quartics need not be).

e The function has the desired order of convergence on the test integrand
e” for the interval [0,1]. You should do this by repeatedly doubling n
and showing that the error decreases appropriately.

Your tester should output a diagnostic failure method if hw6simpson is in-
correct. I will be checking your test script by making sure that it reports
success for a correct implementation of Simpson’s rule and reports failure
for some incorrectly-implemented variants of Simpsons rule (including ver-
sions that correctly estimate the integral, but do not have the right order of
convergence).

Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

2: Legendre revisited. In lecture 20, we described the Legendre polyno-
mials, and gave a recurrence for computing them. For any sufficiently nice (at
least square integrable) function f(x) on [—1, 1], we can write an expansion
in terms of the Legendre polynomials:

Note that

PPy de = e, /1 Pi(2) Pa(r) dr = 253
A SR TR

so we can compute the coefficients by integration.
Write a function that estimates cg, ..., c,_1 using n-point Gauss quadra-
ture, and a second function that evaluates

at given nodes in x. Your functions should have the form

function ¢ = hw6expansion(fn)
function fhatx = hw6eval(c,x)

Here £ is a function handle, n is the number of coefficients, c is the coefficient
vector, and x is a vector of points where the function should be evaluated.
Explain why this construction of f (x) is equivalent to polynomial interpola-
tion through the nodes used in the n-point Gauss quadrature rule.

You may use gaussq.m (posted on CMS) to compute the necessary Gauss
quadrature nodes and weights.

