HW 5
Due by CMS by 11:59 on Monday, April 4

Remember that you may (and should!) talk about the problems amongst yourselves, or discuss them with me or the TA, providing attribution for any good ideas you might get – but your final write-up should be your own.

1: Differentiating an interpolant. The code hw5newton (available on CMS) computes a vector of divided differences for use in the Newton form of interpolation; see the end of section 7.3.3 in Heath. Using these divided differences, write a routine hw5neval that evaluates the interpolating polynomial \(p \) and its derivative \(p' \):

\[
% [pxx, dpxx] = hw5neval(x, fdd, xx)
%
% Evaluate the Newton form of the interpolant at points xx.
% Inputs:
% x -- coordinates of interpolation nodes
% fdd -- table of divided differences returned by hw5newton
% xx -- evaluation points
%
% Outputs:
% pxx -- interpolating polynomial evaluated at the points xx
% dpxx -- derivative of the interpolating polynomial evaluated at xx

function [pxx, dpxx] = hw5neval(x, fdd, xx)

Your code should only involve \(O(n) \) work per evaluation point, where \(n \) is the number of interpolation points. You may want to test your code using the hw5pitest script (also on CMS).
2: Fitting a Lorentzian. A Lorentzian is a function with the form

\[L(x; A, c, \sigma) = \frac{A}{1 + 4(x - c)^2/\sigma^2}. \]

Lorentzian functions occur frequently in scattering theory, where they describe peaks in a measured response due to resonance phenomena. The parameters \(A, c, \) and \(\sigma \) respectively describe the amplitude, center, and width of the peak at half amplitude.

Given a set of points \(\{x_j\}_{j=1}^N \) and corresponding measurements \(\{y_j\}_{j=1}^N \), write a program to find \(A, x_0, \) and \(\sigma \) to minimize the sum-of-squares error

\[\phi(A, c, \sigma) = \sum_{j=1}^{N} (L(x_j; A, c, \sigma) - y_j)^2. \]

Your code should have the form

```matlab
function [A,c,sigma] = hw5fit(x,y)
% Least-squares fit a Lorentzian of the form
% \( L(x) = \frac{A}{1+4*(x-c)^2/\sigma^2} \)
% to measured values y(i) at points x(i)
[I recommend the following strategy:

1. Form initial estimates of \( A \) and \( c \) based on the the maximum \( y \) value and the corresponding \( x \) value. Estimate \( \sigma \) based on the range of \( x \) values where the corresponding \( y \) is at least \( \hat{A}/2 \), where \( \hat{A} \) is the initial estimate of the peak amplitude.

2. Optimize \( A, c, \) and \( \sigma \) by a few steps of a basic Gauss-Newton iteration (I used ten). You do not need to implement a line search — the basic Gauss-Newton step will be fine for our purposes. The Gauss-Newton iteration is described in section 6.6.1 of Heath.

3. Test your code using \texttt{hw5p2test} (available on CMS). You should get answers that are correct to within rounding error in the case of no noise; you may be surprised to see how well the estimation procedure works even in the presence of noise.