Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

HW 5
Due by CMS by 11:59 on Monday, April 4

Remember that you may (and should!) talk about the problems amongst
yourselves, or discuss them with me or the TA, providing attribution for any
good ideas you might get — but your final write-up should be your own.

1: Differentiating an interpolant. The code hwbnewton (available on
CMS) computes a vector of divided differences for use in the Newton form
of interpolation; see the end of section 7.3.3 in Heath. Using these divided
differences, write a routine hwbneval that evaluates the interpolating poly-
nomial p and its derivative p':

% [pxz, dprx] = hwbneval(z,fdd, zx)

%

% Evaluate the Newton form of the interpolant at points zx.
% Inputs:

% x — coordinates of interpolation nodes

% fdd — table of divided differences returned by hwdnewton
% xr — evaluation points

%

% Outputs:

% pxx — interpolating polynomial evaluated at the points xx

% dprz — derivative of the interpolating polynomial evaluated at xx

function [pxx, dpxx| = hwbneval(x,fdd, xx)

Your code should only involve O(n) work per evaluation point, where n is
the number of interpolation points. You may want to test your code using
the hwbpltest script (also on CMS).



Bindel, Spring 2011 Intro to Scientific Computing (CS 3220)

2: Fitting a Lorentzian. A Lorentzian is a function with the form

A
1+4(x —c¢)?/o?

L(z; A, c,0) =

Lorentzian functions occur frequently in scattering theory, where they de-
scribe peaks in a measured response due to resonance phenomena. The pa-
rameters A, ¢, and o respectively describe the amplitude, center, and width
of the peak at half amplitude.

Given a set of points {z;}}; and corresponding measurements {y;}\,,
write a program to find A, z¢, and ¢ to minimize the sum-of-squares error

N

o(A,c,0) = Z(L(:Bj; A c,o) — yj)Q.

j=1
Your code should have the form

% [A,c,sigma] = hwSfit(z,y)

%

% Least—squares fit a Lorentzian of the form
% L(z) = A/(1+4*(x—c) " 2/sigma"2)

% to measured values y(i) at points (i)

function [A,c,sigma] = hwhfit(x,y)
I recommend the following strategy:

1. Form initial estimates of A and ¢ based on the the maximum y value
and the corresponding x value. Estimate o based on the range of =
values where the corresponding y is at least A /2, where A is the initial
estimate of the peak amplitude.

2. Optimize A, ¢, and o by a few steps of a basic Gauss-Newton iteration
(I used ten). You do not need to implement a line search — the basic
Gauss-Newton step will be fine for our purposes. The Gauss-Newton
iteration is described in section 6.6.1 of Heath.

3. Test your code using hwbp2test (available on CMS). You should get
answers that are correct to within rounding error in the case of no noise;
you may be surprised to see how well the estimation procedure works
even in the presence of noise.



