# **Chebyshev Featurization**

David Bindel

Department of Computer Science



## Function Approximation from Scattered Data

Goal: Approximate  $f : \Omega \to \mathbb{R}$  from  $f_X = [f(x_1) \dots f(x_n)]^T$ . Approach: Choose  $s(x) = \sum_{i=1}^n k(x, x_i)c_i$  with kernel  $k : \Omega \times \Omega \to \mathbb{R}$ . (often  $k(x, y) = \phi(||x - y||)$  for some radial basis function  $\phi$ )

To fit: solve  $(K_{XX} + \lambda I)c = f_X$  where  $(K_{XX})_{ij} = k(x_i, x_j)$ . Computational issue:  $K_{XX}$  is dense and ill-conditioned. Theoretical issue: How to choose kernel?

#### **Kernel Regression Stories**

#### Feature map

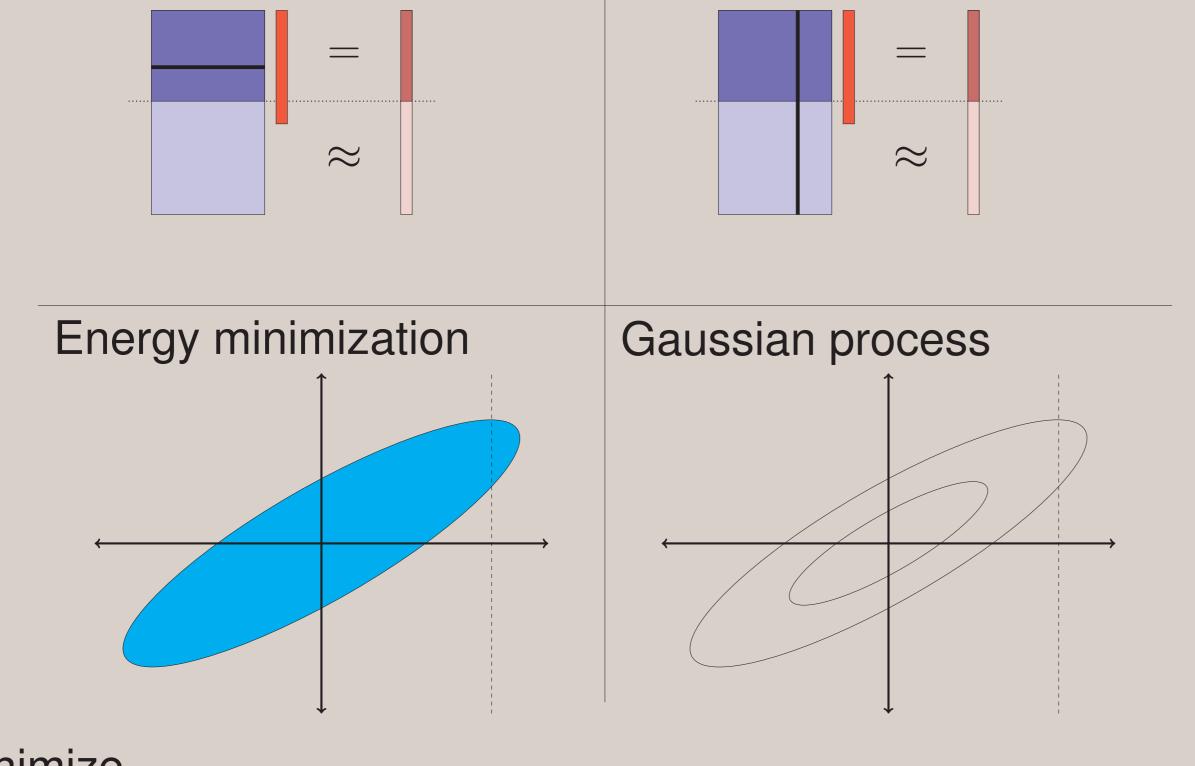
### Data-dependent basis

# **Approximation by Chebyshev Features**

Alternate idea: Use a kernel-independent  $\mathcal{U} \subset \mathcal{H}$  – but kernel determines the inner product.

Concrete 1D case:  $k(x, y) = \phi(x - y) = T(x)^T M T(y)$ , where  $T(x) = [T_0(x) T_1(x) \dots]^T$  (Chebyshev features) M determined from k

Truncated expansion gives polynomial s(x) = T(x)d with  $(T_X^T T_X + \lambda M^{-1})d = T_X^T f_X.$ 



Minimize

$$\lambda \|s\|_{\mathscr{H}}^2 + \|s_X - f_X\|^2$$

where  $s(x) = \langle d, \psi(x) \rangle_{\mathscr{H}}$  for some *feature map*  $\psi : \Omega \to \mathscr{H}$ . Gives  $d = \sum_{j=1}^{n} c_{j} \psi(x_{j})$ , kernel is  $k(x, y) = \langle \psi(x), \psi(y) \rangle_{\mathscr{H}}$ .

Can reconstruct features if needed from eigenpairs of

 $\mathscr{K} u = \int_{\Omega} k(x, y) u(y) d\Omega(y).$ 

#### **Constructing the Inner Product**

Goal:  $\phi(x - y) = T(x)^T M T(y)$ .

Approach: Compute  $D_k : \ell^2 \to \ell^2$  s.t.  $T_k((x - y)/2) = T(x)^T D_k T(y)$ . Then

$$egin{aligned} \phi(x-y) &= \sum_{k=0}^{\infty} lpha_k T_k((x-y)/2) \ &= T(x) \left(\sum_{k=0}^{\infty} lpha_k D_k
ight) T(y) \end{aligned}$$

Rewrite recurrence on  $T_k(x)$  as operator on T(x) vector:  $xT_k(x) = \frac{1}{2} \begin{cases} T_{k+1}(x) + T_{k-1}(x), & k > 0\\ 2T_1(x), & k = 0 \end{cases}$   $xT(x) = \frac{1}{2}ST(x), S \equiv \text{tridiag} \begin{pmatrix} 2 \ 1 \ 1 \ \dots \\ 0 \ 0 \ 0 \ \dots \\ 1 \ 1 \ 1 \ \dots \end{pmatrix}$ Then  $T_{k+1}(z) = 2zT_k(z) - T_{k-1}(z)$  for z = (x - y)/2 yields  $T_{k+1}((x - y)/2) = T(x) \left(\frac{1}{2}S^T D_k - \frac{1}{2}D_k S - D_{k-1}\right) T(y)$ 

Or treat as regularized regression with a *data-dependent basis* determined by sample locations (overcomes Mairhuber-Curtis).

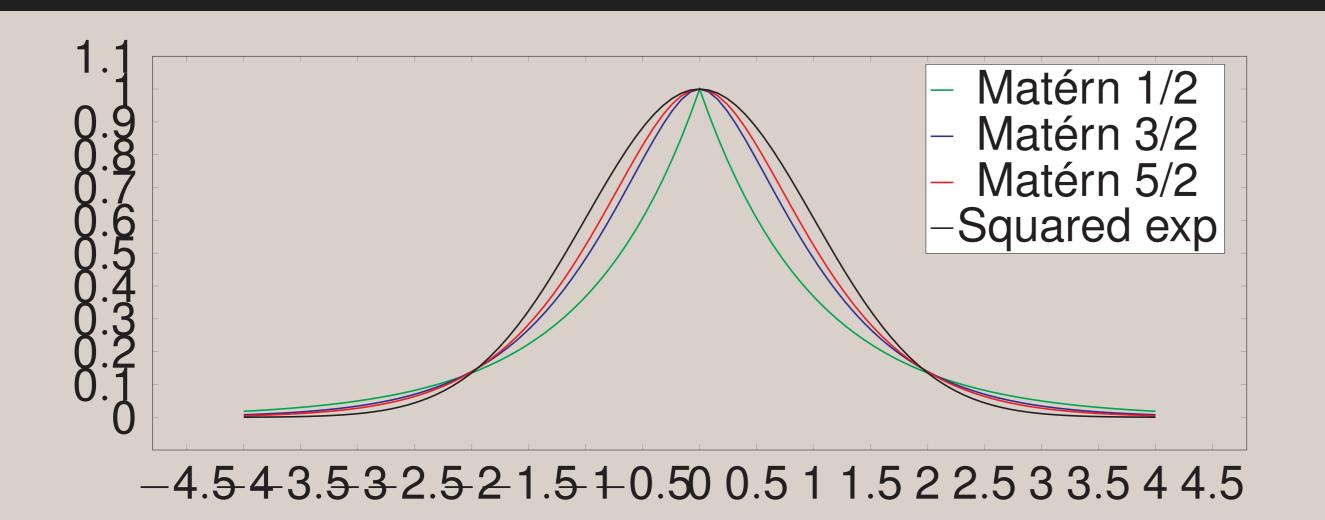
Or Gaussian process: Gaussian random variables indexed by  $\Omega$ , kernel gives covariance, regression gives posterior mean.

# $\implies D_{k+1} = \frac{1}{2}S^T D_k - \frac{1}{2}D_k S - D_{k-1}$

with starting values

$$D_0(0:0,0:0) = 1, \quad D_1(0:1,0:1) = rac{1}{2} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

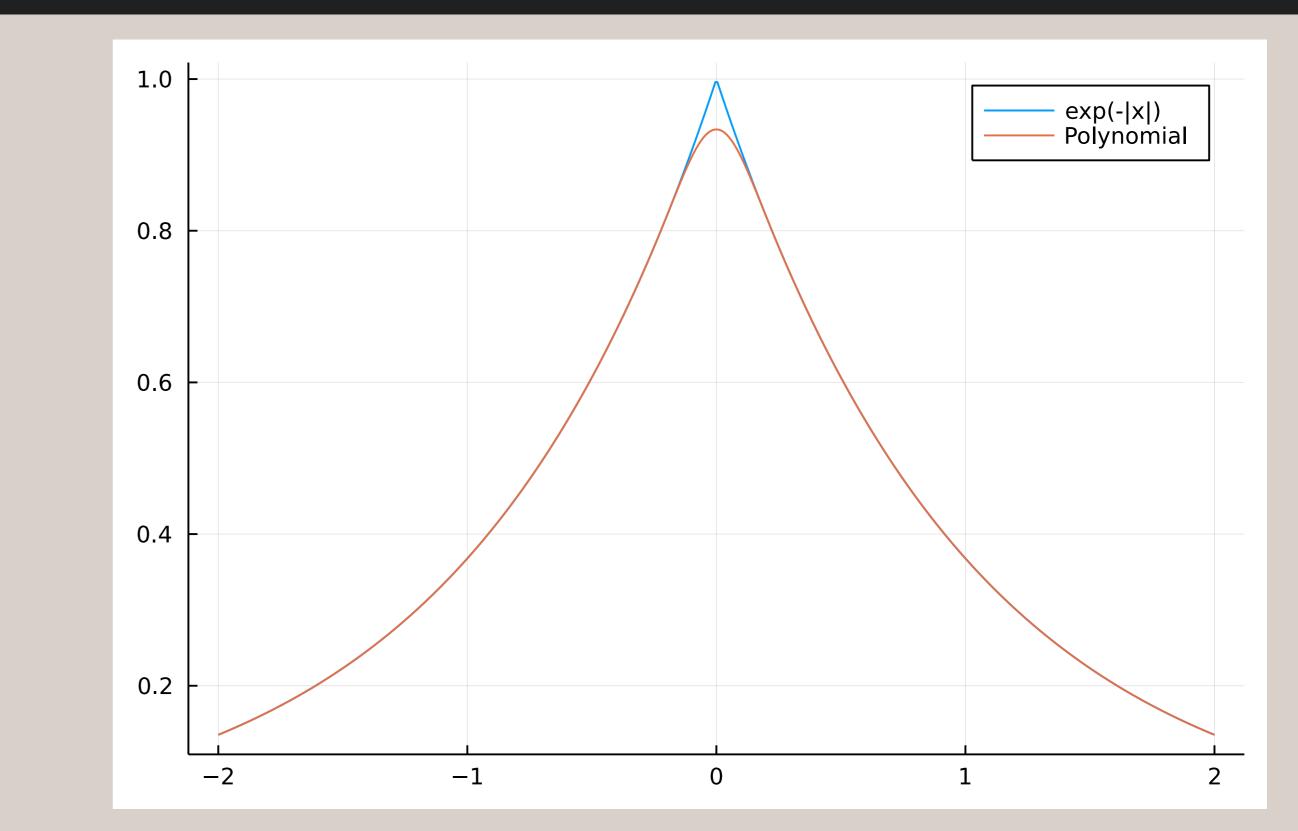
#### Matérn and SE kernels



#### Low-Rank Approximation of Kernels

Smooth kernels  $\implies$  eigenvalues of  $K_{XX}$  decay fast.

## **Splitting the Kernel**



Approximate  $K_{XX} = UU^{T}$ , regression  $\equiv$  regularized LS with U:  $(U^{T}U + \lambda I)d = U^{T}f_{X}, \quad c = \lambda^{-1}(f_{X} - Ud).$ 

Useful idea: approximate kernel *function*, not kernel *matrix*. (Or devise an approximate feature map, like rows of *U*.)

#### Examples:

- Use inducing points:  $k(x, y) = k_{xZ}K_{ZZ}^{-1}k_{Zy}$
- Leading eigenpairs of associated integral operator *K* (Mercer)
   Random Fourier features: k(x,y) = 𝔼<sub>ω</sub>[exp(ιω<sup>T</sup>x)exp(ιω<sup>T</sup>y)\*], ω ~ Fourier transform of (scaled) kernel. Then MC quadrature.

For each: reduced approximation space  $\mathscr{U} \subset \mathscr{H}$  and inner product on  $\mathscr{U}$  depend on kernel.

Common case: not low rank, lacks regularity near zero. Write  $\phi(r) pprox \phi_{
m smooth}(r) + \phi_{
m cpt}(r)$ 

#### where

 φ<sub>smooth</sub>(r) is an even polynomial (treat as above)

 φ<sub>cpt</sub>(r) is supported only near origin

Resulting kernel matrix looks like

 $K_{XX} \approx T_X M T_X + B$ ,

where first term is low rank (as above), second term is sparse.

