Chebyshev Featurization

Function Approximation from Scattered Data

Goal: Approximate $f: \Omega \rightarrow \mathbb{R}$ from $f_{X}=\left[f\left(x_{1}\right) \ldots f\left(x_{n}\right)\right]^{\top}$. Approach: Choose $s(x)=\sum_{i=1}^{n} k\left(x, x_{i}\right) c_{i}$ with kernel $k: \Omega \times \Omega \rightarrow \mathbb{R}$. (often $k(x, y)=\phi(\|x-y\|)$ for some radial basis function ϕ)

To fit: solve $\left(K_{X X}+\lambda I\right) c=f_{X}$ where $\left(K_{X X}\right)_{i j}=k\left(x_{i}, x_{j}\right)$.

- Computational issue: $K_{x x}$ is dense and ill-conditioned.
- Theoretical issue: How to choose kernel?

Kernel Regression Stories

Feature map

Energy minimization

Data-dependent basis

Gaussian process

Minimize

$$
\lambda\|s\|_{\mathscr{H}}^{2}+\left\|s_{X}-f_{X}\right\|^{2}
$$

where $s(x)=\langle d, \psi(x)\rangle_{\mathscr{H}}$ for some feature map $\psi: \Omega \rightarrow \mathscr{H}$. Gives $d=\sum_{j=1}^{n} c_{j} \psi\left(x_{j}\right)$, kernel is $k(x, y)=\langle\psi(x), \psi(y)\rangle_{\mathscr{H}}$.
Can reconstruct features if needed from eigenpairs of

$$
\mathscr{K} u=\int_{\Omega} k(x, y) u(y) d \Omega(y) .
$$

Or treat as regularized regression with a data-dependent basis determined by sample locations (overcomes Mairhuber-Curtis).

Or Gaussian process: Gaussian random variables indexed by Ω, kernel gives covariance, regression gives posterior mean.

Matérn and SE kernels

$-4.543 .532 .521 .5+0.500 .511 .522 .533 .544 .5$

Low-Rank Approximation of Kernels

Smooth kernels \Longrightarrow eigenvalues of $K_{X X}$ decay fast.
Approximate $K_{X X}=U U^{\top}$, regression \equiv regularized LS with U :

$$
\left(U^{\top} U+\lambda I\right) d=U^{\top} f_{X}, \quad c=\lambda^{-1}\left(f_{X}-U d\right) .
$$

Useful idea: approximate kernel function, not kernel matrix.
(Or devise an approximate feature map, like rows of U.)
Examples:

- Use inducing points: $k(x, y)=k_{x z} K_{z z}^{-1} k_{z y}$
- Leading eigenpairs of associated integral operator \mathscr{K} (Mercer)
- Random Fourier features: $k(x, y)=\mathbb{E}_{\omega}\left[\exp \left(\imath \omega^{\top} x\right) \exp \left(\imath \omega^{T} y\right)^{*}\right]$, $\omega \sim$ Fourier transform of (scaled) kernel. Then MC quadrature.
For each: reduced approximation space $\mathscr{U} \subset \mathscr{H}$ and inner product on \mathscr{U} depend on kernel.

Approximation by Chebyshev Features

Alternate idea: Use a kernel-independent $\mathscr{U} \subset \mathscr{H}$ - but kernel determines the inner product.

Concrete 1D case: $k(x, y)=\phi(x-y)=T(x)^{\top} M T(y)$, where

- $T(x)=\left[T_{0}(x) T_{1}(x) \ldots\right]^{T}$ (Chebyshev features)
- M determined from k

Truncated expansion gives polynomial $s(x)=T(x) d$ with

$$
\left(T_{X}^{T} T_{X}+\lambda M^{-1}\right) d=T_{X}^{T} f_{X}
$$

Constructing the Inner Product

Goal: $\phi(x-y)=T(x)^{\top} M T(y)$.
Approach: Compute $D_{k}: \ell^{2} \rightarrow \ell^{2}$ s.t. $T_{k}((x-y) / 2)=T(x)^{T} D_{k} T(y)$.
Then

$$
\begin{aligned}
\phi(x-y) & =\sum_{k=0}^{\infty} \alpha_{k} T_{k}((x-y) / 2) \\
& =T(x)\left(\sum_{k=0}^{\infty} \alpha_{k} D_{k}\right) T(y) .
\end{aligned}
$$

Rewrite recurrence on $T_{k}(x)$ as operator on $T(x)$ vector:

$$
\begin{aligned}
& x T_{k}(x)=\frac{1}{2} \begin{cases}T_{k+1}(x)+T_{k-1}(x), & k>0 \\
2 T_{1}(x), & k=0\end{cases} \\
& x T(x)=\frac{1}{2} S T(x), S \equiv \operatorname{tridiag}\left(\begin{array}{cccc}
2 & 1 & 1 & \ldots \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & \ldots
\end{array}\right)
\end{aligned}
$$

Then $T_{k+1}(z)=2 z T_{k}(z)-T_{k-1}(z)$ for $z=(x-y) / 2$ yields

$$
\begin{aligned}
T_{k+1}((x-y) / 2) & =T(x)\left(\frac{1}{2} S^{\top} D_{k}-\frac{1}{2} D_{k} S-D_{k-1}\right) T(y) \\
\Longrightarrow D_{k+1} & =\frac{1}{2} S^{\top} D_{k}-\frac{1}{2} D_{k} S-D_{k-1}
\end{aligned}
$$

with starting values

$$
D_{0}(0: 0,0: 0)=1, \quad D_{1}(0: 1,0: 1)=\frac{1}{2}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Splitting the Kernel

Common case: not low rank, lacks regularity near zero. Write

$$
\phi(r) \approx \phi_{\mathrm{smooth}}(r)+\phi_{\mathrm{cpt}}(r)
$$

where

- $\phi_{\text {smooth }}(r)$ is an even polynomial (treat as above)
- $\phi_{\text {cpt }}(r)$ is supported only near origin

Resulting kernel matrix looks like

$$
K_{X X} \approx T_{X} M T_{X}+B,
$$

where first term is low rank (as above), second term is sparse.

