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A Numerical Analyst’s Apology

This talk was conceived at two times, with two hats:

- Abstract: a numerical analyst excited about algorithms.

- Talk: a numerical analyst excited about kernels.

We will probably not have much time to talk about computing.



Function Fitting: a 1D Warm-Up



Simple and Impossible
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Given {f(x;) = yi}iL,, predict f(x) for x # x;.



Linear Regression
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Given {f(x;) = y;}L,, predict f(x) for x # x;.
Say f(x) = ax+  and minimize RMS error?



Polynomial Interpolation

Given {f(x;) = y;}"_,, predict f(x) for x # x;.
Find a degree-(m — 1) polynomial with p(x;) = y;?



Beyond Interpolation

Given {f(x;) = yi}iL,, predict f(x) for x # x;.
Find a degree > (m — 1) polynomial with p(x;) = y;?
(But which one?)



Behind the Curtain
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Can't guess the “best” approach without knowing about f1



Beyond Polynomials

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm


http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Some Fundamental Questions

- Do the approximations we want exist? Are they unique?

- How do we reason about error in y? In approximation?

- What do we need to know about f to prove error bounds?
- What happens as we increase the n (and maybe m)?

- How do we generalize to higher-dimensional spaces?
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A Linear Algebra Picture



Linear Algebra Picture

Approximate f(x) by >, d;p;(x), get Ac = y:

po(x1) ... pm(x1)] [do %
po(Xn) ... Ppm(Xn)] Ldm n
Terminology:
* Po,...,Pm are basis vectors for an approximation space.

- Can declare these to be an orthonormal basis for a Hilbert
space with an appropriate inner product

)X [po(x) ... pm(x)| is a feature map

- More generally, consider ¢ : Q — F, some Hilbert space
F. Write approximation as f(x) = s(x) = (d, ¥(x)).
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Interpolation (dim F = n)

A (observed) y (observed)

Q

(unobserved) A (unobserved)

Theorem (Mairhuber-Curtis): In a multidimensional setting,
there is a choice of nodes x;, ..., X, such that A is singular.
(Any fixed approximation space — polynomial or more general.)

If A nonsingular, we say the points are well-poised for
interpolation.
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Overdetermined (dim F < n)

Q

A (observed) y (observed)

(unobserved) ~ (unobserved)

Least squares approach: minimize ||Ad — y||2
d=(ATA)"ATy
S(x) = »(x)"(ATA) ATy
If Ais singular (or nearly), we may regularize:
minimize [|Ad — y||* + n||d||%
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Underdetermined (dim F > n)

y (observed)

Q

A (observed)

%

(unobserved) (unobserved)

Minimum norm approach: minimize ||d||? st. Ad =y
d=AT(AAN Ty
c = (AAT)y
S(x) = $(x)TAT(AAT) Ty = 9 (x)TATc
Expresses a preference among models that fit the data!
Can also regularize this case. 14



The Kernel Trick

A (observed) ~ y (observed)

(unobserved) A (unobserved)

Rewrite via kernel k(x,y) = (¢(x), ¥(v)):
¢ = Ky (Kx)ij = (AAT); = R(x;, X))
S(X) = RxxC (k) = ($(x)"A); = k(x, ;)

Subscripts to denote vectors/matrices of function evaluations.
Regularized version: (Kxx + nl)c =y.
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Role of Residual

Can also make d as small as possible for fitting a residual:
minimize %Hde st BA+Ad =y
KKT conditions (with ¢ a Lagrange multiplier):
5 1k
B" of[A] |O

Note: Need B nonsingular for well-posedness.



Beyond the Basis




Beyond the Basis

- Story so far involves explicit feature maps.

- But computations only require kernel (inner products).



Putting the Kernel before the Feature Map

Start with symmetric kernel function R : Q2 x Q — R.
k positive definite if Kyx spd for all samples X.

Often assume positive definite and:

- Stationary: k(x,y) depends only on x —y
- Isotropic: R(x,y) depends on x and ||x — y||

Both: R(x,y) = o(||x — v||), ¢ a radial basis function.



Have Mercer!

Associate integral operator with continuous spd kernel k:

(kA0 = [ Koy ay

K compact (actually Hilbert-Schmidt), so have

K= Ny
j=1

and features are /Aj;(x).

But features are not really needed! Focus on the kernel.
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Building the Native Space

Build a Reproducing Kernel Hilbert Space (RKHS) H, i.e. with
evaluation functionals (ky, f) = f(x):

- Observe that (Ry, Ry) = R(X,y)
- Foru(x) = o1, cik(x;, x) and v(x) = -, dik(x;, x), have

<U, V>H = <Z Cikxn Z djl?xj> = Z C,‘f?(X,‘,Xj)dj = dTKxxC.
i j y i
Note:
(U, V) gy = VK Ux
- Gives pre-Hilbert structure, close to get Hilbert space.
- Same as the Hilbert space where features are an o.n. basis.
This is the “natural” space for doing error analysis.
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Common Kernels
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Common Kernels

Kernel is chosen by modeler

- Choose Matérn / SE for regularity and simplicity
- Rarely have the intuition to pick the “right” kernel

- Different kernels generate different RKHS
- Common choices are universal (RKHS dense in C(Q))
- ... though with less data for a “good” choice

Properties of kernel matrices:
- Positive definite by design, but not well conditioned!
- Weyl: R(r) € C¥ = |\g| = o(n7v"1/%)
- SE case: eigenvalues decay exponentially
- Adding regularization “wipes out” small eigenvalues
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Conditionally Positive Definite Case

Consider kernelized “minimize H-norm of residual” picture:

- Mental picture: Kyx = AAT (implicitly)
- But system with Kyx — BMBT gives same answer
(for any symmetric M)
- And predictions do not depend on changes in B directions:
s(X) = Kx€ + b(X)TA
= (Kot + () BT)C + b(x) A

23



Conditionally Positive Definite Case

If we have a polynomial fit + minimize H-norm of residual,
OK to “cheat” on the kernel definiteness:

- Symmetrick: Q2 x Q2 — R
- {p;} a basis for Pm_1(Q) (poly of degree < m)
- k conditionally positive definite of order m if

c£0,Mc=0 = cKyc>0
where [nx],'j = pJ(X,)

Well-posed problem if Ny nonsingular.
Need X well-poised (for polynomial interpolation).

2%



More Common Kernels

o(r) Order
Cubic r3 2
Thin-plate r’logr 2
Multiquadric —VyY+rr |1
Inverse multiquadric | (y24r?)="/2 | 0
Gaussian exp(—r?/+?) | 0
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Error Analysis Two Ways




Simple and Impossible
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Let u = (uq, Up). Given uq, what is u,?

We need an assumption! Two different standard takes.
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Being Bounded

{u'k=u <1}

Let u = (ur, up) st [|ufl2_, < 1. Given uy, what is u,?

Optimal recovery: [lu, — w|[2_, <1— Hu1HfKﬂ),1

W = K21K1_11U1
S = Kz — KnKq;'Kn
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Being Bayesian

AN

)

yl N

uTk=u =1

Let U = (Uq, Uy) ~ N(O, K). Given Uy = uq, what is U,?
Posterior distribution: (U,|Us = uq) ~ N(w, S) where

W= K21Kﬁ1U1
S = Kz — KnKq;'Kn
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From Energy to Error

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm
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http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Cubic Splines

e

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

- ¢(r) = r* is conditionally positive definite of order 2
- Squared (semi-)norm is bending energy:

IslBe o 5 [ 5002 o
2 Ja
- Linear polynomial tail = rigid body modes
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http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

Force, Displacement, Stiffness

Target function f € H?, known bending energy
£l = 5 | 07 x
2 Ja

Cubic spline minimizes E[s] s.t. s(x;) = f(X;), so

-

- f(x;) as displacement, ¢; as corresponding force

E[s] < E[f]

- Kernel matrix Kxx is compliance (force — displacement)
- Residual compliance (inverse stiffness) at x is Px(x) 2
- Energy bound for error at X

Px(x) % (s(x) = fx))* < EIf] - Els]
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General Picture

Interpolant is
S(x) = K€ + b(x)™A

Can compute power function Px(x) from factorization; SPD case:

Px(X)? = $(0) — KexKigq Kxx

[s() = 001 < PxOOA/ A5, — sl

Only thing that is hard to compute generally: ||f]|%,.

Bound is

32



Basic ingredient: Gaussian Processes (GPs)

05/ = = = - o
- -
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Basic ingredient: Gaussian Processes (GPs)

Our favorite continuous distributions over

R: Normal(u,o?), p,0% € R
R™ Normal(u,C), weR",CeRM™"
RY = R: GP(u,R), p:RISR R:RIxRT - R

More technically, define GPs by looking at finite sets of points:

VX = (X1,...,Xn), X; € RY,
have fx ~ N(ux, Kxx), where
fx € R", (fx)i = fx)
px € R, (ux)i = p(x;)
Ko € R™M, - (Kix)ij = R(X5, %))
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Being Bayesian

Consider a (zero-mean) GP prior with kernel k:

Measure at X, apply Bayes to get posterior:

(Flfx =y) ~ GP(u,R)
where
w1(X) = RyxC
R(X,Y) = R(x,X) = RacKig Ry
Specifically, posterior for f(x) at given x is
N(RexC, R(X, X) — RaxKyy Rx)
Predictive variance = squared power function!
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Circumventing Cubic Computation




Cubic Conundrum

The “standard” approach to solving Kxx¢c = y (Gaussian
elimination) takes O(n3) time.

This is OK when n is 2000, very expensive when n is 10000!

But we know how to go faster if we can compute fast
matrix-vector multiplies (MVMs) with Ky.

36



The Road to Fast MVMs

- Low-rank approximation (via inducing variables)
- Non-smooth kernels, small length scales = large rank
- Only semi-definite

- Sparse approximation

- OK with SE kernels and short length scales
- Less good with heavy tails or long length scales
- May again lose definiteness

- More sophisticated: fast multipole, Fourier transforms

- Same picture as in integral eq world (FMM, PFFT)
- Main restriction: low dimensional spaces (2-3D)

- Kernel a model choice — how does approx affect results?
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Example: Structured Kernel Interpolation (SKI)

Write Kyx ~ WTKyyW where

- Uis a uniform mesh of m points
- Kyy has Toeplitz or block Toeplitz structure
- Sparse W interpolates values from X to U

Apply Kyy via FFTs in O(mlog m) time.
38



The Power of Fast MVMs

With MVMs alone, natural to explore nested Krylov subspaces:

Kg1(K, b) = span{b,Kb,K?b, ..., Kb} = {p(K)b : p € Py}

Lanczos process: expansion + Gram-Schmidt

Lanczos factorization: KQ, = Q,Tj, where

Bigjy1 = Kaj — o;q; — Bi_1qj_1

Qr = [(h a2
R
B o
;o B2

B2

(€%}

Qk] )

B3

Br—1

Qg

Br

Brel,
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The Power of Fast MVMs

Fast MVM with symmetric K = try Lanczos!

- Incrementally computes KQ = QT where
- Q has orthonormal columns
- Leading k columns span k-dim Krylov space
- Tis tridiagonal
- Building block for
- Solving linear systems (CG)
- Approximating eigenvalues
- Approximating matrix functions: f(K)b
- Quadrature vs spectral measure for K

- Fast (three-term recurrence) and elegant...

- Basis for our fast solvers
- And fast kernel selection and tuning, with another trick

40



Summary and Wrap-Up




The Power of Different Lenses

- “Kernel trick” used to go basis-free
- But there is power in thinking with a basis, too!
- Comes up as a computational tool (next time)
- Kernels can correspond to physics!
- Ex: Cubic spline and thin-plate spline
- Kernel as a Green’s function for an elliptic PDE
- Physical interpretation helps understand error analysis
- Optimal recovery and GP interpretation mostly coincide
- But only when data is linear functionals of f
- Ex: Different predictions for non-negativity constraints!
- CPD kernels popular in RBF literature (optimal recovery)
- But also works for Bayesian interp — improper GP priors
- Does appear in Wahba'’s work, but often overlooked
- Tails are useful even in pos def case
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