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A Numerical Analyst’s Apology

This talk was conceived at two times, with two hats:

• Abstract: a numerical analyst excited about algorithms.
• Talk: a numerical analyst excited about kernels.

We will probably not have much time to talk about computing.
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Function Fitting: a 1D Warm-Up



Simple and Impossible

Given {f(xi) = yi}ni=1, predict f(x) for x 6= xi.
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Linear Regression

Given {f(xi) = yi}ni=1, predict f(x) for x 6= xi.
Say f(x) ≈ αx+ β and minimize RMS error?
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Polynomial Interpolation

Given {f(xi) = yi}ni=1, predict f(x) for x 6= xi.
Find a degree-(m− 1) polynomial with p(xi) = yi?
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Beyond Interpolation

Given {f(xi) = yi}ni=1, predict f(x) for x 6= xi.
Find a degree > (m− 1) polynomial with p(xi) = yi?

(But which one?)
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Behind the Curtain

Can’t guess the “best” approach without knowing about f!
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Beyond Polynomials

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm
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Some Fundamental Questions

• Do the approximations we want exist? Are they unique?
• How do we reason about error in y? In approximation?
• What do we need to know about f to prove error bounds?
• What happens as we increase the n (and maybe m)?
• How do we generalize to higher-dimensional spaces?
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A Linear Algebra Picture



Linear Algebra Picture

Approximate f(x) by
∑m

j=0 djpj(x), get Ac = y:p0(x1) . . . pm(x1)
...

...
p0(xn) . . . pm(xn)


d0...
dm

 =

y1...
yn


Terminology:

• p0, . . . ,pm are basis vectors for an approximation space.
• Can declare these to be an orthonormal basis for a Hilbert
space with an appropriate inner product

• ψ : x 7→
[
p0(x) . . . pm(x)

]
is a feature map

• More generally, consider ψ : Ω → F , some Hilbert space
F . Write approximation as f(x) ≈ s(x) = 〈d, ψ(x)〉.
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Interpolation (dimF = n)

≈

≈

A (observed) y (observed)

(unobserved) (unobserved)

Theorem (Mairhuber-Curtis): In a multidimensional setting,
there is a choice of nodes xi, . . . , xn such that A is singular.
(Any fixed approximation space — polynomial or more general.)

If A nonsingular, we say the points are well-poised for
interpolation.
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Overdetermined (dimF < n)

≈

≈

A (observed) y (observed)

(unobserved) (unobserved)

Least squares approach: minimize ‖Ad− y‖2

d = (ATA)−1ATy
s(x) = ψ(x)T(ATA)−1ATy

If A is singular (or nearly), we may regularize:
minimize ‖Ad− y‖2 + η‖d‖2.
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Underdetermined (dimF > n)

≈

≈

A (observed) y (observed)

(unobserved) (unobserved)

Minimum norm approach: minimize ‖d‖2 s.t. Ad = y

d = AT(AAT)−1y
c = (AAT)−1y

s(x) = ψ(x)TAT(AAT)−1y = ψ(x)TATc

Expresses a preference among models that fit the data!
Can also regularize this case. 14



The Kernel Trick

≈

≈

A (observed) y (observed)

(unobserved) (unobserved)

Rewrite via kernel k(x, y) = 〈ψ(x), ψ(y)〉:

c = K−1XX y (KXX)ij = (AAT)ij = k(xi, xj)
s(x) = kxXc (kxX)j = (ψ(x)TA)j = k(x, xj)

Subscripts to denote vectors/matrices of function evaluations.
Regularized version: (KXX + ηI)c = y.
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Role of Residual

+

=

≈

B λ A d y

Can also make d as small as possible for fitting a residual:

minimize 12‖d‖
2 s.t. Bλ+ Ad = y

KKT conditions (with c a Lagrange multiplier):[
KXX B
BT 0

][
c
λ

]
=

[
y
0

]
Note: Need B nonsingular for well-posedness.
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Beyond the Basis



Beyond the Basis

• Story so far involves explicit feature maps.
• But computations only require kernel (inner products).

17



Putting the Kernel before the Feature Map

Start with symmetric kernel function k : Ω× Ω → R.
k positive definite if KXX spd for all samples X.

Often assume positive definite and:

• Stationary: k(x, y) depends only on x− y
• Isotropic: k(x, y) depends on x and ‖x− y‖

Both: k(x, y) = ϕ(‖x− y‖), ϕ a radial basis function.
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Have Mercer!

Associate integral operator with continuous spd kernel k:

(Kf)(x) =
∫
k(x, y)f(y)dy

K compact (actually Hilbert-Schmidt), so have

K =
∞∑
j=1

λjψjψ
∗
j

and features are
√
λjψj(x).

But features are not really needed! Focus on the kernel.
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Building the Native Space

Build a Reproducing Kernel Hilbert Space (RKHS) H, i.e. with
evaluation functionals 〈kx, f〉 = f(x):

• Observe that 〈kx, ky〉H = k(x, y)
• For u(x) =

∑N
i=1 cik(xi, x) and v(x) =

∑N
i=1 dik(xi, x), have

〈u, v〉H =

⟨∑
i
cikxi ,

∑
j
djkxj

⟩
H

=
∑
i,j
cik(xi, xj)dj = dTKXXc.

Note:
〈u, v〉H = vTXK−1XX uX

• Gives pre-Hilbert structure, close to get Hilbert space.
• Same as the Hilbert space where features are an o.n. basis.

This is the “natural” space for doing error analysis.
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Common Kernels
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Common Kernels

Kernel is chosen by modeler

• Choose Matérn / SE for regularity and simplicity
• Rarely have the intuition to pick the “right” kernel
• Different kernels generate different RKHS
• Common choices are universal (RKHS dense in C(Ω))

• ... though with less data for a “good” choice

Properties of kernel matrices:

• Positive definite by design, but not well conditioned!
• Weyl: k(r) ∈ Cν =⇒ |λn| = o(n−ν−1/2)

• SE case: eigenvalues decay exponentially
• Adding regularization “wipes out” small eigenvalues
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Conditionally Positive Definite Case

+ =

B λ A d y KXX B

BT
0

c

λ

=

y

0

Consider kernelized “minimize H-norm of residual” picture:

• Mental picture: KXX = AAT (implicitly)
• But system with KXX − BMBT gives same answer
(for any symmetric M)

• And predictions do not depend on changes in B directions:

s(x) = KxXc+ b(x)Tλ
= (KxX + µ(x)TBT)c+ b(x)Tλ
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Conditionally Positive Definite Case

If we have a polynomial fit + minimize H-norm of residual,
OK to “cheat” on the kernel definiteness:

• Symmetric k : Ω× Ω → R

• {pj} a basis for Pm−1(Ω) (poly of degree < m)
• k conditionally positive definite of order m if

c 6= 0,ΠTXc = 0 =⇒ cTKXXc > 0

where [ΠX]ij = pj(xi).

Well-posed problem if ΠX nonsingular.
Need X well-poised (for polynomial interpolation).
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More Common Kernels

ϕ(r) Order
Cubic r3 2
Thin-plate r2 log r 2
Multiquadric −

√
γ2 + r2 1

Inverse multiquadric (γ2 + r2)−1/2 0
Gaussian exp(−r2/γ2) 0
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Error Analysis Two Ways



Simple and Impossible

Let u = (u1,u2). Given u1, what is u2?

We need an assumption! Two different standard takes.
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Being Bounded

{uTK−1u ≤ 1}

Let u = (u1,u2) s.t. ‖u‖2K−1 ≤ 1. Given u1, what is u2?

Optimal recovery: ‖u2 − w‖2S−1 ≤ 1− ‖u1‖2(K11)−1

w = K21K−111 u1
S = K22 − K21K−111 K12
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Being Bayesian

uTK−1u = 1

Let U = (U1,U2) ∼ N(0, K). Given U1 = u1, what is U2?

Posterior distribution: (U2|U1 = u1) ∼ N(w, S) where

w = K21K−111 u1
S = K22 − K21K−111 K12
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From Energy to Error

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm
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Cubic Splines

http://www.duckworksmagazine.com/03/r/articles/splineducks/splineDucks.htm

• ϕ(r) = r3 is conditionally positive definite of order 2
• Squared (semi-)norm is bending energy:

‖s‖2H ∝ 1
2

∫
Ω
s′′(x)2 dx

• Linear polynomial tail = rigid body modes

30
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Force, Displacement, Stiffness

Target function f ∈ H2, known bending energy

E[f] = 1
2

∫
Ω
f′′(x)2 dx

Cubic spline minimizes E[s] s.t. s(xi) = f(xi), so

E[s] ≤ E[f]

• f(xi) as displacement, ci as corresponding force
• Kernel matrix KXX is compliance (force 7→ displacement)
• Residual compliance (inverse stiffness) at x is PX(x)−2

• Energy bound for error at X

PX(x)−2 (s(x)− f(x))2 ≤ E[f]− E[s]
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General Picture

Interpolant is
s(x) = KxXc+ b(x)Tλ

Can compute power function PX(x) from factorization; SPD case:

PX(x)2 = ϕ(0)− KxXK−1XX KXx

Bound is
|s(x)− f(x)| ≤ PX(x)

√
‖f‖2H − ‖s‖2H

Only thing that is hard to compute generally: ‖f‖2H.
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Basic ingredient: Gaussian Processes (GPs)
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Basic ingredient: Gaussian Processes (GPs)

Our favorite continuous distributions over
R: Normal(µ, σ2), µ, σ2 ∈ R
Rn: Normal(µ, C), µ ∈ Rn, C ∈ Rn×n

Rd → R: GP(µ, k), µ : Rd → R, k : Rd × Rd → R

More technically, define GPs by looking at finite sets of points:

∀X = (x1, . . . , xn), xi ∈ Rd,

have fX ∼ N(µX, KXX), where
fX ∈ Rn, (fX)i ≡ f(xi)
µX ∈ Rn, (µX)i ≡ µ(xi)

KXX ∈ Rn×n, (KXX)ij ≡ k(xi, xj)

34



Being Bayesian

Consider a (zero-mean) GP prior with kernel k:

f ∼ GP(0, k)

Measure at X, apply Bayes to get posterior:

(f | fX = y) ∼ GP(µ, k̃)

where

µ(x) = kxXc
k̃(x, y) = k(x, x)− kxXK−1XX kXy

Specifically, posterior for f(x) at given x is

N(kxXc, k(x, x)− kxXK−1XX kXx)

Predictive variance = squared power function!
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Circumventing Cubic Computation



Cubic Conundrum

The “standard” approach to solving KXXc = y (Gaussian
elimination) takes O(n3) time.

This is OK when n is 2000, very expensive when n is 10000!

But we know how to go faster if we can compute fast
matrix-vector multiplies (MVMs) with KXX.
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The Road to Fast MVMs

• Low-rank approximation (via inducing variables)
• Non-smooth kernels, small length scales =⇒ large rank
• Only semi-definite

• Sparse approximation
• OK with SE kernels and short length scales
• Less good with heavy tails or long length scales
• May again lose definiteness

• More sophisticated: fast multipole, Fourier transforms
• Same picture as in integral eq world (FMM, PFFT)
• Main restriction: low dimensional spaces (2-3D)

• Kernel a model choice — how does approx affect results?
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Example: Structured Kernel Interpolation (SKI)

Write KXX ≈ WTKUUW where

• U is a uniform mesh of m points
• KUU has Toeplitz or block Toeplitz structure
• Sparse W interpolates values from X to U

Apply KUU via FFTs in O(m logm) time.
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The Power of Fast MVMs

With MVMs alone, natural to explore nested Krylov subspaces:

Kd+1(K̃,b) = span{b, K̃b, K̃2b, . . . , K̃db} = {p(K̃)b : p ∈ Pk}

Lanczos process: expansion + Gram-Schmidt

βjqj+1 = K̃qj − αjqj − βj−1qj−1
Lanczos factorization: K̃Qk = QkT̄k where

Qk =
[
q1 q2 . . . qk

]
,

T̄k =



α1 β1
β1 α2 β2

β2 α3 β3
. . . . . . . . .

βk−1 αk
βk


=

[
Tk
βkeTk

]
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The Power of Fast MVMs

Fast MVM with symmetric K̃ =⇒ try Lanczos!

• Incrementally computes K̃Q = QT where
• Q has orthonormal columns
• Leading k columns span k-dim Krylov space
• T is tridiagonal

• Building block for
• Solving linear systems (CG)
• Approximating eigenvalues
• Approximating matrix functions: f(K̃)b
• Quadrature vs spectral measure for K̃

• Fast (three-term recurrence) and elegant...
• Basis for our fast solvers

• And fast kernel selection and tuning, with another trick
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Summary and Wrap-Up



The Power of Different Lenses

• “Kernel trick” used to go basis-free
• But there is power in thinking with a basis, too!
• Comes up as a computational tool (next time)

• Kernels can correspond to physics!
• Ex: Cubic spline and thin-plate spline
• Kernel as a Green’s function for an elliptic PDE
• Physical interpretation helps understand error analysis

• Optimal recovery and GP interpretation mostly coincide
• But only when data is linear functionals of f
• Ex: Different predictions for non-negativity constraints!

• CPD kernels popular in RBF literature (optimal recovery)
• But also works for Bayesian interp — improper GP priors
• Does appear in Wahba’s work, but often overlooked
• Tails are useful even in pos def case
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