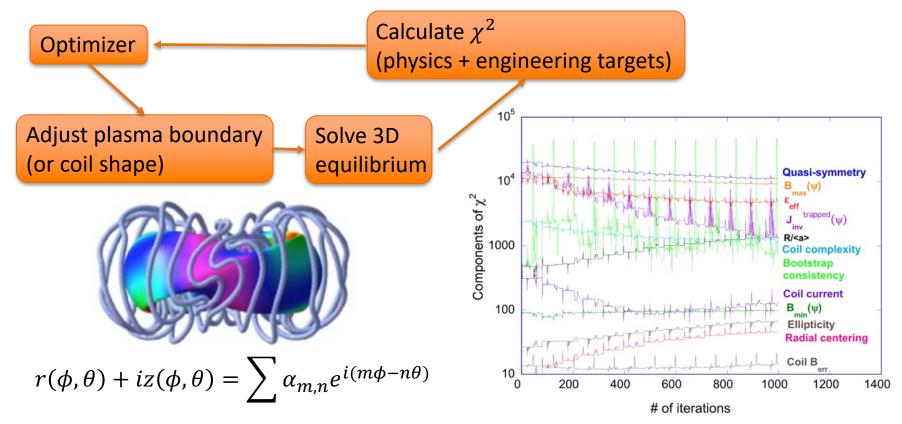
Multi-Objective Stochastic Optimization of Magnetic Fields

Current State of the Art (STELLOPT)



STELLOPT Approach

Goal: Design MHD equilibrium (coil optimization often separate)

- Possible parameters for boundary: $C \subset \mathbb{R}^n$
- Physics / engineering properties: $F: C \subset \mathbb{R}^n \to \mathbb{R}^m$
- Target vector $F^* \in \mathbb{R}^m$

Minimize χ^2 objective over C:

$$\chi^2(x) = \sum_{k=1}^m \sigma_k^{-2} J_k(x), \qquad J_k(x) = (F_k(x) - F_k^*)^2$$

Solve via Levenberg-Marquardt, GA, differential evolution (avoids gradient information apart from finite differences)

Challenges

Costly and "black box" physics computations
 Each step: MHD equilibrium solve, transport calculation, coil design...
 Compute several times per step for finite-difference gradient estimates!

2. Managing tradeoffs

How do we choose the weights in the χ^2 measure? By gut? Does varying the weights expose tradeoffs in a sensible way? No!

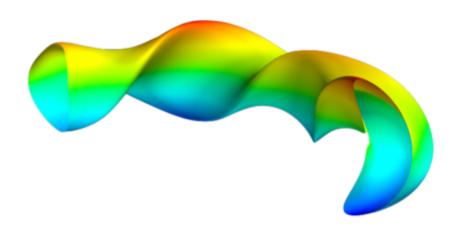
3. Dealing with uncertainties

What you simulate \neq what you build – will performance suffer?

4. Global search

How do we avoid getting stuck in local minima without excessive cost?

Challenge 1: Costly Physics Constraints



Beltrami field (Taylor state):

$$\nabla \times B = \lambda B \text{ on } \Omega$$

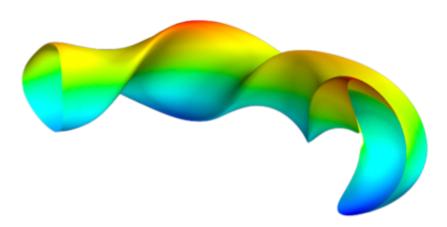
$$B \cdot n = 0 \text{ on } \partial \Omega$$

$$\nabla \cdot B = 0$$

+ flux conditions for well-posedness

- Requires costly physics solves (MHD equilibrium, transport, ...)
- Derivatives require PDE sensitivity / adjoints (not black-box)

Physics-Constrained Optimization



Beltrami field (Taylor state):

$$\nabla \times B = \lambda B \text{ on } \Omega$$

$$B \cdot n = 0$$
 on $\partial \Omega$

$$\nabla \cdot B = 0$$

+ flux conditions for well-posedness

- Key: Exploit PDE properties
 - PDE-constrained: Solves are part of the optimization, not a black box
 - PDE structure influences optimization objective landscape
 - PDE operator properties: compactness, smoothing, near/far field interactions, etc
 - Provides opportunities for dimension reduction in optimization

Challenge 2: Multi-Objective Optimization

What makes an "optimal" stellarator?

- Approximates field symmetries (which measures?)
- Satisfies macroscopic and local stability
- Includes divertor fields for particle and heat exhaust
- Minimizes collisional and energetic particle transport
- Minimizes turbulent transport
- Satisfies basic engineering constraints (cost, size, etc)

Each objective involves different approximations, uncertainties, and computational costs.

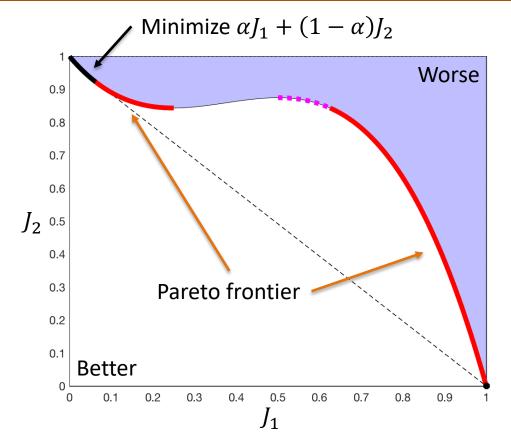
Exploring the Pareto Frontier

x dominates *y* if $J(x) \neq J(y)$ and $\forall k, J_k(x) \leq J_k(y)$

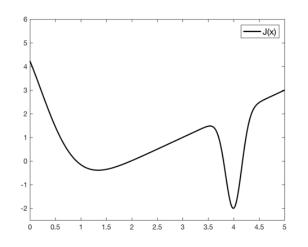
Pareto optimal (non-dominated, non-inferior, efficient): no y dominates x.

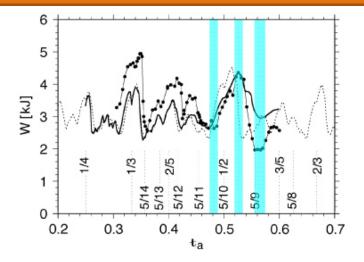
Pareto frontier generally an (m-1)-dimensional manifold with corners.

Minimizing $\sum_k \alpha_k J_k$ only explores convex hull of Pareto frontier!



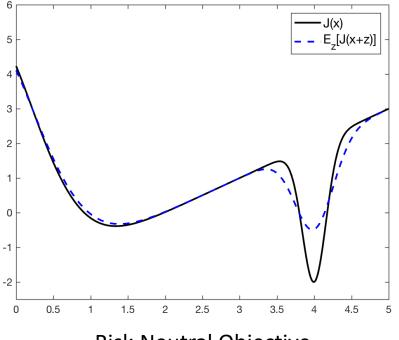
Challenge 3: Optimization Under Uncertainty



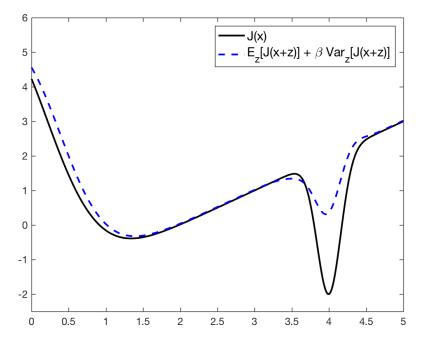


- Want performance not to depend on
 - Tiny changes to coil geometry (within engineering tolerance)
 - Changes to control parameters during operation
 - Uncertainty in approximations to physics or model parameters

Risk-Neutral and Risk-Averse Optimization



Risk-Neutral Objective

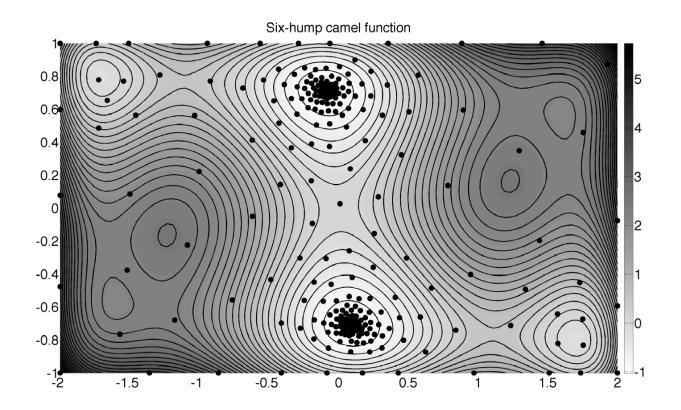


Risk-Averse Objective

Challenge 4: Global Optimization

- Global optimization is hard!
 - Especially in high-dimensional spaces
 - Effective solvers are tailored to structure (e.g. convexity)
 - More general methods are mainly heuristic
- Want algorithms that balance
 - Exploration: Evaluating novel designs with unknown properties
 - **Exploitation**: Refining known designs from previously explored regions
- Global model-based techniques help (with the right models!)

Exploration vs Exploitation



General Formulation

$$\min_{\text{coils}} \mathbb{E}_z[J_{\text{int}}(B,z)], \mathbb{E}_z[J_{\text{qs}}(B,z)], \mathbb{E}_z[J(B,q,z)], \dots, \mathcal{R}(B,q,z,\dots)$$

Subject to: manufacturing and physics constraints,

PDEs relating coils to field B, particle or heat transport q, etc.

- Optimize integrability (J_{int}) , quasi-symmetry (J_{qs}) , etc
- Take into account uncertain parameters z
- Include a risk aversion objective $\mathcal R$
- Find Pareto points vs using weighted sums of objectives

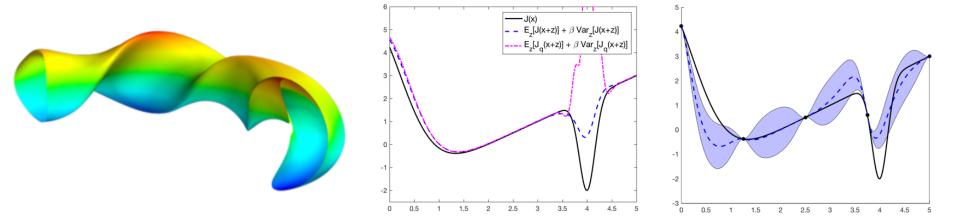
General Formulation

$$\min_{\text{coils}} \mathbb{E}_z[J_{\text{int}}(B,z)], \mathbb{E}_z[J_{\text{qs}}(B,z)], \mathbb{E}_z[J(B,q,z)], \dots, \mathcal{R}(B,q,z,\dots)$$

Subject to: manufacturing and physics constraints, PDEs relating coils to field B, particle or heat transport q, etc.

- Costs beyond deterministic PDE solves:
 - Stochastic objectives require many deterministic solves each
 - Pareto frontier is an (m-1)-dimensional manifold with corners
 - Non-convex global optimization requires a lot of searching
- Common issue: the curse of dimensionality

Addressing the Challenges



- Fast physics solver formulations
- Efficient optimization under uncertainty
- Surrogates and multi-fidelity methods

Fast Equilibrium Solvers

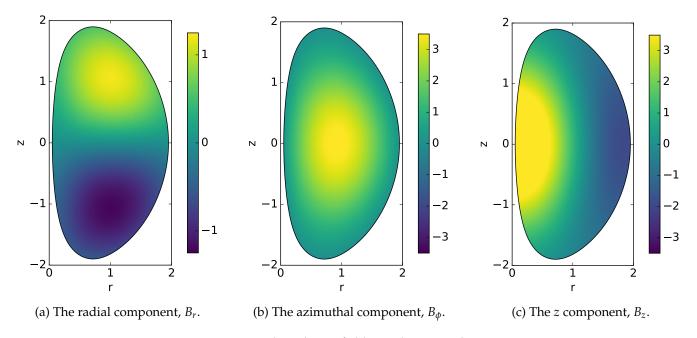


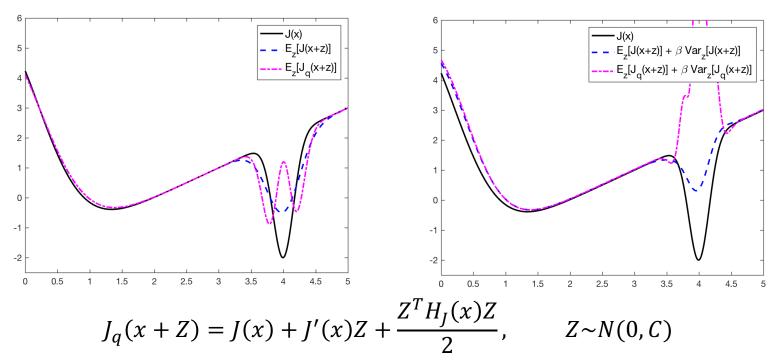
Figure 4: The Beltrami field \mathbf{B} in the $\phi = 0$ plane.

Integral equation solver for Taylor states in toroidal geometries [O'Neill, Cerfon, 2018] Laplace-Beltrami solver on genus 1 surfaces [Imbert-Gérard, Greengard, 2017]

Fast Equilibrium Solvers

- Integral equation formulation for coil fields + MHD equilibria
 - Respects underlying physical conditioning of problem
 - Generally only need boundary discretization (vs volume meshing)
 - Fast high-order algorithms exist for required integral operators
- Associated adjoint solvers to compute sensitivities
- Fast re-solves in optimizer under low-rank geometry updates

Efficient Optimization Under Uncertainty



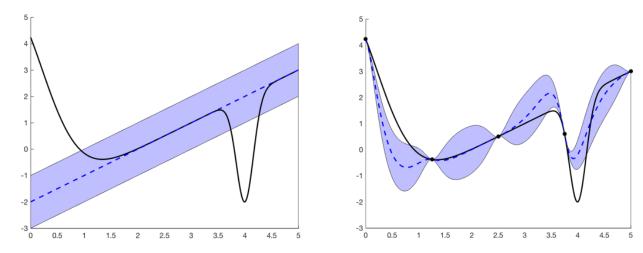
Use a quadratic approximation to compute stochastic, possibly risk-averse, objective. [c.f. Alexanderian, Petra, Ghattas, Stadler, 2017].

Efficient Optimization Under Uncertainty

- Consider objective J(x, z) where x is control and z uncertain
- Model z as multivariate Gaussian
- Use local quadratic approximation in stochastic variables
 - Require $\partial J/\partial z$ and action of Hessian $\partial^2 J/\partial z^2$ on vectors
 - Assume Hessian is (approximately) low rank dimension reduction
 - Scaling with low intrinsic dimension vs. number of parameters
- Beyond Gaussian: use approximation as a control variate

Lots of remaining challenges (high nonlinearity, turbulence, etc)

Surrogate Methods



- Surrogates (response surfaces) approximate costly functions
- May also estimate uncertainty (e.g. Gaussian process models)
- Different variants: fixed, parametric, non-parametric
- Incorporate function values, gradients, bounds, ...

Surrogate Optimization

- Example: Single objective Bayesian optimization
 - Sample objective and fit a GP model
 - Use acquisition function to guide further sampling (EI, PI, UCB, KG);
 goal is to balance exploration vs exploitation
- Active work on recent variants for
 - Pareto (ParEGO [Knowles 2004], GPareto [Binois, Picheny, 2018])
 - Multi-fidelity optimization [e.g. March, Willcox, Wang, 2011]
 - Incorporating gradients [Wu, Poloczek, Wilson, Frazier, 2018]
 - Objectives with quadrature [Toscano-Palmerin, Frazier, 2018]
- Several options in PySOT toolkit [B, Eriksson, Shoemaker]

Surrogates with Side Information

- Problem: Need predictions from limited data
- Shape surrogate to have known structure (inductive bias)
 - Meaningful mean fields
 - Structured kernels (symmetry, regularity, dimension reduction, etc)
 - Tails that capture known singularities and other features
- Alternative: Jointly predict $J_{\text{costly}}(x)$ and $J_{\text{corr}}(x)$
 - Kernel captures correlation between functions as well as across space
 - Basic idea is old: e.g. *co-kriging* in geostatistics
 - Use in computational science and engineering is active research [Peherstorfer, Willcox, Gunzburger, others – also my sabbatical!]

The Bigger Picture

- Many of the challenges of stellarators are universal in computational science and engineering!
 - Physics is often governed by expensive-to-solve PDEs
 - Physics-agnostic optimization infeasibly hard, even with big computers
 - Need structure to reduce problem dimension / model complexity
- Stellarator problem involves many common components
 - Mechanisms described by PDEs for transport, diffusion, reaction
 - Methods we develop will impact other areas
- But success depends on using specific problem structure!

Summary

- Challenge: Multi-objective risk-averse stellarator optimization
- Approach: Fast equilibrium solvers, scalable optimization under uncertainty, multi-fidelity surrogate methods
- Specific goals:
 - Test problem formulation (vacuum and positive pressure)
 - Extension to multi-objective programming formulation
 - Scalable risk-averse stochastic programming methods
 - Optimization via physics-sensitive multi-fidelity surrogates
- Methods to be incorporated into new SIMSOPT code

