Fast Fingerprints for Power System Events

D. Bindel C. Ponce

7 Jul 2016
Acknowledgements
Biggest Machine(s) in the World
Tale of Two Sensor Systems

- **SCADA (Supervisory Control and Data Acquisition)**
 - Non-synchronized measurements every 2–10 seconds
 - Report digital status and power flows
 - Voltages/currents inferred from power flows (state estimation)
 - Complete observability in transmission grid

- **Syncrophasors / Phasor Measurement Units (PMUs)**
 - GPS-synchronized measurements and 10-30 reports per second
 - Directly report voltage and current angles/magnitudes
 - Partial observability in most places
Best of Both Worlds

- Combine *model-driven* state estimates with PMU observations
- Goal: Identify system events (line outages, substation change, generator trips, ...)
- Idea: Match PMU measurements $E \Delta v$ to model predictions δv_c
 - Need predictions for many possible changes c!
 - Each δv_c depends on current state – constantly changing.
- How can we do this fast?

FLiER: Practical Topology Error Correction Using Sparse PMUs.
Ponce and Bindel, arXiv:1409.6644
Partial Predictions

- Find *subspace* \mathcal{V}_c containing predictions $E\delta v_c$
- Bound: subspace distance $\mu(c) \leq$ mismatch $m(c)$
- Sort events by ascending $\mu(c)$
- Check c_1, \ldots, c_k until $\mu(c_{k+1}) \leq \min_{1 \leq j \leq k} m(c_j)$
Ongoing Related Efforts

- **Spectroscopic event identification (Eric Lee, Nate Rogalskyj)**
 - Goal: Identify state from ringdown/ambient oscillations
 - Approach: Residual + bound generation similar to FLiER

- **SECURED: Synthetic regulating reserves (Eaton, CMU, ANL, LLNL)**
 - Goal: Reduce regulating reserve req’ts to offset VER
 - Approach: Fast distribution-level coordinated demand response

- **GridCloud (Birman, WSU)**
 - Goal: Fast, reliable cloud infrastructure to communicate PMU data
 - Approach: Replication for performance and reliability
 - See Edward Tremel talk/poster