# Music of the Microspheres

### Eigenvalue problems from micro-gyro design

David Bindel Erdal Yilmaz

Department of Computer Science Cornell University

Householder Symposium XIX



# I. Schur (1875–1941)





#### Prelude

Suppose D diagonal and nonsingular and

$$D^{-1}AD = A$$

Then  $a_{ij} = a_{ij}d_i/d_j$ . So  $d_i \neq d_j \implies a_{ij} = 0$ .

Suppose Q orthogonal and

$$Q^*AQ = A$$
.

Then each max invariant subspace of Q is invariant for A.



## **Prelude**

A real symmetric,  $Q^*AQ = A$ , Q has non-real eigenvalues  $\Longrightarrow$ 

A has degenerate eigenvalues

Example:

$$Q = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$



# Role of Symmetry

#### General picture:

- Matrix (or operator) A commutes with action of some group.
- Invariant subspaces of *A* are representations.
- Canonical subspaces for different irreducible representations.
- Degeneracy for non-abelian groups (or cycles longer than two in real symmetric case).

# The Real Beginning: A Perfect Wine Glass



#### Free Vibrations

Generalized eigenvalue problem in weak form

$$\forall \mathbf{w} \in \mathcal{V}, \quad -\omega^2 b(\mathbf{w}, \mathbf{u}) + a(\mathbf{w}, \mathbf{u}) = 0.$$

where

$$b(\mathbf{w}, \mathbf{u}) = \int_{\mathcal{B}} \rho \mathbf{w} \cdot \mathbf{u} \, d\mathcal{B},$$
$$a(\mathbf{w}, \mathbf{u}) = \int_{\mathcal{B}} \varepsilon(\mathbf{w}) : \mathsf{C} : \varepsilon(\mathbf{u}) \, d\mathcal{B}.$$

Householder XIX

7 / 44

# Role of Symmetry

Generalized eigenvalue problem in weak form

$$\forall \mathbf{w} \in \mathcal{V}, \quad -\omega^2 b(\mathbf{w}, \mathbf{u}) + a(\mathbf{w}, \mathbf{u}) = 0.$$

and suppose for  $Q: \mathcal{V} \to \mathcal{V}$ ,

$$a(Q\mathbf{w}, Q\mathbf{u}) = a(\mathbf{w}, \mathbf{u})$$

$$b(Q\mathbf{w}, Q\mathbf{u}) = b(\mathbf{w}, \mathbf{u}).$$

Then a max invariant subspace of Q is invariant for the GEP.

#### Specific picture:

- ullet Rotational symmetry  $\Longrightarrow$  decomposition by Fourier analysis.
- Non-axisymmetric modes come in degenerate pairs (sine/cosine)



Householder XIX

8 / 44

# Fourier Expansion and Axisymmetric Shapes

Decompose into symmetric  $\mathbf{u}^c$  and antisymmetric  $\mathbf{u}^s$  in y:

$$\mathbf{u}^c = \sum_{m=0}^{\infty} \mathbf{\Phi}_m^c(\theta) \mathbf{u}_m^c(r,z), \qquad \quad \mathbf{u}^s = \sum_{m=0}^{\infty} \mathbf{\Phi}_m^s(\theta) \mathbf{u}_m^s(r,z)$$

where

$$\Phi_m^c(\theta) = \operatorname{diag}\left(\cos(m\theta), \sin(m\theta), \cos(m\theta)\right) 
\Phi_m^s(\theta) = \operatorname{diag}\left(-\sin(m\theta), \cos(m\theta), -\sin(m\theta)\right).$$

Modes involve only one azimuthal number m; degenerate for m > 1.

Preserve structure in FE: shape functions  $N_j(r,z)\Phi_m^{c,s}(\theta)$ 



9/44

Householder XIX 12 June 2014

## Mass and Stiffness Structure

Finite element system:  $\mathbf{M}\ddot{\mathbf{u}}^h + \mathbf{K}\mathbf{u}^h = 0$ 

Mass has same structure.



# G. H. Bryan (1864–1928)



- Fellow of the Royal Society (1895)
- Stability in Aviation (1911)
- Thermodynamics, hydrodynamics

Bryan was a friendly, kindly, very eccentric individual...
(Obituary Notices of the FRS)

... if he sometimes seemed a colossal buffoon, he himself did not help matters by proclaiming that he did his best work under the influence of alcohol.

(Williams, J.G., The University College of North Wales, 1884–1927)



# Bryan's Experiment



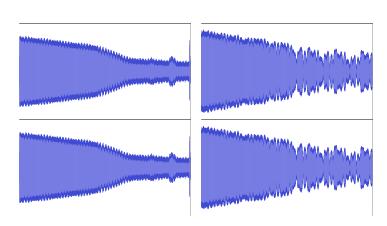


"On the beats in the vibrations of a revolving cylinder or bell" by G. H. Bryan, 1890

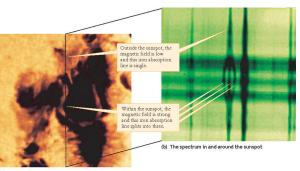
# Bryan's Experiment Today



### The Beat Goes On



## Bryan, Zeeman, Stark, ...



(a) A sunspot

#### This is a common picture:

- Symmetry leads to degenerate modes
- Perturbations split (some) degeneracies



### **Fictitious Forces**

Free vibration problem in weak form

$$\forall \mathbf{w} \in \mathcal{V}, \quad b(\mathbf{w}, \mathbf{a}) + a(\mathbf{w}, \mathbf{u}) = 0.$$

where b and a are the stiffness and mass forms and

$$\mathbf{a} = \ddot{\mathbf{u}} + 2\mathbf{\Omega} \times \dot{\mathbf{u}} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{x}) + \dot{\mathbf{\Omega}} \times \mathbf{x}$$

Assumption:  $\Omega^2/\omega^2$  and  $\dot{\Omega}/\omega^2$  are negligible.

# The Eigenvalue Problem

Start from weak form (discarding centripetal + Euler forces):

$$\forall \mathbf{w} \in \mathcal{V}, \quad b(\mathbf{w}, \ddot{\mathbf{u}}) + 2b(\mathbf{w}, \mathbf{\Omega} \times \dot{\mathbf{u}}) + a(\mathbf{w}, \mathbf{u}) = 0.$$

Assume  ${\bf u}$  and  ${\bf w}$  in an appropriate FE space:

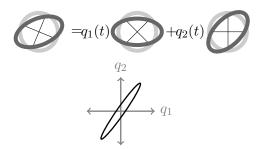
$$\mathbf{M}\ddot{\mathbf{u}}^h + \mathbf{C}\dot{\mathbf{u}}^h + \mathbf{K}\mathbf{u} = 0$$

where C is skew and "small."

Bryan's effect = symmetry breaking by gyroscopic perturbation.



# Reduced Dynamics: Stationary Frame

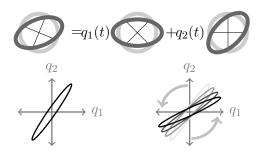


Consider free vibration consisting of two modes of oscillation:

$$\ddot{\mathbf{q}} + \omega_0^2 \mathbf{q} = 0, \quad \mathbf{q}(t) \in \mathbb{R}^2.$$



# Reduced Dynamics: Rotating Frame

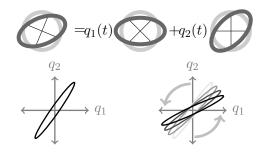


Rate of rotation is  $\Omega \ll \omega_0$ :

$$\ddot{\mathbf{q}} + 2\beta\Omega\mathbf{J}\dot{\mathbf{q}} + \omega_0^2\mathbf{q} = 0, \qquad \mathbf{J} \equiv \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$



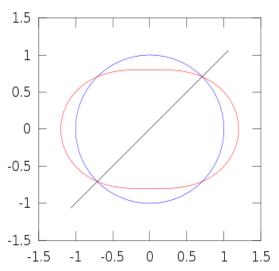
# A General Picture: Rotating Frame



$$\begin{bmatrix} q_1(t) \\ q_2(t) \end{bmatrix} \approx \begin{bmatrix} \cos(-\beta\Omega t) & -\sin(-\beta\Omega t) \\ \sin(-\beta\Omega t) & \cos(-\beta\Omega t) \end{bmatrix} \begin{bmatrix} q_1^0(t) \\ q_2^0(t) \end{bmatrix}.$$



# **Measuring Rotation**



# Foucault in Solid State



# A Small Application

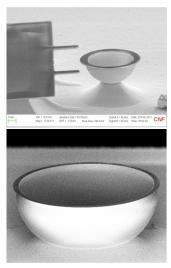


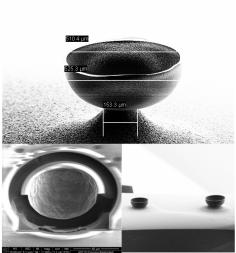
Northrup-Grumman HRG (developed c. 1965–early 1990s)

See: Donald Mackenzie. Knowing Machines: Essays on Technical Change.

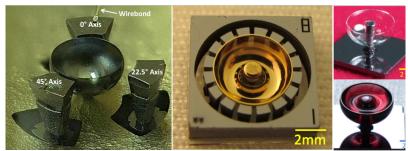


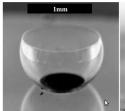
# A Smaller Application (Cornell)



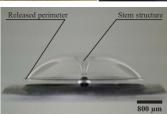


# A Smaller Application (UMich, GA Tech, Irvine)

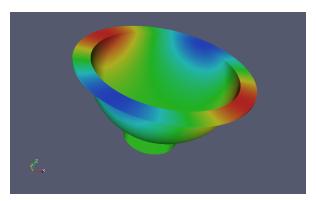








## The Perturbation Picture



#### Perturbations split degenerate modes:

- Coriolis forces (good)
- Imperfect fab (bad, but physical)
- Discretization error (non-physical)

#### **Finite Elements**

Start from weak form (discarding centripetal + Euler forces):

$$\forall \mathbf{w}, \quad b(\mathbf{w}, \ddot{\mathbf{u}}) + 2b(\mathbf{w}, \mathbf{\Omega} \times \dot{\mathbf{u}}) + a(\mathbf{w}, \mathbf{u}) = 0.$$

Assume  $\mathbf{u}$  and  $\mathbf{w}$  in an appropriate FE space:

$$\mathbf{M}\ddot{\mathbf{u}}^h + \mathbf{C}\dot{\mathbf{u}}^h + \mathbf{K}\mathbf{u} = 0$$

Naive FE tool with auto-mesher  $\implies$  numerical symmetry breaking. Trig shape functions to block diagonalize  ${\bf K}$  and  ${\bf M}$ .

What of C?



# Imperfections: Cross-Axis Sensitivity

Discretize  $2b(\mathbf{w}, \mathbf{\Omega} \times \dot{\mathbf{u}})$ :

$$\mathbf{C} = \begin{bmatrix} \mathbf{C}_{00} & \mathbf{C}_{01} \\ \mathbf{C}_{10} & \mathbf{C}_{11} & \mathbf{C}_{12} \\ & \mathbf{C}_{21} & \mathbf{C}_{22} & \mathbf{C}_{23} \\ & & \ddots & \ddots & \ddots \end{bmatrix}$$

Off-diagonal blocks come from cross-axis sensitivity:

$$\mathbf{\Omega} = \mathbf{\Omega}_z \mathbf{e}_z + \mathbf{\Omega}_{r\theta} = \begin{bmatrix} 0 \\ 0 \\ \Omega_z \end{bmatrix} + \begin{bmatrix} \cos(\theta)\Omega_x - \sin(\theta)\Omega_y \\ \sin(\theta)\Omega_x + \cos(\theta)\Omega_y \\ 0 \end{bmatrix}.$$

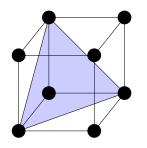
Neglect cross-axis effects  $(O(\Omega^2/\omega_0^2)$ , like centrifugal effect).

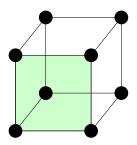


28 / 44

Householder XIX 12 June 2014

# Imperfections: Etch Anisotropy





# Imperfections: Processing Effects



# Representing the Perturbation

Map axisymmetric  $\mathcal{B}_0 \to \text{real } \mathcal{B}$ :

$$\mathbf{R} \in \mathcal{B}_0 \ \mapsto \ \mathbf{r} = \mathbf{R} + \epsilon \boldsymbol{\psi}(\mathbf{R}) \in \mathcal{B}.$$

Write weak form in  $\mathcal{B}_0$  geometry:

$$b(\mathbf{w}, \mathbf{a}) = \int_{\mathcal{B}_0} \rho \mathbf{w} \cdot \mathbf{a} J d\mathcal{B}_0,$$
  
$$a(\mathbf{w}, \mathbf{u}) = \int_{\mathcal{B}_0} \varepsilon(\mathbf{w}) : \mathsf{C} : \varepsilon(\mathbf{u}) J d\mathcal{B}_0,$$

where  $J = \det(\mathbf{I} + \epsilon \mathbf{F})$  and  $\boldsymbol{\varepsilon}(\mathbf{w}) = (\mathbf{F}^{-T} \nabla \mathbf{u})^s$  with  $\mathbf{F} = \partial \psi / \partial \mathbf{R}$ .



# Decomposing $\psi$

Do Fourier decomposition of  $\psi$ , too! Consider case where

```
m= only azimuthal number of {f w} n= only azimuthal number of {f u} p= only azimuthal number of {m \psi}
```

#### Dominant Fourier modes:

- Over/under etch (p = 0)
- Mask misalignment (p = 1)
- Thickness variations (p = 1)
- Anisotropy of etching single-crystal Si (p = 3 or p = 4)



## Selection Rules

#### Consider

$$a(\mathbf{w}, \mathbf{u}) = \int_{\mathcal{B}_0} \boldsymbol{\varepsilon}(\mathbf{w}) : \mathsf{C} : \boldsymbol{\varepsilon}(\mathbf{u}) J d\mathcal{B}_0$$

Dependence of terms on  $\theta$  is:

$$\begin{array}{ll} \boldsymbol{\varepsilon}(\mathbf{w}) \colon & t(m\theta) & \left(O(1) + O(\epsilon)t(p\theta) + O(\epsilon^2)t(2p\theta) + \ldots\right) \\ \boldsymbol{\varepsilon}(\mathbf{w}) \colon & t(n\theta) & \left(O(1) + O(\epsilon)t(p\theta) + O(\epsilon^2)t(2p\theta) + \ldots\right) \\ \mathbf{J} \colon & \left(O(1) + O(\epsilon)t(p\theta) + O(\epsilon^2)t(2p\theta) + \ldots\right) \end{array}$$

where  $t(n\theta) =$  "trig in  $n\theta$ "

Then we have selection rules

$$a(\mathbf{w}, \mathbf{u}) = \begin{cases} O(\epsilon^k), & |m \pm n| = kp \\ 0, & \text{otherwise} \end{cases}$$

Similar picture for *b*.



#### **Block Matrix Structure**

Ex: 
$$p=2$$

Note: Diagonal blocks perturbed at  $O(\epsilon^k)$  when kp = 2m.  $\implies$  eigenvalues unchanged at first order for  $p \neq 2m$ .

#### **Block Matrix Structure**

Let 
$$\mathbf{T}(\lambda) = \mathbf{K} - \lambda \mathbf{M}$$
, solve  $\mathbf{T}(\lambda)v = 0$ .

$$\mathbf{T} = \begin{bmatrix} \mathbf{T}_0 & \epsilon & \epsilon^2 & \epsilon^3 \\ & \mathbf{T}_1 & \epsilon & \epsilon^2 \\ \epsilon & \mathbf{T}_2 & \epsilon & \epsilon^2 \\ & \epsilon & \mathbf{T}_3 & \epsilon \\ & \epsilon^2 & \epsilon & \mathbf{T}_4 & \epsilon \\ & \epsilon^2 & \epsilon & \mathbf{T}_5 & \\ & \epsilon^3 & \epsilon^2 & \epsilon & \mathbf{T}_6 \end{bmatrix}$$

Schur complement onto  $T_2$  block. No effects at  $O(\epsilon)$ ...



#### **Block Matrix Structure**

Let 
$$\mathbf{T}(\lambda) = \mathbf{K} - \lambda \mathbf{M}$$
, solve  $\mathbf{T}(\lambda)v = 0$ .

Schur complement onto  $T_2$  block. At  $O(\epsilon^2)$ , see coupling to two blocks.



# Impact of Selection Rules

- Fast FEA: Can neglect some wave numbers / blocks
- All assuming no accidental (near) degeneracies
- First order: Only need diagonal blocks
- Second order: Keep diagonal plus "directly coupled".

## Qualitative Information

Operating wave number m, perturbation number p:

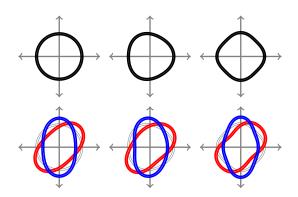
| p=2m           | frequencies split by $O(\epsilon)$               |
|----------------|--------------------------------------------------|
| kp = 2m        | frequencies split at most $O(\epsilon^2)$        |
| p //2m         | frequencies change at $O(\epsilon^2)$ , no split |
| p=1            |                                                  |
| $p = 2m \pm 1$ | $O(\epsilon)$ cross-axis coupling.               |

#### Note:

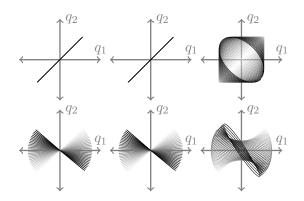
- m=2 affected at first order by p=0 and p=4 (and  $O(\epsilon^2)$  split from p=1 and p=2).
- m=3 affected at first order by p=0 and p=6 (and  $O(\epsilon^2)$  split from p=1 and p=3).



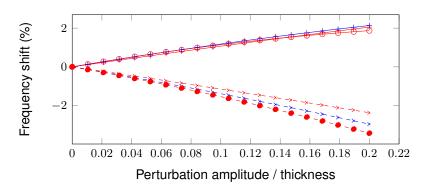
# **Analyzing Imperfect Rings**



# **Analyzing Imperfect Rings**



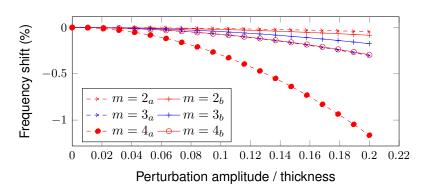
# Mode Split for Rings: $\psi(r, \theta) = (\cos(2m\theta), 0)$ .



41 / 44

Householder XIX 12 June 2014

# Mode Split for Rings: $\psi(r, \theta) = (\cos(m\theta), 0)$ .



# Beyond Rings: AxFEM



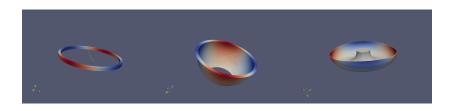
- Mapped finite / spectral element formulation
- Low-order polynomials through thickness
- High-order polynomials along length
- Trig polynomials in  $\theta$
- Agrees with results reported in literature
- Computes sensitivity to geometry, material parameters, etc.

# **Further Steps**

#### Lots of possible directions:

- Symmetry breaking through damping?
- Integration with fabrication simulation?
- Joint optimization of geometry and fabrication?

## Thank You



Yilmaz and Bindel "Effects of Imperfections on Solid-Wave Gyroscope Dynamics" Proceedings of IEEE Sensors 2013, Nov 3–6.

Thanks to DARPA MRIG + Sunil Bhave and Laura Fegely.

