Computer Aided Design of Micro-Electro-Mechanical Systems

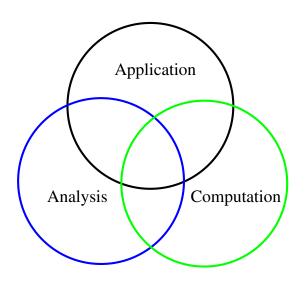
From Eigenvalues to Devices

David Bindel

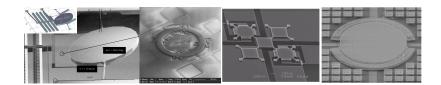
Department of Computer Science Cornell University

Duke University, 4 Apr 2013

The Computational Science & Engineering Picture



A Favorite Application: MEMS



I've worked on this for a while:

- SUGAR (early 2000s) SPICE for MEMS
- HiQLab (2006) high-Q mechanical resonator device modeling
- AxFEM (2012) solid-wave gyro device modeling

Goal today: two illustrative snapshots.

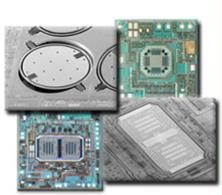
Outline

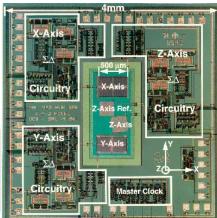
- Resonant MEMS
- 2 Anchor losses and disk resonators
- 3 Elastic wave gyros
- 4 Conclusion

MEMS Basics

- Micro-Electro-Mechanical Systems
 - Chemical, fluid, thermal, optical (MECFTOMS?)
- Applications:
 - Sensors (inertial, chemical, pressure)
 - Ink jet printers, biolab chips
 - Radio devices: cell phones, inventory tags, pico radio
- Use integrated circuit (IC) fabrication technology
- Tiny, but still classical physics

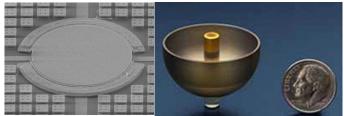
Where are MEMS used?





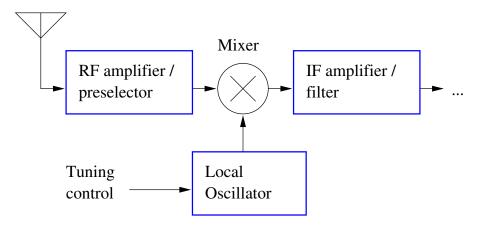
My favorite applications





Why you should care, too!

The Mechanical Cell Phone



...and lots of mechanical sensors, too!

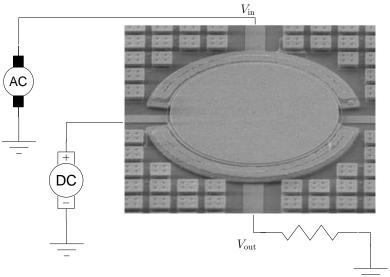
Ultimate Success

"Calling Dick Tracy!"

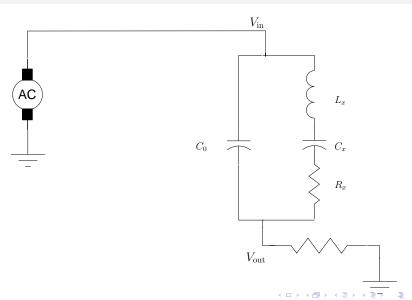
Computational Challenges

Devices are fun – but I'm not a device designer. Why am I in this?

Model System



The Circuit Designer View



Electromechanical Model

Balance laws (KCL and BLM):

$$\frac{d}{dt} (C(u)V) + GV = I_{\text{external}}$$

$$Mu_{tt} + Ku - \nabla_u \left(\frac{1}{2}V^*C(u)V\right) = F_{\text{external}}$$

Linearize about static equilibium (V_0, u_0) :

$$C(u_0) \, \delta V_t + G \, \delta V + (\nabla_u C(u_0) \cdot \delta u_t) \, V_0 = \delta I_{\text{external}}$$

$$M \, \delta u_{tt} + \tilde{K} \, \delta u + \nabla_u \left(V_0^* C(u_0) \, \delta V \right) = \delta F_{\text{external}}$$

where

$$\tilde{K} = K - \frac{1}{2} \frac{\partial^2}{\partial u^2} \left(V_0^* C(u_0) V_0 \right)$$

Electromechanical Model

Assume time-harmonic steady state, no external forces:

$$\begin{bmatrix} i\omega C + G & i\omega B \\ -B^T & \tilde{K} - \omega^2 M \end{bmatrix} \begin{bmatrix} \delta \hat{V} \\ \delta \hat{u} \end{bmatrix} = \begin{bmatrix} \delta \hat{I}_{\text{external}} \\ 0 \end{bmatrix}$$

Eliminate the mechanical terms:

$$Y(\omega) \, \delta \hat{V} = \delta \hat{I}_{\text{external}}$$

 $Y(\omega) = i\omega C + G + i\omega H(\omega)$
 $H(\omega) = B^T (\tilde{K} - \omega^2 M)^{-1} B$

Goal: Understand electromechanical piece ($i\omega H(\omega)$).

- As a function of geometry and operating point
- Preferably as a simple circuit

Damping and Q

Designers want high quality of resonance (Q)

Dimensionless damping in a one-dof system

$$\frac{d^2u}{dt^2} + Q^{-1}\frac{du}{dt} + u = F(t)$$

• For a resonant mode with frequency $\omega \in \mathbb{C}$:

$$Q:=rac{|\omega|}{2\operatorname{Im}(\omega)}=rac{ ext{Stored energy}}{ ext{Energy loss per radian}}$$

To understand Q, we need damping models!

(Cornell University)

The Designer's Dream

Reality is messy:

- Coupled physics
- ... some poorly understood (damping)
- ... subject to fabrication errors

Ideally, would like:

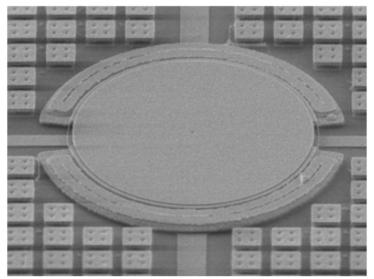
- Simple models for behavioral simulation
- Parameterized for design optimization
- Including all relevant physics
- With reasonably fast and accurate set-up

We aren't there yet.

Outline

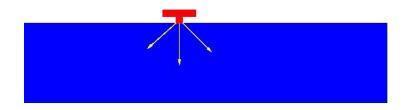
- Resonant MEMS
- Anchor losses and disk resonators
- Elastic wave gyros
- 4 Conclusion

Disk Resonator Simulations



(Cornell University) Fudan 19 / 55

Damping Mechanisms

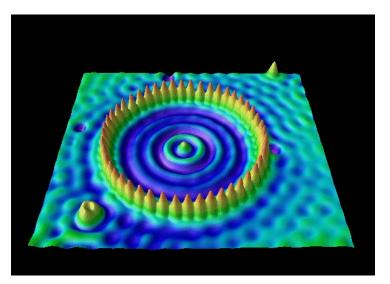


Possible loss mechanisms:

- Fluid damping
- Material losses
- Thermoelastic damping
- Anchor loss

Model substrate as semi-infinite ⇒ resonances!

Resonances in Physics



Resonances and Literature

Listening to a Monk from Shu Playing the Lute

The monk from Shu with his green lute-case walked Westward down Emei Shan, and at the sound Of the first notes he strummed for me I heard A thousand valleys' rustling pines resound. My heart was cleansed, as if in flowing water. In bells of frost I heard the resonance die. Dusk came unnoticed over the emerald hills And autumn clouds layered the darkening sky.

Chinese Poems on the Underground

Li Bai (AD 701-761) Translated by Wimm Seth. Three Orleans Peets Obtain: 1982)
Oil sprainly by Qui Lei Lei
A cultural exchange between Shanghai Metro and London Underground

MAYOR OF LONDON

ansport for London

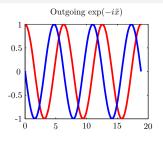
4 = 3 + 4 = 3 + 4 = 3 +

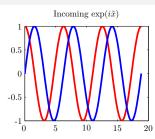
In bells of frost I heard the resonance die.

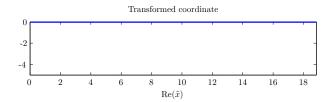
Li Bai (translated by Vikram Seth)

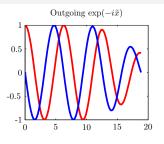
Perfectly Matched Layers

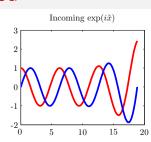
- Complex coordinate transformation
- Generates a "perfectly matched" absorbing layer
- Idea works with general linear wave equations
 - Electromagnetics (Berengér, 1994)
 - Quantum mechanics exterior complex scaling (Simon, 1979)
 - Elasticity in standard finite element framework (Basu and Chopra, 2003)
 - Works great for MEMS, too! (Bindel and Govindjee, 2005)

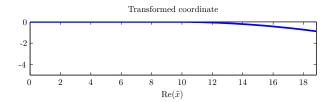


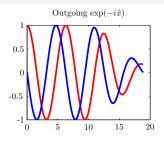


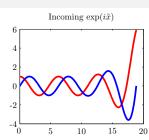


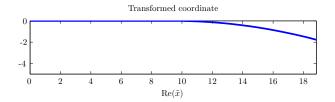


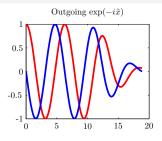


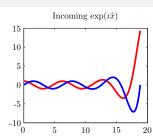


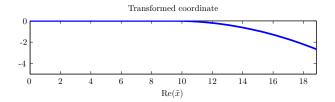


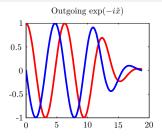


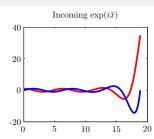


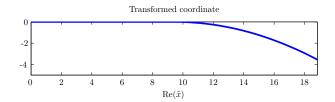


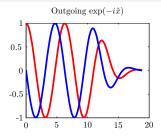


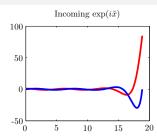


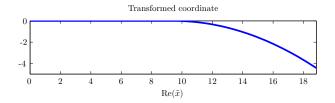




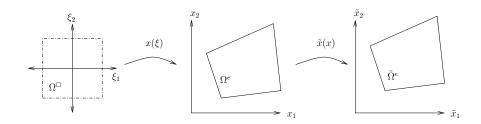






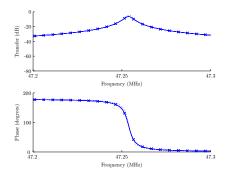


Finite Element Implementation



Matrices are complex symmetric

Eigenvalues and Model Reduction



Goal: understand $H(\omega)$:

$$H(\omega) = B^T (K - \omega^2 M)^{-1} B$$

Look at

- Poles of H (eigenvalues)
- Bode plots of H

Model reduction: Replace $H(\omega)$ by cheaper $\hat{H}(\omega)$.

Approximation from Subspaces

A general recipe for large-scale numerical approximation:

- **1** A subspace V containing good approximations.
- ② A criterion for "optimal" approximations in \mathcal{V} .

Basic building block for eigensolvers and model reduction!

Better subspaces, better criteria, better answers.

Variational Principles

- Variational form for complex symmetric eigenproblems:
 - Hermitian (Rayleigh quotient):

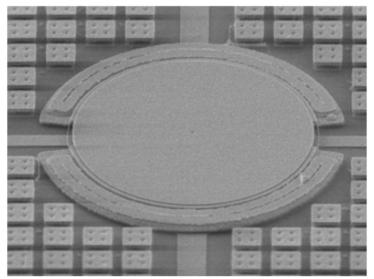
$$\rho(v) = \frac{v^* K v}{v^* M v}$$

Complex symmetric (modified Rayleigh quotient):

$$\theta(v) = \frac{v^T K v}{v^T M v}$$

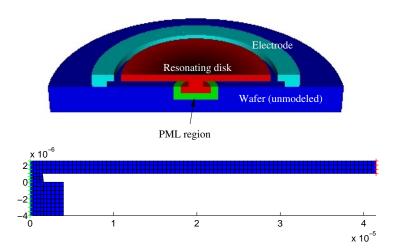
- Good for model reduction, too!

Disk Resonator Simulations



(Cornell University) Fudan 29 / 55

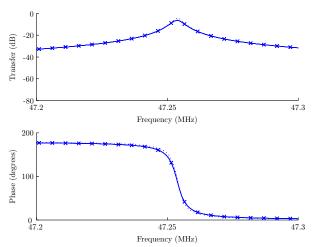
Disk Resonator Mesh



Axisymmetric model, bicubic, $\approx 10^4$ nodal points at convergence

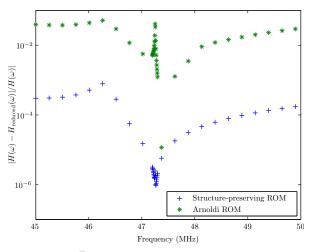
4 中 x 4 图 x 4 图 x 4 图 x

Model Reduction Accuracy



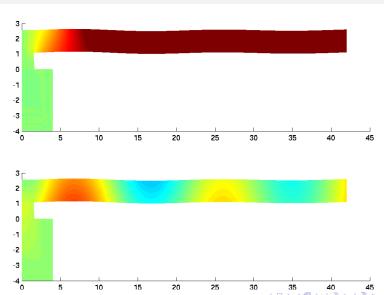
Results from ROM (solid and dotted lines) nearly indistinguishable from full model (crosses)

Model Reduction Accuracy

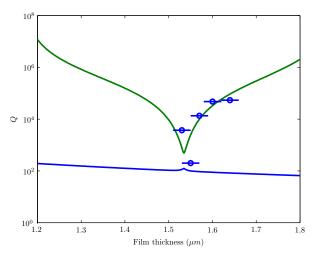


Preserve structure ⇒ get twice the correct digits

Response of the Disk Resonator

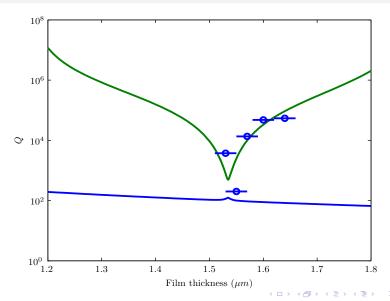


Variation in Quality of Resonance

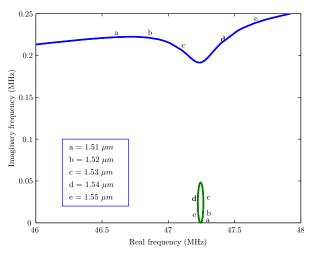


Simulation and lab measurements vs. disk thickness

Explanation of ${\it Q}$ Variation



Explanation of Q Variation



Interaction of two nearby eigenmodes

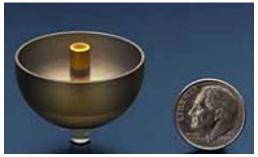
Outline

- Resonant MEMS
- 2 Anchor losses and disk resonators
- Elastic wave gyros
- 4 Conclusion

Bryan's Experiment

"On the beats in the vibrations of a revolving cylinder or bell" by G. H. Bryan, 1890

A Small Application



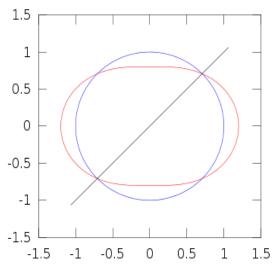
Northrup-Grummond HRG

Current example: Micro-HRG / GOBLiT / OMG

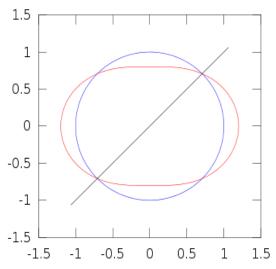
(Cornell University)

- Goal: Cheap, small (1mm) HRG
- Collaborator roles:
 - Basic design
 - Fabrication
 - Measurement
- Our part:
 - Detailed physics
 - Fast software
 - Sensitivity
 - Design optimization

How It Works



How It Works



Goal state

We want to compute:

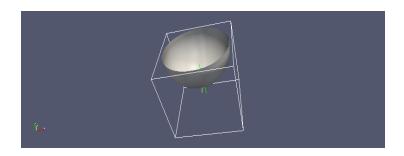
- Geometry
- Fundamental frequencies
- Angular gain (Bryan's factor)
- Damping (thermoelastic, radiation, material)
- Sensitivities of everything
- Effects of symmetry breaking

For speed and accuracy: use structure!

- Axisymmetric geometry ⇒ 3D to 2D via Fourier
- Perturbed geometry

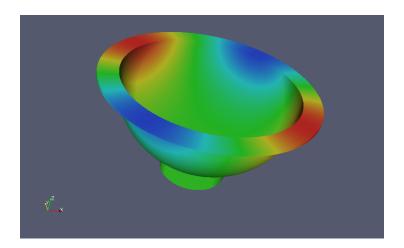
 interactions for different wave numbers

Getting the Geometry



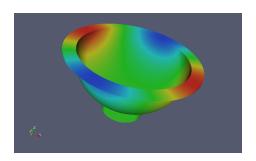
- Simple isotropic etch modeling fails 1mm is huge!
- Working on better simulator (reaction-diffusion).
- For now, take idealized geometries on faith...

Full Dynamics



45 / 55

Essential Dynamics



Dynamics in 2D subspace of degenerate modes:

$$\left(-\omega^2 mI + 2i\omega\Omega gJ + kI\right)c = 0$$

Scaled gain g is *Bryan's factor*

 $\mathrm{BF} = \frac{\text{Angular rate of pattern relative to body}}{\text{Angular rate of vibrating body}}$

If no parameters in the world were very large or very small, science would reduce to an exhaustive list of everything.

— Nick Trefethen

Fourier Picture

Write displacement fields as Fourier series:

$$\mathbf{u} = \sum_{m=0}^{\infty} \left(\begin{bmatrix} u_{mr}(r,z)\cos(m\theta) \\ u_{m\theta}(r,z)\sin(m\theta) \\ u_{mz}(r,z)\cos(m\theta) \end{bmatrix} + \begin{bmatrix} -u'_{mr}(r,z)\sin(m\theta) \\ u'_{m\theta}(r,z)\cos(m\theta) \\ -u'_{mz}(r,z)\sin(m\theta) \end{bmatrix} \right)$$

- Works whenever geometry is axisymmetric
- Treat non-axisymmetric geometries as mapped axisymmetric
 - Now coefficients in PDEs are non-axisymmetric
- ullet Problems with different m decouple if *everything* axisymmetric

Fourier Picture

Perfect axisymmetry:

$$\begin{bmatrix} K_{11} & & & & & \\ & K_{22} & & & & \\ & & K_{33} & & \\ & & & \ddots \end{bmatrix} - \omega^2 \begin{bmatrix} M_{11} & & & & \\ & M_{22} & & & \\ & & & M_{33} & \\ & & & & \ddots \end{bmatrix}$$

Fourier Picture

Broken symmetry (via coefficients):

$$\begin{bmatrix} K_{11} & \epsilon & \epsilon & \epsilon \\ \epsilon & K_{22} & \epsilon & \epsilon \\ \epsilon & \epsilon & K_{33} & \epsilon \\ \epsilon & \epsilon & \epsilon & \cdot \cdot \end{bmatrix} - \omega^2 \begin{bmatrix} M_{11} & \epsilon & \epsilon & \epsilon \\ \epsilon & M_{22} & \epsilon & \epsilon \\ \epsilon & \epsilon & M_{33} & \epsilon \\ \epsilon & \epsilon & \epsilon & \cdot \cdot \end{bmatrix}$$

Perturbing Fourier

Modes "near" azimuthal number m = nonlinear eigenvalues

$$\left(K_{mm} - \omega^2 M_{mm} + E_{mm}(\omega)\right) u = 0.$$

Need:

- Control on E_{mm}
 - Depends on frequency spacing
 - Depends on Fourier analysis of perturbation
- Perturbation theory for nonlinearly perturbed eigenproblems
 - For self-adjoint case, results similar to Lehmann intervals

First-order estimate: $(K_{mm} - \omega_0^2 M_{mm}) u_0 = 0$; then

$$\delta(\omega^2) = \frac{u_0^T E_{mm}(\omega_0) u_0}{u_0^T M_{mm} u_0}.$$

Perturbation and Radiation

Incorporating numerical radiation BCs gives:

$$\left(K - \omega^2 M + G(\omega) \right) u = 0.$$

Perturbation approach: ignore G to get (ω_0, u_0) . Then

$$\delta(\omega^2) = \frac{u_0^T G(\omega_0) u_0}{u_0^T M_{mm} u_0}.$$

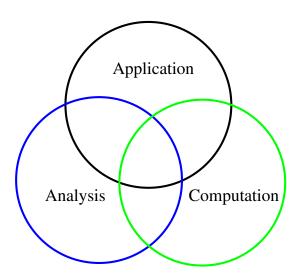
Works when BC has small influence (coefficients aren't small).

Also an approach to understanding sensitivity to BC!
... explains why PML works okay despite being inappropriate?

Outline

- Resonant MEMS
- 2 Anchor losses and disk resonators
- Blastic wave gyros
- Conclusion

The Computational Science & Engineering Picture



Conclusions

The difference between art and science is that science is what we understand well enough to explain to a computer. Art is everything else.

Donald Knuth

The purpose of computing is insight, not numbers.
Richard Hamming

- Collaborators:
 - Disk: S. Govindjee, T. Koyama, S. Bhave, E. Quevy
 - HRG: S. Bhave, L. Fegely, E. Yilmaz
- Funding: DARPA MTO, Sloan Foundation