Courant 08

Bone basics

Bone measurement and modeling

BoneFEA software

Conclusion

Finite Element Analysis of Human Bone Models

D. Bindel

Courant Institute for Mathematical Sciences New York University

Biomath Lunch Seminar, 1 Apr 2008

Outline

Courant 08

Bone basic:

Bone measuremen and modeling

BoneFEA software

- Bone basics
- Bone measurement and modeling
- BoneFEA software
- 4 Conclusion

Outline

Courant 08

Bone basics

Bone measurement and modeling

BoneFEA software

- Bone basics
- Bone measurement and modeling
- BoneFEA software
- Conclusion

Why study bones?

Courant 08

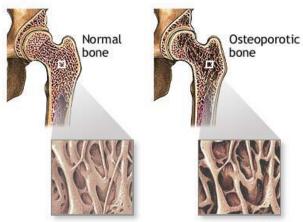
Bone basics

Bone measurement and modeling

BoneFEA software

- Osteoporosis: 44M Americans, \$17B / year
- > 55% of over 50 have osteoporosis or low bone mass
- 350K hip fractures / year; over \$10B / year
- A quarter of hip fracture patients die within a year
- ... and we're getting older

Bone basics: macrostructure


Courant 08

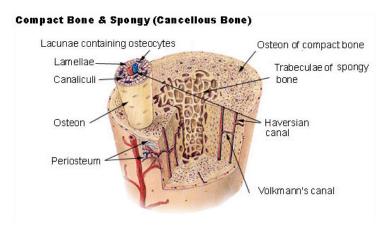
Bone basics

Bone measurement and modeling

BoneFEA software

Conclusion

@ADAM, Inc.

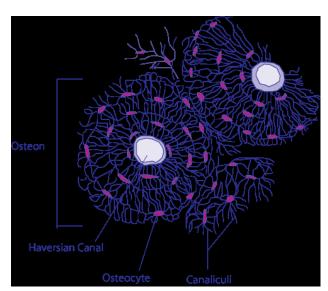

Bone basics: microstructure

Courant 08

Bone basics

Bone measurement and modeling

BoneFEA

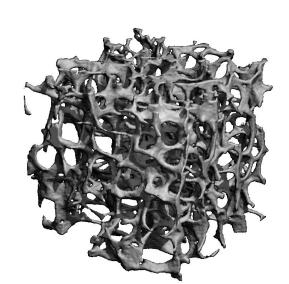

Bone basics: microstructure

Courant 08

Bone basics

Bone measurement and modeling

BoneFEA software


Bone basics: trabecular microstructure

Courant 08

Bone basics

Bone measurement and modeling

BoneFEA software

Bone basics: trabecular microstructure

Courant 08

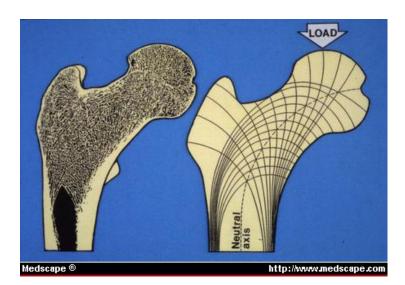
Bone basics

Bone measurement and modeling

BoneFEA software

Conclusion

(Scans from 23 and 85 year old females)


Bone basics: orientation and remodeling

Courant 08

Bone basics

Bone measurement and modeling

BoneFEA

Why study bones?

Courant 08

Bone basics

Bone measurement and modeling

BoneFEA software

Conclusio

... because bone is a fascinating material!

- Structurally complicated across length scales
- Structure adapts to loads and changes over time
- inhomogeneous, anisotropic, asymmetric, often nonlinear

Outline

Courant 08

Bone basic

Bone measurement and modeling

BoneFEA software

Conclusion

1 Bone basics

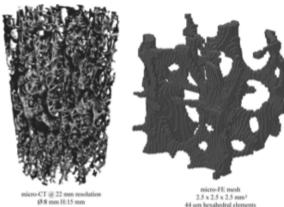
- 2 Bone measurement and modeling
- BoneFEA software
- 4 Conclusion

Bone measurement

Courant 08

Bone basic

Bone measurement and modeling


BoneFEA software

- Diagnostic for osteoporosis: T-scores from DXA
- Ordinary microscopy on extracted cores
- QCT software: density profile, about 3 mm scale
- Micro-CT and micro-MRI: O(10 micron)

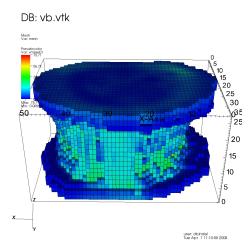
Micro-FE bone modeling

Courant 08

Bone measurement and modeling

44 µm hexahedral elements

One vertebrate = 57M+ elements at 40 microns


Whole bone modeling

Courant 08

Bone basics

Bone measurement and modeling

BoneFEA software

- Density only weakly predicts strength
- Wanted: Good effective constitutive relation

Difficulties

Courant 08

Bone basic

Bone measurement and modeling

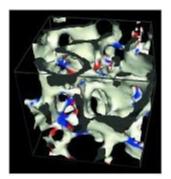
BoneFEA software

Conclusion

Bone is:

- Variable over time and between individuals
- Inhomogeneous and anisotropic
- Different in tension and compression

Yielding and nonlinearity


Courant 08

Bone basics

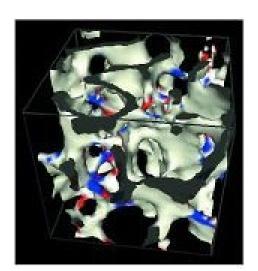
Bone measurement and modeling

BoneFEA software

Conclusion

Example difficulty:

- Trabecular network has beam and plate elements
- Small macro strains yield much larger micro strains
- Small-scale geometric nonlinearity a significant effect


Yielding and nonlinearity

Courant 08

Bone basics

Bone measurement and modeling

BoneFEA software

An approach

Courant 08

Bone basic

Bone measurement and modeling

BoneFEA software

- Micro-CT structure scans for orientation
- Use orientation indices + density to approximate material parameters
- Proceed phenomenologically

Outline

Courant 08

Bone basics

Bone measuremen and modeling

BoneFEA software

- Bone basics
- Bone measurement and modeling
- BoneFEA software
- 4 Conclusion

Diagnostic toolchain

Courant 08

Bone basic

Bone measurement and modeling

BoneFEA software

Conclusior

- Micro-CT scan data from patient
- Inference of material properties
- Construction of coarse FE model (voxels)
- Simulation under loading
- Output of stress fields, displacements, etc.

BoneFEA

Courant 08

Bone basic

Bone measurement and modeling

BoneFEA software

- Standard displacement-based finite element code
- Elastic and plastic material models (including anisotropy and asymmetric yield surfaces)
- High-level: incremental load control loop, Newton-Krylov solvers with line search for nonlinear systems
- Library of (fairly simple) preconditioners; default is a two-level geometric multigrid preconditioner

Example analysis loop

Courant 08

Bone basics

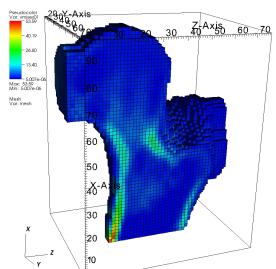
Bone measurement and modeling

BoneFEA software

```
mesh:rigid(mesh:numnp()-1, {z='min'},
  function()
    return 'uuuuuu', 0, 0, bound_disp
  end)
pc = simple_msm_pc(mesh, 20)
mesh:set cq{M=pc, tol=1e-6, max iter=1000}
for j=1, n do
  bound disp = 0.2*i
 mesh:step()
  mesh:newton{max_iter=6, Rtol=1e-4}
end
```

Example analyses

Courant 08


Bone basics

Bone measurement and modeling

BoneFEA software

Conclusion

DB: femur.vtk

Outline

Courant 08

Bone basics

Bone measurement and modeling

BoneFEA software

- Bone basics
- Bone measurement and modeling
- BoneFEA software
- 4 Conclusion

Conclusion

Courant 08

Bone basic

Bone measurement and modeling

BoneFEA software

- Bones are interesting as well as important!
- Initial BoneFEA work done, in use by ON Diagnostics
- Possible follow-up work for diagnostic tool
- Plenty of interesting research directions