Abel 2006

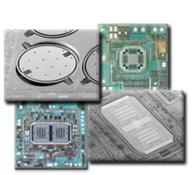
Modeling Resonant Microsystems Toward Cell Phones on a Chip?

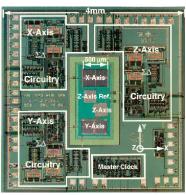
D. Bindel

Computer Science Division Department of EECS University of California, Berkeley

Abel Symposium, 25 May 2006

What are MEMS?

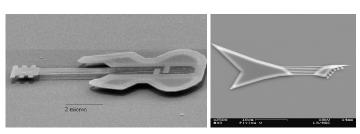




MEMS Basics

- Micro-Electro-Mechanical Systems
 - Chemical, fluid, thermal, optical (MECFTOMS?)
- Applications:
 - Sensors (inertial, chemical, pressure)
 - Ink jet printers, biolab chips
 - Radio devices: cell phones, inventory tags, pico radio
- Use integrated circuit (IC) fabrication technology
- Tiny, but still classical physics

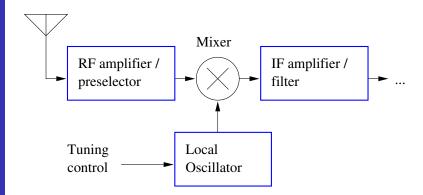
Resonant MEMS



Microguitars from Cornell University (1997 and 2003)

- MHz-GHz mechanical resonators
- Favorite application: radio on chip
- Close second: really high-pitch guitars

The Mechanical Cell Phone



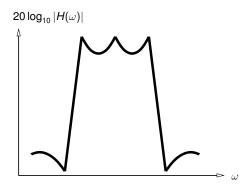
- Your cell phone has many moving parts!
- What if we replace them with integrated MEMS?

Ultimate Success

"Calling Dick Tracy!"

Narrowband Filter Needs

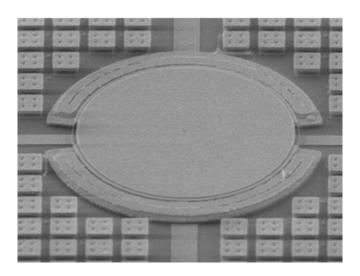
Abel 2006



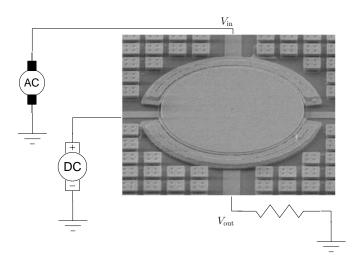
Want building blocks with:

- High frequency
- Low damping
- Tunability

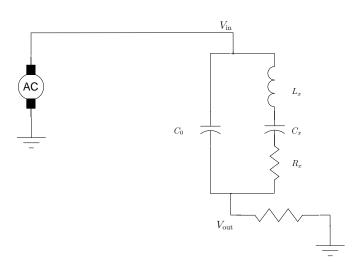
Disk Resonator



Disk Resonator



Disk Resonator



Electromechanical Model

Abel 2006

Kirchoff's current law and balance of linear momentum:

$$\frac{d}{dt} (C(u)V) + GV = I_{\text{external}}$$

$$Mu_{tt} + Ku - \nabla_u \left(\frac{1}{2}V^*C(u_0)V\right) = F_{\text{external}}$$

Linearize about static equilibium (V_0, u_0):

$$C(u_0) \, \delta V_t + G \, \delta V + (\nabla_u C(u_0) \cdot \delta u_t) \, V_0 = \delta I_{\text{external}}$$

$$M \, \delta u_{tt} + \tilde{K} \, \delta u + \nabla_u \left(V_0^* C(u_0) \, \delta V \right) = \delta F_{\text{external}}$$

where

$$\tilde{K} = K - \frac{1}{2} \frac{\partial^2}{\partial u^2} \left(V_0^* C(u_0) V_0 \right)$$

Electromechanical Model

Abel 2006

Assume time-harmonic steady state, no external forces:

$$\begin{bmatrix} i\omega C + G & i\omega B \\ -B^T & \tilde{K} - \omega^2 M \end{bmatrix} \begin{bmatrix} \delta \hat{V} \\ \delta \hat{u} \end{bmatrix} = \begin{bmatrix} \delta \hat{I}_{\text{external}} \\ 0 \end{bmatrix}$$

Eliminate the mechanical terms:

$$\left(i\omega C + G + i\omega B^{T} (\tilde{K} - \omega^{2} M)^{-1} B\right) \delta \hat{V} = \delta \hat{I}_{\text{external}}$$

Give a name to the coupling transfer function:

$$H(\omega) = B^{T} (\tilde{K} - \omega^{2} M)^{-1} B$$

Goal: Understand electromechanical piece ($i\omega H(\omega)$).

- As a function of geometry and operating point
- Preferably as a simple circuit

Damping and Q

Abel 2006

Designers want high quality of resonance (Q)

Dimensionless damping in a one-dof system

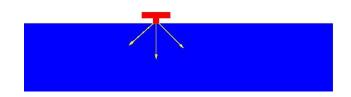
$$\frac{d^2u}{dt^2} + Q^{-1}\frac{du}{dt} + u = F(t)$$

• For a resonant mode with frequency $\omega \in \mathbb{C}$:

$$Q := \frac{|\omega|}{2\operatorname{Im}(\omega)} = \frac{\operatorname{Stored energy}}{\operatorname{Energy loss per radian}}$$

Damping Mechanisms

Abel 2006



Possible loss mechanisms:

- Fluid damping
- Material losses
- Thermoelastic damping
- Anchor loss

Model substrate as semi-infinite with a

Perfectly Matched Layer (PML).

Perfectly Matched Layers

- Complex coordinate transformation
- Generates a "perfectly matched" absorbing layer
- Idea works with general linear wave equations
 - Electromagnetics (Berengér, 1994)
 - Quantum mechanics exterior complex scaling (Simon, 1979)
 - Elasticity in standard finite element framework (Basu and Chopra, 2003)

Model Problem

Abel 2006

- Domain: $x \in [0, \infty)$
- Governing eq:

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$$

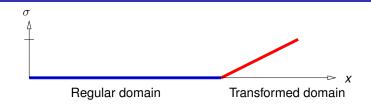
Fourier transform:

$$\frac{d^2\hat{u}}{dx^2} + k^2\hat{u} = 0$$

Solution:

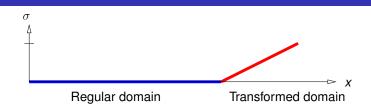
$$\hat{u} = c_{\text{out}} e^{-ikx} + c_{\text{in}} e^{ikx}$$

Model with Perfectly Matched Layer



$$rac{d ilde{x}}{dx} = \lambda(x) ext{ where } \lambda(s) = 1 - i\sigma(s)$$
 $rac{d^2\hat{u}}{d ilde{x}^2} + k^2\hat{u} = 0$ $\hat{u} = c_{ ext{out}}e^{-ik ilde{x}} + c_{ ext{in}}e^{ik ilde{x}}$

Model with Perfectly Matched Layer



$$\frac{d\tilde{x}}{dx} = \lambda(x) \text{ where } \lambda(s) = 1 - i\sigma(s),$$

$$\frac{1}{\lambda} \frac{d}{dx} \left(\frac{1}{\lambda} \frac{d\hat{u}}{dx} \right) + k^2 \hat{u} = 0$$

$$\hat{u} = c_{\text{out}} e^{-ikx - k\Sigma(x)} + c_{\text{in}} e^{ikx + k\Sigma(x)}$$

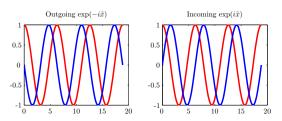
$$\Sigma(x) = \int_0^x \sigma(s) \, ds$$

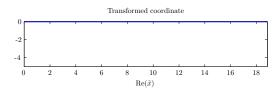
Model with Perfectly Matched Layer

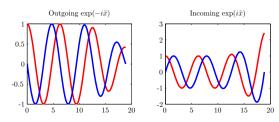
Abel 2006

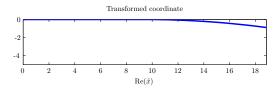
If solution clamped at x = L then

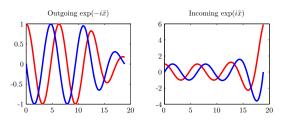
$$rac{m{c}_{
m in}}{m{c}_{
m out}} = m{O}(m{e}^{-k\gamma}) ext{ where } \gamma = m{\Sigma}(m{L}) = \int_0^L \sigma(m{s}) \, dm{s}$$

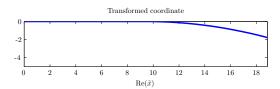


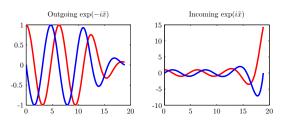


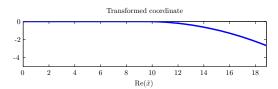


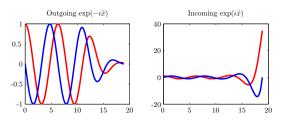


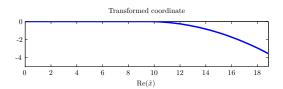


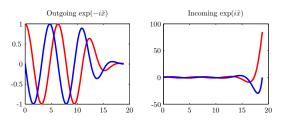


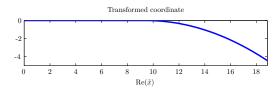






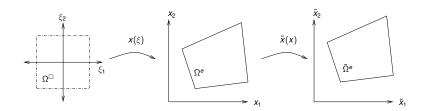






Finite Element Implementation

Abel 2006



Combine PML and isoparametric mappings

$$\begin{array}{lll} \mathbf{k}^e & = & \int_{\Omega^\square} \tilde{\mathbf{B}}^T \mathbf{D} \tilde{\mathbf{B}} \tilde{J} \, d\Omega^\square \\ \\ \mathbf{m}^e & = & \int_{\Omega^\square} \rho \mathbf{N}^T \mathbf{N} \tilde{J} \, d\Omega^\square \end{array}$$

• Matrices are complex symmetric

Eigenvalues and Model Reduction

Abel 2006

Want to know about the transfer function $H(\omega)$:

$$H(\omega) = B^{T}(K - \omega^{2}M)^{-1}B$$

Can either

- Locate poles of H (eigenvalues of (K, M))
- Plot *H* in a frequency range (Bode plot)

Usual tactic: subspace projection

- Build an Arnoldi basis V
- Compute with much smaller V*KV and V*MV

Can we do better?

Abel 2006

- Variational form for complex symmetric eigenproblems:
 - Hermitian (Rayleigh quotient):

$$\rho(\mathbf{v}) = \frac{\mathbf{v}^* \mathbf{K} \mathbf{v}}{\mathbf{v}^* \mathbf{M} \mathbf{v}}$$

• Complex symmetric (modified Rayleigh quotient):

$$\theta(v) = \frac{v^T K v}{v^T M v}$$

- Key: relation between left and right eigenvectors.

Accurate Model Reduction

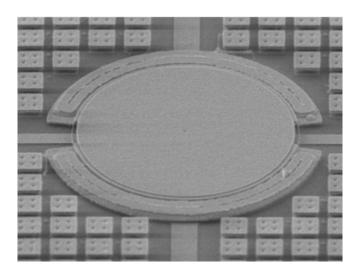
Abel 2006

• Build new projection basis from V:

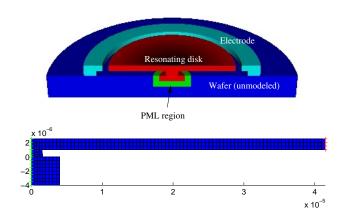
$$W = \operatorname{orth}[\operatorname{Re}(V), \operatorname{Im}(V)]$$

- span(W) contains both \mathcal{K}_n and $\bar{\mathcal{K}}_n$ \Longrightarrow double digits correct vs. projection with V
- W is a real-valued basis
 - ⇒ projected system is complex symmetric

Disk Resonator Simulations

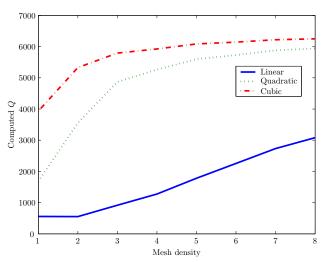


Disk Resonator Mesh



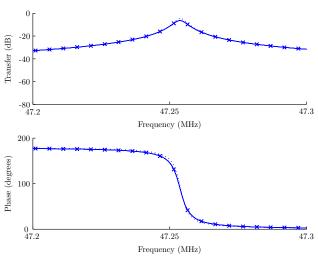
- Axisymmetric model with bicubic mesh
- About 10K nodal points in converged calculation

Mesh Convergence



Cubic elements converge with reasonable mesh density

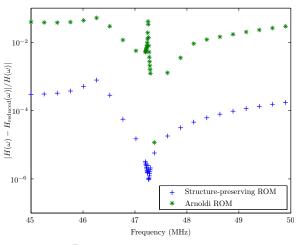
Model Reduction Accuracy



Results from ROM (solid and dotted lines) nearly indistinguishable from full model (crosses)

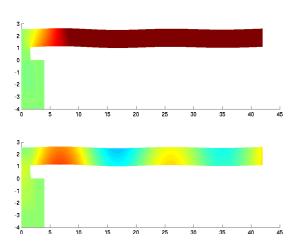
Model Reduction Accuracy

Abel 2006

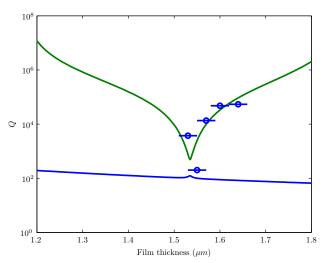


Preserve structure ⇒ get twice the correct digits

Response of the Disk Resonator

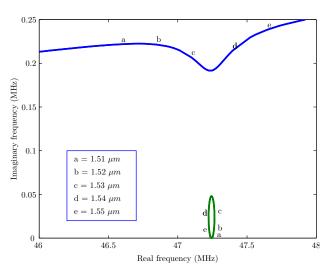


Variation in Quality of Resonance



Simulation and lab measurements vs. disk thickness

Explanation of Q Variation



Interaction of two nearby eigenmodes

Onward!

Abel 2006

What about:

- Modeling more geometrically complex devices?
- Modeling general dependence on geometry?
- Modeling general dependence on operating point?
- Computing nonlinear dynamics?
- Digesting all this to help designers?

Concluding Thoughts

Abel 2006

The difference between art and science is that science is what we understand well enough to explain to a computer. Art is everything else.

Donald Knuth

The purpose of computing is insight, not numbers.

Richard Hamming