Strategic Peer Selection Using Transaction Value and Latency

Kushal Babel

Cornell Tech

Lucas Baker

Jump Crypto

Outline

- Peer-to-Peer Networks
- Why Peer Selection Matters?
 - MEV
- Strategic Peer Selection
 - Latency Based
 - Transaction Value and Latency Based
- Objective Formalization
 - Time-based Ordering Protocols
 - Leader-based Protocols
- MEV-Peri Algorithm
- Evaluation
 - Transaction Flow Estimation

P2P Networks

 Each node in the network has only local view of the network.

 No node has complete view of all the pending transactions.

 Blocks are propagated with a higher priority, and are often serialized, allowing for most nodes to have complete view of the state.

Why Peer Selection Matters?

- Need to know about the latest state...
- But also,
- Pending transactions create profitable opportunities.
- MEV = Value captured by inserting, reordering or censoring pending transactions.
- A strategic agent wants to ideally
 - Know about all such transactions.
 - Listen to these transactions at the earliest.

MEV, A Growing Industry...

\$6,930,451Last 30 days Extracted MEV

\$113k Last 24h Extracted MEV

Default Peer Selection

- Choose peers that are compatible
- Choose peers that are willing to serve
- Keep peers that are stable
- For discovering peers, rely on information from other peers (hardcoded), or from a past session

But, no enforced way of peer selection

Strategic Peer Selection

- Optimize for peers that help with profitable opporunities
- Peering algorithm should work based off the local view of the network

Latency-based Peer Selection

Tang, Weizhao, Lucianna Kiffer, Giulia Fanti, and Ari Juels. "Strategic Latency Reduction in Blockchain Peer-to-Peer Networks." arXiv preprint arXiv:2205.06837 (2022).

- Defined the notion of triangular latency
- Optimizing Peer Selection in general is NP-Hard
- Peri: Efficient and Local peering algorithm for optimizing triangular latency
- Can be combined with paid relay services like
 Bloxroute to further improve their latency advantage

Triangular Latency

Tang, Weizhao, Lucianna Kiffer, Giulia Fanti, and Ari Juels. "Strategic Latency Reduction in Blockchain Peer-to-Peer Networks." arXiv preprint arXiv:2205.06837 (2022).

Transaction Value and Latencybased Peer Selection (This Work)

- Change the objective from latency optimization to profit optimization
- Latency is important, but the value derived from the transactions is now also important
- Intuition: Some peers may be fast, but may not be the ones gossiping valueable transactions
- Adapt the Peri algorithm for optimizing peer selection into the algorithm "MEV-Peri"

Objective Formalization

• Strategic Agent: a, Set of P2P nodes V

Transaction *tx* distributed according to flow of source node *s*

Probability of realizing the utility in consensus mechanism *M*

Time-based Ordering Protocols

• Committee: C, Network: N, Netowork with agent: N'

$$\mathbb{P}_{FCFS}(\mathcal{L}_{\mathcal{N}}, tx) = \left[\sum_{c \in C} \left[\left(\mathcal{L}_{\mathcal{N}}(s, c) > \mathcal{L}_{\mathcal{N}'}(s, c) \right) \right] \ge \gamma \times |C| \right]$$

where,

$$[\![X]\!] = \begin{cases} 1, & \text{if } X \text{ is true} \\ 0, & \text{otherwise} \end{cases}$$

Protocol Parameter: Fraction of committee nodes that receive frontrunning transaction first

$$\underset{\mathcal{P}}{\operatorname{argmax}} \sum_{s \in \mathcal{V}, tx \sim \mathcal{F}(s)} \mathcal{U}_{a}(tx) \times \mathbb{P}_{FCFS}(\mathcal{L}_{\mathcal{N}}, tx)$$

Leader-based Ordering Protocols

• Strategic Agent: a

$$\mathbb{P}_{leader-based}(\mathcal{L}_{\mathcal{N}}, tx) = e^{-\lambda * (\Delta t)}$$

Protocol Parameter: Inter-block time

where Δt is given by,

$$t - t_0 + \mathcal{L}_{\mathcal{N}}(s, a) + \mathcal{L}_{\mathcal{N}}(a, leader)$$

MEV-Peri Algorithm

```
Input: Network: \mathcal{N} = (\mathcal{V}, \mathcal{E}), Peer budget: n, Replacement
  Ratio: r;
Output: Optimal Peer Set: \mathcal{P}^*;
Requires: 1 \le n \le |\mathcal{V}|, 0 < r < 1;
\mathcal{P} \leftarrow \mathsf{random}(\mathcal{V}, n);
for epoch = 1,2,... do
      Sleep(epoch period);
      \phi \leftarrow \text{Init Score Map}; \quad \text{score}(p) = \sum_{i=1}^{n} \left[ \mathcal{U}_a(tx) \times (TS(tx) - TS_p(tx)) \right]
      for p \in \mathcal{P} do
                                                                           observed tx
        \phi(p) \leftarrow \text{score}(p);
      end
     \mathcal{P} \leftarrow \mathcal{P} - \text{least}(\phi, r);
\mathcal{P} \leftarrow \mathcal{P} \cup \text{random}(\mathcal{V}, r);
end
```

Adapted from Peri: Tang, Weizhao, Lucianna Kiffer, Giulia Fanti, and Ari Juels. "Strategic Latency Reduction in Blockchain Peer-to-Peer Networks." arXiv preprint arXiv:2205.06837 (2022).

Evaluation

- Evaluation on mainnet is expensive:
 - P2P network does not propagate invalid transactions
 - Each valid (profit-seeking) transaction incurs significant fees
- Evaluate on a simulated P2P network
 - Need Latencies: Generate using Scale Free Graph Model (Hub and Spokes network)
 - Need Utility of each transaction and the distribution of these transactions across source nodes

Transaction Flow Estimation

- Use MEV as the utility function
- Estimate MEV: Average MEV bribe per transaction in Flashbots bundles (https://blocks.flashbots.net/)
- Attribution to a source node: Spawn 12 geographically distributed nodes, collected 116m unique transactions.
 Attribute the transaction source to the node that first observed the transaction

Transaction Flow Estimation

$$PDF(x) = \frac{x^{-\alpha}}{\zeta(\alpha, x_{min})}$$

where

$$\zeta(\alpha, x_{min}) = \sum_{n=0}^{\infty} (n + x_{min})^{-\alpha}$$

$$\hat{\alpha} = 1 + n \left(\sum_{i=1}^{n} \ln \frac{x_i}{x_{min} - 1/2} \right)^{-1}$$

Evaluation: Transaction Flow

Evaluation: MEV-Peri

- Epochs: 800
- Replacement Ratio: 25%
- Number of P2P nodes: 1000
- Size of Committee: 100
- $\gamma = 0.5$

Conclusion

- Peers can be chosen strategically in a P2P network
- Proposed and formalized the objective of choosing peers based on transaction value and latency
- Proposed the MEV-Peri algorithm which is efficient and local
- Evaluated MEV-Peri algorithm against baseline of random peering and algorithm that only exploits latency information