
Lanturn: Measuring
Cryptoeconomic Smart Contract

Security through Learning
Kushal Babel

Cornell Tech, IC3
SBC'23

1
with Mojan Javaheripi, Mahimna Kelkar, Yan Ji,

Farinaz Koushanfar, Ari Juels

Smart Contract Security

2

Complex Interactions
• Smart-Contracts can interoperate very easily.
• Examples:

1. Lending contract can use Decentralized Exchange(DEX)
contract as price oracle.
2. Multiple DEX contracts can be aggregated together.
3. FlashLoans + DEX
4. FlashLoans + Lending Contract ...

3

MEV, Informally...
MEV = Maximal Extractable Value (or Miner Extractable
Value)
Ability of miners/validators/bots to extract value by
reordering, inserting or censoring transactions

EV = Value extracted in a given transaction sequence

MEV = max(EV for any transaction sequence)

We can use MEV as the measure of Cryptoeconomic Security,
as it models the worst case adverserial advantage.

4

Talk Outline
•Previous approaches
•Lanturn
•Overview
•Optimization Module
•Simulation Module

•Evaluation
•Limitations
•Conclusion 5

Prior Approaches: Heuristics Based
•Most works encode a specific attack strategy,

essentially looking for patterns in transaction data and
blockchain state
•Highly efficient at finding patterns such as arbitrage,

sandwich attacks, but…
• These approaches do not generalizable to new

contracts or new transaction types
•As a result, these approaches do not attempt to find

the worst-case adversarial advantage
• L. Zhou, K. Qin, C. F. Torres, D. V. Le and A. Gervais, "High-Frequency Trading on Decentralized On-

Chain Exchanges” 2021 IEEE Symposium on Security and Privacy (SP).
6

Prior Approaches: Clockwork Finance
• Leverage formal verification to find the optimal value of the

inserted transactions and optimal order of transactions that
maximize MEV.

• Formal guarantees on the optimality of obtained MEV.

• Not scalable for complex contracts such as contracts with
loops (Curve Finance), or large number of transactions (>10)

K. Babel, P. Daian, M. Kelkar and A. Juels, "Clockwork Finance : Automated Analysis of Economic Security in Smart
Contracts" 2023 IEEE Symposium on Security and Privacy (SP).

7

8

Prior Approaches

Heuristics Based Formal Methods
Efficient but not generic Generic but not scalable

Lanturn
Generic and scalable learning-based tool to find MEV
opportunities and understand the economic security

risks of smart contracts and their composition

Lanturn Properties
• Generalizability : No encoding of strategies and contract-

specific heuristics, black box execution of smart contract,
but requires templates for insertions based on the interface
• Native Smart-Contract Execution : Simulates smart

contract bytecode, profit-yielding strategies are directly
executable on-chain
• Scalability : Scales with both contract complexity and

number of transactions (>50 transactions, >10 insertions)
• Adaptability to computation budget : Optimization

algorithm can be tuned to match the computation budget
and amenable to parallelization 9

Lanturn Applications
•Developers and researchers : Directly enables

developers and researchers to understand the
cryptoeconomics of smart contracts
•Users: Understand the value that can be extracted

from their transactions
• Strategic Agents : Use Lanturn to extract value and

discover new strategies. Real-time usage can be
supported by parallelization across servers

10

Problem Overview
• Given a pool of user transactions and the current blockchain

state, Lanturn automatically learns to maximize the
validator’s EV.

11

Problem Overview
• The strategies include:
• How to order the transactions in the block?
• What transactions can the validator insert to take advantage of the

block?

12

• The strategies include:
• How to order the transactions in the block?

• What transactions can the validator insert to take advantage of the block?

• For the latter question, the validator transactions are selected from a
set of templates like:

In this example,

• The tokens are filled with those that user transactions have interacted with.

• The alpha values (template-variables) are found by Lanturn such that they
maximize EV.

Problem Overview

13

System Overview
•Learning is done through iterative interactions
between our optimization module and simulator.

14

Deeper Look Inside
• High-level view of the internals of Lanturn components:• High-level view of the internals of Lanturn components:

15

• Inputs to the optimizer ():
• User transactions to be ordered

• Templates for validator-inserted
transactions

Deeper Look Inside

16

• Output of the optimizer ():
• Maximal EV

• Optimal transaction order

Deeper Look Inside

17

• Optimization has two hierarchical learning loops:
1. The outer loop learns the optimal

order of transactions ().

2. The inner loop learns the optimal

template-variables for the validator

().

Deeper Look Inside

18

Lanturn Learning-based Optimizer
• Problem Formulation:

1. Objective function (F): Validator’s EV in terms of Eth

2. Design Variables (): Order of transactions (xo), transaction amounts (xa)

3. Optimization Bounds (Xo , Xa): Accepted range of values for each design variable,
a.k.a, the search space

Bi-level optimization:

 Find the best transaction order

 Find the best values for template-variables

19

Goal: empirically search for optimal vector:

What does optimality mean?
- High EV for the validator

Lanturn Learning-based Optimizer

20

Goal: empirically search for optimal hyperparameter vector:

What does empirical mean?
- No analytical solution

- Relies on accurate simulations of EV

Lanturn Learning-based Optimizer

21

Goal: empirically search for optimal hyperparameter vector:

Search-space is not small, even for the below toy problem with only 4 transactions,

the search space covers almost 30 billion possibilities.

How to search the large space?
-Fast convergence

-Computational efficiency

-Parallelizable

Lanturn Learning-based Optimizer

22

Search-space Geometry
• Visualization for finding transaction amounts for an example problem with

validator executing a "Just-in-time" liquidity strategy.
• Search goal: Identify the peak region.
• Challenges: In general -
• Non-monotonic
• Non-convex
• High correlations between variables
• High-dimensional space

- horizontal plane: Transaction amounts

- vertical axis: objective function (EV)
23

Algorithm High Level Sketch

24

1. Initialize distribution D to Uniform
2. res = 0
3. For i = 1 to N:
4. S = Sample(D)
5. res = max(res, EV(S))
6. G = Good_Samples(S)
7. D.update(G)
8. return res

Simulation Module
1. Receive a concrete transaction sequence

25

1. Receive a concrete transaction sequence

2. Fork the blockchain state at height H
3. Give validator an initial capital (e.g. 10m Eth)

Simulation Module

26

1. Receive a concrete transaction sequence

2. Fork the blockchain state at height H
3. Give validator an initial capital (e.g. 10m Eth)

4. Execute transaction sequence

Simulation Module

27

1. Receive a concrete transaction sequence

2. Fork the blockchain state at height H
3. Give validator an initial capital (e.g. 10m Eth)

4. Execute transaction sequence

5. Convert any non-Eth tokens to Eth by

 executing DEX trades or using historical

 prices from CEX

Simulation Module

28

1. Receive a concrete transaction sequence

2. Fork the blockchain state at height H
3. Give validator an initial capital (e.g. 10m Eth)

4. Execute transaction sequence

5. Convert any non-Eth tokens to Eth by

 executing DEX trades or using historical

 prices from CEX

6. Mine block H+1
7. Return the validator’s final Eth balance less

 initial balance.

Simulation Module

29

Evaluation
• UniswapV3, UniswapV2, Sushiswap, Aave

• Dataset

• Filter blocks that have more than 500 ETH trade on Sushiswap or
UniswapV2, 1000 ETH on UniswapV3 or Liquidation event on Aave

• CEX prices: Freely available historical minute-level price data (Binance)

• Baseline: Flashbots data for MEV bribes paid to the validators per-
bundle (pre-MEV-Boost), through gas fees and direct transfers

• Template Transactions: Symbolic transactions for swapping in either
direction, liquidity provision and removal, liquidation on Aave

30

AMM Trading – UniswapV2

31

Frontrunning
Sandwiching

New Strategies

Lazarus Strategy

32

Bring a dead transaction back to life

Reorder, make it succeed, but then frontrun it!

Gas-leeching Strategy

33

• MEV Bots usually have safeguards in their transactions
• But some don’t!
• Many transactions, which pay a high gas fees, run into an

infinite loop when reordered, and end up consuming all the gas
in the block --- transaction fees goes to the validator!

AMM Trading – UniswapV3

34

Frontrunning
Sandwiching

Lazarus, Gas-Leeching

UniswapV3 Liquidity Provision

35

Just-in-time(JIT) Liquidity

Multiple AMM Composition

36

AMM+Lending Contract Composition

37

Sushiswap + UniswapV3 + Aave

Execution Time

38

• Single Server
• AMD Ryzen

Threadripper 3960X,
48 CPU threads, 128
GB RAM and SSD
storage

• 44 parallel simulations

Limitations

39

1. Mild regularity conditions needed for learning
2. Manual specification of templates

Conclusion
• Formulation of cryptoeconomic smart-contract security as

a learning task.
• The approach can generalize to any smart-contract

by treating smart-contract bytecode as black box
simulation environment, output executable as is on-chain.
• Lanturn can scale to MEV strategies spanning over large

(>50) number of transactions efficiently, and
without modelling (complex) smart-contract behavior.
• Lanturn uncovers significant MEV by discovering not only

well-known strategies but new strategies as well

40

Paper: www.cs.cornell.edu/~babel/papers/lanturn.pdf
Github: www.github.com/lanturn-defi/lanturn

http://www.cs.cornell.edu/~babel/papers/lanturn.pdf
http://www.github.com/lanturn-defi/lanturn

41

Mutations – Gaussian+Uniform Distribution

42

Mutations - Permutations

43

