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Smart Contract Security
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Complex Interactions
• Smart-Contracts can interoperate very easily.
• Examples:

1. Lending contract can use Decentralized Exchange(DEX) 
contract as price oracle.
2. Multiple DEX contracts can be aggregated together.
3. FlashLoans + DEX
4. FlashLoans + Lending Contract ...
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MEV, Informally...
MEV = Maximal Extractable Value (or Miner Extractable 
Value) 
Ability of miners/validators/bots to extract value by 
reordering, inserting or censoring transactions

EV = Value extracted in a given transaction sequence

MEV = max(EV for any transaction sequence)

We can use MEV as the measure of Cryptoeconomic Security, 
as it models the worst case adverserial advantage.
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Talk Outline
•Previous approaches
•Lanturn
•Overview
•Optimization Module
•Simulation Module

•Evaluation
•Limitations
•Conclusion 5



Prior Approaches: Heuristics Based
•Most works encode a specific attack strategy, 

essentially looking for patterns in transaction data and 
blockchain state
•Highly efficient at finding patterns such as arbitrage, 

sandwich attacks, but…
• These approaches do not generalizable to new 

contracts or new transaction types
•As a result, these approaches do not attempt to find 

the worst-case adversarial advantage
• L. Zhou, K. Qin, C. F. Torres, D. V. Le and A. Gervais, "High-Frequency Trading on Decentralized On-

Chain Exchanges” 2021 IEEE Symposium on Security and Privacy (SP).
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Prior Approaches: Clockwork Finance
• Leverage formal verification to find the optimal value of the 

inserted transactions and optimal order of transactions that 
maximize MEV.

• Formal guarantees on the optimality of obtained MEV.

• Not scalable for complex contracts such as contracts with 
loops (Curve Finance), or large number of transactions (>10)

K. Babel, P. Daian, M. Kelkar and A. Juels, "Clockwork Finance : Automated Analysis of Economic Security in Smart 
Contracts" 2023 IEEE Symposium on Security and Privacy (SP).
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Prior Approaches

Heuristics Based Formal Methods
Efficient but not generic Generic but not scalable

Lanturn
Generic and scalable learning-based tool to find MEV 
opportunities and understand the economic security 

risks of smart contracts and their composition



Lanturn Properties
• Generalizability : No encoding of strategies and contract-

specific heuristics, black box execution of smart contract, 
but requires templates for insertions based on the interface
• Native Smart-Contract Execution : Simulates smart 

contract bytecode, profit-yielding strategies are directly 
executable on-chain
• Scalability : Scales with both contract complexity and 

number of transactions (>50 transactions, >10 insertions)
• Adaptability to computation budget : Optimization 

algorithm can be tuned to match the computation budget 
and amenable to parallelization 9



Lanturn Applications
•Developers and researchers : Directly enables 

developers and researchers to understand the 
cryptoeconomics of smart contracts
•Users: Understand the value that can be extracted 

from their transactions
• Strategic Agents : Use Lanturn to extract value and 

discover new strategies. Real-time usage can be 
supported by parallelization across servers

10



Problem Overview
• Given a pool of user transactions and the current blockchain 

state, Lanturn automatically learns to maximize the 
validator’s EV.
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Problem Overview
• The strategies include:
• How to order the transactions in the block?
• What transactions can the validator insert to take advantage of the 

block?
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• The strategies include:
• How to order the transactions in the block?

• What transactions can the validator insert to take advantage of the block?

• For the latter question, the validator transactions are selected from a 
set of templates like:

In this example,

• The tokens are filled with those that user transactions have interacted with.

• The alpha values (template-variables) are found by Lanturn such that they 
maximize EV.

Problem Overview
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System Overview
•Learning is done through iterative interactions 
between our optimization module and simulator.
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Deeper Look Inside
• High-level view of the internals of Lanturn components:• High-level view of the internals of Lanturn components:
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• Inputs to the optimizer (   ):
• User transactions to be ordered

• Templates for validator-inserted 
transactions

Deeper Look Inside
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• Output of the optimizer (   ):
• Maximal EV

• Optimal transaction order

Deeper Look Inside
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• Optimization has two hierarchical learning loops:
1. The outer loop learns the optimal 

order of transactions (    ).

2. The inner loop learns the optimal 

template-variables for the validator 

(   ).

Deeper Look Inside
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Lanturn Learning-based Optimizer
• Problem Formulation:

1. Objective function (F):  Validator’s EV in terms of Eth

2. Design Variables (  ): Order of transactions (xo), transaction amounts (xa)

3. Optimization Bounds (Xo , Xa): Accepted range of values for each design variable, 
a.k.a, the search space

Bi-level optimization:   

                                Find the best transaction order  

                               Find the best values for template-variables
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Goal: empirically search for optimal  vector:

What does optimality mean?
- High EV for the validator

Lanturn Learning-based Optimizer
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Goal: empirically search for optimal hyperparameter vector:

What does empirical mean?
- No analytical solution

- Relies on accurate simulations of EV

Lanturn Learning-based Optimizer
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Goal: empirically search for optimal hyperparameter vector:

Search-space is not small, even for the below toy problem with only 4 transactions, 

the search space covers almost 30 billion possibilities.

How to search the large space?
-Fast convergence

-Computational efficiency

-Parallelizable

Lanturn Learning-based Optimizer
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Search-space Geometry
• Visualization for finding transaction amounts for an example problem with 

validator executing a "Just-in-time" liquidity strategy.
• Search goal: Identify the peak region.
• Challenges: In general -
• Non-monotonic
• Non-convex
• High correlations between variables
• High-dimensional space

- horizontal plane: Transaction amounts 

- vertical axis: objective function (EV)
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Algorithm High Level Sketch
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1. Initialize distribution D to Uniform
2. res = 0
3. For i = 1 to N:
4.     S = Sample(D)
5.     res = max(res, EV(S))
6.     G = Good_Samples(S)
7.     D.update(G)
8. return res



Simulation Module
1. Receive a concrete transaction sequence
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1. Receive a concrete transaction sequence

2. Fork the blockchain state at height H
3. Give validator an initial capital (e.g. 10m Eth)

Simulation Module
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1. Receive a concrete transaction sequence

2. Fork the blockchain state at height H
3. Give validator an initial capital (e.g. 10m Eth)

4. Execute transaction sequence

Simulation Module
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1. Receive a concrete transaction sequence

2. Fork the blockchain state at height H
3. Give validator an initial capital (e.g. 10m Eth)

4. Execute transaction sequence

5. Convert any non-Eth tokens to Eth by

   executing DEX trades or using historical

   prices from CEX

Simulation Module
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1. Receive a concrete transaction sequence

2. Fork the blockchain state at height H
3. Give validator an initial capital (e.g. 10m Eth)

4. Execute transaction sequence

5. Convert any non-Eth tokens to Eth by

   executing DEX trades or using historical

   prices from CEX

6.  Mine block H+1
7.  Return the validator’s final Eth balance less

   initial balance.

Simulation Module
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Evaluation
• UniswapV3, UniswapV2, Sushiswap, Aave

• Dataset

• Filter blocks that have more than 500 ETH trade on Sushiswap or 
UniswapV2, 1000 ETH on UniswapV3 or Liquidation event on Aave

• CEX prices: Freely available historical minute-level price data (Binance)

• Baseline: Flashbots data for MEV bribes paid to the validators per-
bundle (pre-MEV-Boost), through gas fees and direct transfers

• Template Transactions: Symbolic transactions for swapping in either 
direction, liquidity provision and removal, liquidation on Aave
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AMM Trading – UniswapV2
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Frontrunning
Sandwiching

New Strategies



Lazarus Strategy
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Bring a dead transaction back to life

Reorder, make it succeed, but then frontrun it! 



Gas-leeching Strategy
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• MEV Bots usually have safeguards in their transactions
• But some don’t!
• Many transactions, which pay a high gas fees, run into an 

infinite loop when reordered, and end up consuming all the gas 
in the block --- transaction fees goes to the validator!



AMM Trading – UniswapV3
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Frontrunning
Sandwiching

Lazarus, Gas-Leeching



UniswapV3 Liquidity Provision
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Just-in-time(JIT) Liquidity



Multiple AMM Composition
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AMM+Lending Contract Composition
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Sushiswap + UniswapV3 + Aave



Execution Time
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• Single Server
• AMD Ryzen 

Threadripper 3960X, 
48 CPU threads, 128 
GB RAM and SSD 
storage

• 44 parallel simulations



Limitations
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1. Mild regularity conditions needed for learning
2. Manual specification of templates



Conclusion
• Formulation of cryptoeconomic smart-contract security as 

a learning task.
• The approach can generalize to any smart-contract 

by treating smart-contract bytecode as black box 
simulation environment, output executable as is on-chain.
• Lanturn can scale to MEV strategies spanning over large 

(>50) number of transactions efficiently, and 
without modelling (complex) smart-contract behavior.
• Lanturn uncovers significant MEV by discovering not only 

well-known strategies but new strategies as well
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Paper: www.cs.cornell.edu/~babel/papers/lanturn.pdf
Github: www.github.com/lanturn-defi/lanturn

http://www.cs.cornell.edu/~babel/papers/lanturn.pdf
http://www.github.com/lanturn-defi/lanturn
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Mutations – Gaussian+Uniform Distribution
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Mutations - Permutations
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