
Journal of Computer Security 28 (2020) 71–127 71
DOI 10.3233/JCS-191366
IOS Press

On the semantics of communications when
verifying equivalence properties

Kushal Babel a, Vincent Cheval b,∗ and Steve Kremer b

a Cornell University, US
E-mail: babel@cs.cornell.edu
b Inria Nancy Grand-Est, Loria, France
E-mails: vincent.cheval@inria.fr, steve.kremer@inria.fr

Abstract. Symbolic models for security protocol verification were pioneered by Dolev and Yao in their seminal work. Since
then, although inspired by the same ideas, many variants of the original model were developed. In particular, a common as-
sumption is that the attacker has complete control over the network and can therefore intercept any message. This assumption
has been interpreted in slightly different ways depending on the particular models: either any protocol output is directly routed
to the adversary, or communications may be among any two participants, including the attacker – the scheduling between
which exact parties the communication happens is left to the attacker. This difference may seem unimportant at first glance
and, depending on the verification tools, either one or the other semantics is implemented. We show that, unsurprisingly, they
indeed coincide for reachability properties. However, for indistinguishability properties, we prove that these two interpretations
lead to incomparable semantics. We also introduce and study a new semantics, where internal communications are allowed but
messages are always eavesdropped by the attacker. This new semantics yields strictly stronger equivalence relations. Moreover,
we identify two subclasses of protocols for which the three semantics coincide. Finally, we implemented verification of trace
equivalence for each of the three semantics in the DeepSec tool and compare their performances on several classical examples.

Keywords: Cryptographic protocols, symbolic models, verification, semantics, equivalence properties

1. Introduction

Automated, symbolic analysis of security protocols, based on the seminal ideas of Dolev and Yao,
comes in many variants. All of these models however share a few fundamental ideas:

• messages are represented as abstract terms,
• adversaries are computationally unbounded, but may manipulate messages only according to pre-

defined rules (this is sometimes referred to as the perfect cryptography assumption), and
• the adversary completely controls the network.

In this paper we will revisit this last assumption. Looking more precisely at different models we
observe that this assumption may actually slightly differ among the models. The fact that the adversary
controls the network is supposed to represent a worst case assumption.

In some models this assumption translates to the fact that every protocol output is sent to the adversary,
and every protocol input is provided by the adversary. This is the case in the original Dolev Yao model
and also in the models underlying several tools, such as AVISPA [8], Scyther [20], Tamarin [27], Millen

*Corresponding author. E-mail: vincent.cheval@inria.fr.

0926-227X/20/$35.00 © 2020 – IOS Press and the authors. All rights reserved

mailto:babel@cs.cornell.edu
mailto:vincent.cheval@inria.fr
mailto:steve.kremer@inria.fr
mailto:vincent.cheval@inria.fr

72 K. Babel et al. / On the semantics of communications when verifying equivalence properties

and Shmatikov’s constraint solver [24], and the model used in Paulson’s inductive approach [25]. We will
refer to this choice of semantics as the private semantics, as internal communications are only allowed
on private channels.

Some other models, such as those based on process algebras, e.g. work based on CSP [26], the Spi [3]
and applied pi calculus [1], but also the strand space model [28], consider a slightly different commu-
nication model: any two agents may communicate. Scheduling whether communication happens among
two honest participants, or a honest participant and the attacker is under the attacker’s control. We will
refer to this choice of semantics as the classical semantics, as it corresponds to what is generally used in
process calculi.

When considering reachability properties, these two communication models indeed coincide: intu-
itively, any internal communication could go through the adversary who acts as a relay and increases
his knowledge by the transmitted message. However, when considering indistinguishability properties,
typically modelled as process equivalences, these communication models diverge. Interestingly, when
forbidding internal communication, i.e., forcing all communication to be relayed by the attacker, we may
weaken the attacker’s distinguishing power. This observation may seem counter-intuitive at first. How-
ever, executing a (non-observable) internal communication may enable actions that are otherwise only
available after an observable input. These actions may then provide additional capabilities for simulating
the other process.

In many recent work privacy properties have been modelled using process equivalences, see for in-
stance [6,21,22]. The number of tools able to verify such properties is also increasing [12–14,16,18,29].
For instance, the AKISS [13] and SAT-EQUIV [18] tools do not allow any direct communication on public
channels, while the APTE [14] and DeepSec [16] tools allow for internal communications. One motiva-
tion for disallowing direct communication is that it allows for more efficient verification (as less actions
need to be considered and the number of interleavings to be considered is smaller).

Our contributions. We have formalised three semantics in the applied pi calculus which differ by the
way communication is handled:

• the classical semantics (as in the original applied pi calculus) allows both internal communication
among honest participants and communication with the adversary;

• the private semantics allows internal communication only on private channels while all communi-
cation on public channels is routed through the adversary;

• the eavesdropping semantics which allows internal communication, but as a side-effect adds the
transmitted message to the adversary’s knowledge.

For each of the new semantics we define may-testing and observational equivalences. We also define
corresponding labelled semantics and trace equivalence and bisimulation relations (which may serve as
proof techniques).

We show that, as expected, the three semantics coincide for reachability properties. For equivalence
properties we show that the classical and private semantics yield incomparable equivalences, while the
eavesdropping semantics yields strictly stronger equivalence relations than both other semantics. The
results are summarized in Fig. 4.

An interesting question is whether these semantics coincide for specific subclasses of processes. We
note that the processes that witness the differences in the semantics do not use replication, private chan-
nels, nor terms other than names, and no equational theory. Moreover, all except one of these examples
only use trivial else branches (of the form else 0); the use of a non-trivial else branch can even be avoided
by allowing a single free symbol.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 73

We first study different notions of determinate processes: in the context of the applied pi calculus,
Cheval et al. [15] have for instance shown that observational, testing, trace equivalence and labelled
bisimulation coincide for this class of processes (for the classic semantics). We will show that this is
actually the case for all semantics and show, among others that the private and eavesdropping semantics
do coincide on these equivalences, and imply them for the classic semantics. We consider several specific
subclasses of determinate processes when we bound the number of sessions. In particular, we show that
all equivalences and semantics coincide for the class of strong action determinate processes. This class
is of practical importance as this condition is checked in the AKISS and DeepSec tools to enable partial
order reduction optimizations [10]. These optimizations provide spectacular speed-ups, but they were
designed and shown correct only in the private semantics. Showing that all three semantics coincide for
strong action determinate processes lifts the benefit of these optimizations to the other semantics. The
results on subclasses of determinate processes are summarized in Fig. 8.

We also identify a syntactic class of processes, that we call I/O-unambiguous. For this class we for-
bid communication on private channels, communication of channel names and an output may not be
sequentially followed by an input on the same channel directly, or with only conditionals in between.
Note however that I/O-unambiguous processes, unlike most determinate processes, do allow outputs and
inputs on the same channel in parallel. We show that for this class the eavesdropping semantics (which
is the most strict relation) coincides with the private one (which is the most efficient for verification).

Finally, we extended the DeepSec tool to support verification of trace equivalence for the three se-
mantics. Verifying existing protocols in the DeepSec example repository we verified that the results,
fortunately, coincided for each of the semantics. We also made slight changes to the encodings, renam-
ing some channels, to make them I/O-unambiguous. Interestingly, using different channels, significantly
increased the performance of the tool. Finally, we also observed that, as expected, the private semantics
yields more efficient verification. The results of our experiments are summarized in Section 5.

A preliminary version of this work appeared in [9]. In contrast to [9], this work contains full proofs of
all results, new results for several subclasses of processes, giving a detailed comparison of the different
semantics and equivalences, as well as an implementation of all three semantics in the DeepSec tool,
together with an experimental evaluation.

Outline. In Section 2 we define the three semantics we consider. In Section 3 we present our main re-
sults on comparing these semantics. We present subclasses for which (some) semantics coincide in Sec-
tion 4 and compare the performances when verifying protocols for different semantics using DeepSec
in Section 5, before concluding in Section 6.

2. Model

The applied pi calculus [1] is a variant of the pi calculus that is specialised for modelling cryptographic
protocols. Participants in a protocol are modelled as processes and the communication between them is
modelled by message passing on channels. In this section, we describe the syntax and semantics of the
applied pi calculus as well as the two new variants that we study in this paper.

2.1. Syntax

We consider an infinite set N of names of base type and an infinite set Ch of names of channel type.
We also consider an infinite set of variables X of base type and channel type and a signature F consisting

74 K. Babel et al. / On the semantics of communications when verifying equivalence properties

P, Q := 0 plain processes A, B := P extended processes
P | Q A | B

!P νn.A

νn.P νx.A

if u = v then P else Q {u/x}
inθ (c, x).P ωc

outθ (c, u).P

eav(c, x).P

where u and v are base type terms, n is a name, x is a variable and c is a name or variable of channel
type, θ is a tag, i.e. θ ∈ {ho, at}.

Fig. 1. Syntax of processes.

of a finite set of function symbols. We rely on a sort system for terms. In particular, the sort base type
differs from the sort channel type. Moreover, any function symbol can only be applied to and returns
base type terms. We define terms as names, variables and function symbols applied to other terms. Given
N ⊆ N , X ⊆ X and F ⊆ F , we denote by T (F, X, N) the sets of terms built from X and N by applying
function symbols from F . We denote v(t) the sets of variables occurring in t . We say that t is ground if
v(t) = ∅. We describe the behaviour of cryptographic primitives by the means of an equational theory E
that is a relation on terms closed under substitutions of terms for variables and closed under one-to-one
renaming. Given two terms u and v, we write u =E v when u and v are equal modulo the equational
theory.

In the original syntax of the applied pi calculus, there is no distinction between an output (resp. input)
from a protocol participant and from the environment, also called the attacker. In this paper however, we
will make this distinction in order to concisely present our new variants of the semantics. Therefore, we
consider two process tags ho and at that respectively represent honest and attacker actions. The syntax
of plain processes and extended processes is given in Fig. 1.

The process outθ (c, u) represents the output by θ of the message u on the channel c. The process
inθ (c, x) represents an input by θ on the channel c. The input message will instantiate the variable x.
The process eav(c, x) models the capability of the attacker to eavesdrop a communication on channel
c. The process !P represents the replication of the process P , i.e. unbounded number of copies of P .
The process P | Q represents the parallel composition of P and Q. The process νn.P (resp. νx.A) is
the restriction of the name n in P (resp. variable x in A). The process if u = v then P else Q is the
conditional branching under the equality test u = v. The process ωc records that a private channel c

has been opened, i.e., it has been sent on a public or previously opened channel. Finally, the substitution
{u/x} is an active substitution that replaces the variable x with the term u of base type.

We say that a process P (resp. extended process A) is an honest process (resp. honest extended process)
when all inputs and outputs in P (resp. A) are tagged with ho and when P (resp. A) does not contain
eavesdropping processes and ωc. We say that a process P (resp. extended process A) is an attacker
process (resp. attacker extended process) when all inputs and outputs in P (resp. A) are tagged with at.

As usual, names and variables have scopes which are delimited by restrictions, inputs and eavesdrops.
We denote fv(A), bv(A), fn(A), bn(A) the sets of free variables, bound variables, free names and bound
names respectively in A. Moreover, we denote by oc(A) the sets of terms c of channel type opened in
A, i.e. that occurs in a process ωc. We say that an extended process A is closed when all variables in

K. Babel et al. / On the semantics of communications when verifying equivalence properties 75

A are either bound or defined by an active substitution in A. We define an evaluation context C[_] as
an extended process with a hole instead of an extended process. As for processes, we define an attacker
evaluation context as an evaluation context where all outputs and inputs in the context are tagged with
at.

Note that our syntax without the eavesdropping process, opened channels and tags correspond exactly
to the syntax of the original applied pi calculus.

Lastly, we consider the notion of frame that are extended processes built from 0, parallel composition,
name and variable restrictions and active substitution. Given a frame ϕ, we consider the domain of ϕ,
denoted dom(ϕ), as the set of free variables in ϕ that are defined by an active substitution in ϕ. Given
an extended process A, we define the frame of A, denoted φ(A), as the process A where we replace all
plain processes by 0. Finally, we write dom(A) as syntactic sugar for dom(φ(A)).

2.2. Operational semantics

In this section, we define the three semantics that we study in this paper, namely:

• the classical semantics from the applied pi calculus, where internal communication can occur on
both public and private channels;

• the private semantics where internal communication can only occur on private channels; and
• the eavesdropping semantics where the attacker is able to eavesdrop on a public channel.

We first define the structural equivalence between extended processes, denoted ≡, as the smallest
equivalence relation on extended processes that is closed under renaming of names and variables, closed
by application of evaluation contexts, that is associative and commutative w.r.t. |, and such that:

A ≡ A | 0 !P ≡ !P | P νn.0 ≡ 0
νi.νj.A ≡ νj.νi.A νx.{u/x} ≡ 0 {u/x} | A ≡ {u/x} | A{u/x}

A | νi.B ≡ νi.(A | B) when i /∈ fv(A) ∪ fn(A) ωc ≡ ωc | ωc

{u/x} ≡ {v/x} when u =E v

The three operational semantics of extended processes are defined by the structural equivalence and
by three respective internal reductions, denoted →c, →p and →e. These three reductions are the small-
est relations on extended processes that are closed under application of evaluation context, structural
equivalence and such that:

if u = v then P else Q
τ−→s P where u =E v and s ∈ {c, p, e} THEN

if u = v then P else Q
τ−→s Q ELSE

where u, v ground, u 	=E v and s ∈ {c, p, e}

outθ (c, u).P | inθ ′
(c, x).Q

τ−→c P | Q{u/x} COMM

76 K. Babel et al. / On the semantics of communications when verifying equivalence properties

νc.(outθ (c, u).P | inθ ′
(c, x).Q | R)

τ−→s νc.(P | Q{u/x} | R) C-PRIV

where c /∈ oc(R) and s ∈ {p, e}
outθ (c, u).P | inθ ′

(c, x).Q
τ−→s P | Q{u/x} C-ENV

at ∈ {θ, θ ′}, u is of base type and s ∈ {p, e}
outθ (c, d).P | inθ ′

(c, x).Q
τ−→s P | Q{d/x} | ωd C-OPEN

at ∈ {θ, θ ′}, d is of channel type and s ∈ {p, e}
outho(c, u).P | inho(c, x).Q | eav(c, y).R

τ−→e P | Q{u/x} | R{u/y} C-EAV

where u is of base type
outho(c, d).P | inho(c, x).Q | eav(c, y).R

τ−→e P | Q{d/x} | R{d/y} | ωd C-OEAV

where d is of channel type

We emphasise that the application of the rule is closed under application of arbitrary evaluation contexts.
In particular the context may restrict channels, e.g. the rule C-OPEN may be used under the context νc._
resulting in a private channel c, but with the attacker input/output being in the scope of this restriction.
It follows from the definition of evaluation contexts that the resulting processes are always well defined.
We denote by ⇒s the reflexive, transitive closure of

τ−→s for s ∈ {c, p, e}. We note that the classical
semantics

τ−→c is independent of the tags θ, θ ′, the eavesdrop actions and the ωc processes.

Example 1. Consider the process

A = (νd.outθ (c, d).inθ (d, x).P) | (inθ ′
(c, y).outθ

′
(y, t).Q)

where d is a channel name and t a term of base type. Suppose θ = θ ′ = ho then we have that communi-
cation is only possible in the classical semantics (using twice the COMM rule):

A
τ−→c νd.(inθ (d, x).P | outθ

′
(d, t).Q{d/y})

τ−→c νd.(P {t /x} | Q{d/y})

while no transitions are available in the two other semantics. To enable communication in the eavesdrop-
ping semantics we need to explicitly add eavesdrop actions. Applying the rules C-OEAV and C-EAV we
have that

A | eav(c, z1).eav(z1, z2).R
τ−→e νd.(inθ (d, x).P | outθ

′
(d, t).Q{d/y}

| eav(d, z2).R{d/z1} | ωd)
τ−→e νd.(P {t /x} | Q{d/y} | R{d/z1}{t /z2} | ωd)

We note that the first transition adds the information ωd to indicate that d is now available to the envi-
ronment.

Finally, if we consider that at ∈ {θ, θ ′} then internal communication on a public channel is possible
and, using rules C-OPEN and C-ENV we obtain for s ∈ {p, e} that

A
τ−→s νd.(inθ (d, x).P | outθ

′
(d, t).Q{d/y} | ωd)

τ−→s νd.(P {t /x} | Q{d/y} | ωd)

K. Babel et al. / On the semantics of communications when verifying equivalence properties 77

2.3. Reachability and behavioural equivalences

We are going to compare the relation between the three semantics for the two general kind of security
properties, namely reachability properties encoding security properties such as secrecy, authentication,
and equivalence properties encoding properties such as anonymity, unlinkability, strong secrecy, and
receipt freeness. Intuitively, reachability properties encode that a process cannot reach some bad state.
Equivalences define the fact that no attacker can distinguish two processes. This was originally defined
by the (may)-testing equivalence [3] in the spi-calculus. An alternate equivalence, which was considered
in the applied pi calculus [1], is observational equivalence.

Reachability properties can simply be encoded by verifying the capability of a process to perform an
output on a given channel. We define A ⇓s,θ

c to hold when A =⇒s C[outθ (c, t).P] for some evaluation
context C that does not bind c, some term t and some plain process P , and A ⇓s

c to hold when A ⇓s,θ
c

for some θ ∈ {at, ho}. For example the secrecy of s in the process νs.A can be encoded by checking
whether for all attacker plain process I , we have that

I | νs.(A | inho(c, x).if x = s then outho(bad, s)) 	⇓s,ho
bad

where bad /∈ fn(A).
Authentication properties are generally expressed as correspondence properties between events anno-

tating processes, see e.g. [11]. A correspondence property between two events begin and end, denoted
begin ⇐ end, requires that the event end is preceded by the event begin on every trace. A possible
encoding of this correspondence property consists in first replacing all instances of the events in A by
outputs outho(ev, begin) and outho(ev, end) where ev /∈ fn(A)∪ bn(A). This new process A′ can then be
put in parallel with a cell Cell that reads on the channel ev and stores any new value unless the value is
end and the current stored value in the cell is not begin. In such a case, the cell will output on the channel
bad. The correspondance property can therefore be encoded by checking whether for all attacker plain
process I , we have that I | νev.(A′ | Cell) 	⇓s,ho

bad .
We say that an attacker evaluation context C[_] is c-closing for an extended process A if fv(C[A]) = ∅.

For s ∈ {p, e}, we say that C[_] is s-closing for A if it is c-closing for A, variables and names are bound
only once in C[_] and for all channels c ∈ bn(C[_]) ∩ fn(A), if the scope of c includes _ then the scope
of c also includes ωc.

We next introduce the two main notions of behavioural equivalences: may testing and observational
equivalence.

Definition 1 ((May-)Testing equivalences ≈c
m, ≈p

m, ≈e
m). Let s ∈ {c, p, e}. Let A and B two closed hon-

est extended processes such that dom(A) = dom(B). We say that A ≈s
m B if for all attacker evaluation

contexts C[_] s-closing for A and B, for all channels c, we have that C[A] ⇓s
c if and only if C[B] ⇓s

c.

Definition 2 (Observational equivalences ≈c
o, ≈p

o, ≈e
o). Let s ∈ {c, p, e}. Let A and B two closed

extended processes such that dom(A) = dom(B). We say that A ≈s
o B if ≈s

o is the largest equivalence
relation such that:

• A ⇓s
c implies B ⇓s

c;

• A
τ−→s A′ implies B

ε=⇒s B ′ and A′ ≈s
o B ′ for some B ′;

• C[A] ≈s
o C[B] for all attacker evaluation contexts C[_] s-closing for A and B.

78 K. Babel et al. / On the semantics of communications when verifying equivalence properties

A =̂ νd.outho(d, a) | !inho(d, x).outho(d, h(x)) | inho(d, y).outho(c, y)

B =̂ νe.outho(e, a) | inho(e, z).A | inho(e, z).νs.outho(c, s)

Fig. 2. Processes A and B such that A ≈s
m B, but A 	≈s

o B and A 	≈s
t B for s ∈ {c, e, p}.

For each of the semantics we have the usual relation between these two notions: observational equiv-
alence implies testing equivalence.

Proposition 1. ≈s
o � ≈s

m for s ∈ {c, e, p}.
Example 2. Consider processes A and B of Fig. 2. Process A computes a value hn(a) to be output
on channel c, where hn(a) denotes n applications of h and h0(a) = a. The value is initially a and A

may choose to either output the current value, or update the current value by applying the free symbol
h. B may choose non-deterministically to either behave as A or output the fresh name s. (The non-
deterministic choice is encoded by a communication on the private channel e which may be received by
either the process behaving as A or the process outputting s.)

We have that A 	≈s
o B. The two processes can indeed be distinguished by the context

C[_] =̂ _ | outat(ca, a) | !(inat(ca, x).outat(ca, h(x))

| inat(ca, y).inat(c, z).if y = z then outat(ct , h(x))

Intuitively, when B outputs s the attacker context C[_] can iterate the application of h the same number
of times as would have done process A. Comparing the value computed by the adversary (hn(a)) and the
honestly computed value (either hn(a) or s) the adversary distinguishes the two processes by outputting
on the test channel ct .

However, we have that A ≈s
m B. Indeed, for any s-closing context D[_] and all public channel ch we

have that D[A] ⇓s
ch if and only if D[B] ⇓s

ch. In particular for context C[_] defined above we have that
both C[A] ⇓s

ch and C[B] ⇓s
ch for ch ∈ {ca, ct , c}. Unlike observational equivalence, may testing does not

require to “mimic” the other process stepwise and we cannot force a process into a particular branch.

2.4. Labelled semantics

The internal reduction semantics introduced in the previous section requires to reason about ar-
bitrary contexts. Similar to the original applied pi calculus, we extend the three operational se-
mantics by a labeled operational semantics which allows processes to directly interact with the

(adversarial) environment: we define the relation
	−→c,

	−→p and
	−→e where 	 is part of the al-

phabet A = {τ, out(c, d), eav(c, d), in(c, w), νk.out(c, k), νk.eav(c, k) | c, d ∈ Ch, k ∈ X ∪
Ch and w is a term of any sort}. The labeled rules are given in Fig. 3.

Consider our alphabet of actions A defined above. Given w ∈ A∗, s ∈ {c, p, e} and an extended

process A, we say that A
w−→s An when A

	1−→s A1
	2−→s A2

	3−→s . . .
	n−→s An for some extended processes

A1, . . . , An and w = 	1 · . . . · 	n. By convention, we say that A
ε−→s A where ε is the empty word. Given

tr ∈ (A \ {τ })∗, we say that A
tr=⇒s A′ when there exists w ∈ A∗ such that tr is the word w where we

remove all τ actions and A
w−→s A′.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 79

IN inho(c, y).P
in(c,t)−−−→s P {t /y}

OUT-CH outho(c, d).P
out(c,d)−−−−→s P

OPEN-CH
A

out(c,d)−−−−→s A′ d 	= c

νd.A
νd.out(c,d)−−−−−→s A′

EAV-OCH
A

eav(c,d)−−−−→e A′ d 	= c

νd.A
νd.eav(c,d)−−−−−−→e A′

SCOPE
A

	−→s A′ u does not occur in 	

νu.A
	−→s νu.A′

bn() ∩ fn(B) = ∅
PAR

A
	−→s A′ bv() ∩ fv(B) = ∅

A | B
	−→s A′ | B

STRUCT
A ≡ B B

	−→s B ′ B ′ ≡ A′

A
	−→s A′

EAV-CH outho(c, d).P | inho(c, x).Q
eav(c,d)−−−−→e P | Q{d/x}

EAV-T outho(c, t).P | inho(c, x).Q
νy.eav(c,y)−−−−−→e P | Q{t /x} | {t /y}

OUT-T outho(c, t).P
νx.out(c,x)−−−−−→s P | {t /x}

x /∈ fv(P) ∪ v(t)

where s ∈ {c, p, e}.
Fig. 3. Labeled semantics.

Example 3. Coming back to Example 1, we saw that A
τ−→c

τ−→c νd.(P {t /x} | Q{d/y}) and no τ -actions
in the other two semantics were available. Instead of explicitly adding eavesdrop actions, we can apply
the rules EAV-OCH and EAV-T and obtain that

A
νd.eav(c,d)−−−−−−→e inho(d, x).P | outho(d, t).Q{d/y})
νz.eav(d,z)−−−−−→e P {t /x} | Q{d/y} | {t /z}

We can now define both reachability and different equivalence properties in terms of these labelled
semantics and relate them to the internal reduction. To define reachability properties in the labelled

semantics, we define A �s
c to hold when A

tr=⇒ A′, tr = tr1out(c, t)tr2 and tr1 does not bind c for some
tr, tr1, tr2 ∈ (A \ {τ })∗, term t and extended process A′.

The following proposition states that any reachability property modelled in terms of A ⇓s,θ
c and uni-

versal quantification over processes, can also be expressed using A �s
c without the need to quantify over

processes.

Proposition 2. For all closed honest plain processes A, for all s ∈ {c, e, p}, A �s
c iff there exists an

attacker plain process I s such that I s | A ⇓s,ho
c .

Next, we define equivalence relations using our labelled semantics that may serve as proof techniques
for the may testing relation. First we need to define an indistinguishability relation on frames, called
static equivalence [1].

Definition 3 (Static equivalence ∼). Two terms u and v are equal in the frame φ, written (u =E v)φ, if
there exists ñ and a substitution σ such that φ ≡ νñ.σ , ñ ∩ (fn(u) ∪ fn(v)) = ∅, and uσ =E vσ .

Two closed frames φ1 and φ2 are statically equivalent, written φ1 ∼ φ2, when:

80 K. Babel et al. / On the semantics of communications when verifying equivalence properties

• dom(φ1) = dom(φ2), and
• for all terms u, v we have that: (u =E v)φ1 if and only if (u =E v)φ2.

Example 4. Consider the equational theory generated by the equation dec(enc(x, y), y) = x. Then we
have that

νk. {enc(a,k)/x1} ∼ νk. {enc(b,k)/x1}
νk. {enc(a,k)/x1,

k/x2} � νk. {enc(b,k)/x1,
k/x2}

νk, a. {enc(a,k)/x1,
k/x2} ∼ νk, b. {enc(b,k)/x1,

k/x2}
Intutively, the first equivalence confirms that encryption hides the plaintext when the decryption key is
unknown. The second equivalence does not hold as the test (dec(x1, x2) =E a) holds on the left hand
side, but not on the right hand side. Finally, the third equivalence again holds as two restricted names are
indistinguishable.

Now we are ready to define two classical equivalences on processes, based on the labelled semantics:
trace equivalence and labelled bisimulation.

Definition 4 (Trace equivalences ≈c
t , ≈p

t , ≈e
t). Let s ∈ {c, p, e}. Let A and B be two closed honest

extended processes. We say that A �s
t B if for all A

tr=⇒s A′ such that bn(tr) ∩ fn(B) = ∅, there exists B ′

such that B
tr=⇒s B ′ and φ(A′) ∼ φ(B ′). We say that A ≈s

t B when A �s
t B and B �s

t A.

Definition 5 (Labeled bisimulations ≈c
	, ≈p

	, ≈e
). Let s ∈ {c, p, e}. Let A and B two closed honest

extended processes such that dom(A) = dom(B). We say that A ≈s
	 B if ≈s

	 is the largest equivalence
relation such that:

• φ(A) ∼ φ(B)

• A
τ−→s A′ implies B

ε=⇒s B ′ and A′ ≈s
	 B ′ for some B ′,

• A
	−→s A′ and bn() ∩ fn(B) = ∅ implies B

	=⇒s B ′ and A′ ≈s
	 B ′ for some B ′.

We again have, as usual that labelled bisimulation implies trace equivalence.

Proposition 3. ≈s
	 � ≈s

t for s ∈ {c, e, p}.
In [1] it is shown that ≈c

o = ≈c
	. We conjecture that for the new semantics p and e this same equivalence

holds as well. Re-showing these results is beyond the scope of this paper, and we will mainly focus on
testing/trace equivalence. As shown in [15], for the classical semantics trace equivalence implies may
testing, while the converse does not hold in general. The two relations do however coincide on image-
finite processes.

Definition 6. Let A be a closed extended process. A is image-finite for the semantics s ∈ {c, e, p} if for

each trace tr the set of equivalence classes {φ(B) | A
tr=⇒s B}/∼ is finite.

Note that any replication-free process is necessarily image-finite as there are only a finite number of
possible traces for any given sequence of labels tr. The same relations among trace equivalence and may
testing shown for the classical semantics hold also for the other semantics.

Theorem 1. ≈s
t � ≈s

m and ≈s
t = ≈s

m on image-finite processes for s ∈ {c, e, p}.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 81

Fig. 4. Overview of the results.

The proof of this result (for the classical semantics) is given in [15] and is easily adapted to the other
semantics. To see that the implication is strict, we continue Example 2 on processes A and B defined in
Fig. 2. We already noted that A ≈s

m B, but will now show that A 	≈s
t B (for s ∈ {c, e, p}). All possible

traces of A are of the form A
νx.out(c,x)=====⇒s A′ where φ(A′) = {hn(a)/x} for n ∈ N. We easily see that

A 	≈s
t B as for any n we have that {hn(a)/x} � {s/x}, by testing x = hn(a). On the other hand, given an

image-finite process, we can only have a finite number of different frames for a given trace, and therefore
we can bound the context size that is necessary for distinguishing the processes.

3. Comparing the different semantics

In this section we state our results on comparing these semantics. Results on equivalence comparison
are summarized in Fig. 4.

We first show that, as expected, all the semantics coincide for reachability properties.

Theorem 2. For all ground, closed honest extended processes A, for all channels d, we have that A �p
d

iff A �c
d iff A �e

d .

The next result is, in our opinion, more surprising. As the private semantics force the adversary to
observe all information, one might expect that his distinguishing power increases over the classical one.
This intuition is however wrong: the classical and private trace equivalences, testing equivalence and
labelled bisimulations appear to be incomparable.

Theorem 3. ≈p
r � ≈c

r and ≈c
r � ≈p

r for r ∈ {	, t, m}.

Proof. We show both statements separately.

≈p
r � ≈c

r . We first show that there exist A and B such that A ≈p
	 B, but A 	≈c

m B. Note that, as
≈s

	 ⊂ ≈s
t ⊆ ≈s

m for s ∈ {c, p} these processes demonstrate both that ≈p
	 � ≈c

	, ≈p
t � ≈c

t and ≈p
m � ≈c

m.
Consider processes A and B defined in Fig. 5. In short, the result follows from the fact that if A per-

forms an internal communication on channel c followed by an output on d (from P1), B has no choice
other then performing the output on d in P2. In the private semantics, however, the internal communi-
cation will be split in an output followed by an input: after the output on c, the input inho(c, x).P2(x)

following the output becomes available. More precisely, to see that A ≈p
	 B we first observe that if

A
νz.out(c,z)−−−−−→p A′ then B

νz.out(c,z)−−−−−→p B ′ and A′ ≡ B ′, and vice-versa. If A
in(c,t)−−−→p A′ then B

in(c,t)−−−→p B ′.

82 K. Babel et al. / On the semantics of communications when verifying equivalence properties

A =̂ νs1.νs2.((outho(c, s1).in
ho(c, x).P1(x)) | (inho(c, y).P2(y)))

B =̂ νs1.νs2.((outho(c, s1).in
ho(c, x).P2(x)) | (inho(c, y).P1(y)))

where

P1(x) =̂ (if x = s1 then outho(d, s2)) | (if x = s2 then outho(e, x))

P2(x) =̂ (if x = s1 then outho(d, s2))

To emit on channel e, processes A and B must execute P2(s1) followed by P1(s2). In the classical
semantics, a trace of A emitting on e through an internal communication between outho(c, s1) and

inho(c, y) forces B to execute P1(s1) thus preventing it to emit on e.

Fig. 5. Processes A and B such that A ≈p
	 B and A 	≈c

m B.

As t /∈ {s1, s2} we have that P1(t) ≈p
	 0 ≈p

	 P2(t). Finally, if t 	= s2 we also have that P1(t) ≈p
	 P2(t) as

in particular P1(s1) ≈p
	 P2(s1). Therefore,

νs1.νs2.(outho(c, s1).in
ho(c, x).P1(x)) ≈p

	 νs1.νs2.(outho(c, s1).in
ho(c, x).P2(x))

which allows us to conclude.
As A and B are image-finite, we have that A ≈c

m B if and only if A ≈c
t B. To see that A 	≈c

t B we
observe that A may perform the following transition sequence, starting with an internal communication
on a public channel:

A
τ−→c νs1.νs2.((in

ho(c, x).P1(x)) | (P2(s1)))
νz.out(d,z)=====⇒c νs1.νs2.((in

ho(c, x).P1(x)) | {s2/z})
in(c,z)−−−→c νs1.νs2.(P1(s2) | {s2/z})

In order to mimic the behaviour of A, B must perform the same sequence of observable transitions:

B
νz.out(d,z) in(c,z)=========⇒c νs1.νs2.(P2(s2) | {s2/z})

We conclude as νs1.νs2.(P1(s2) | {s2/z}) νz′.out(e,z′)−−−−−−→ νs1.νs2.({s2/z} | {s2/z′ }), but νs1.νs2.(P2(s2) |
{s2/z}) 	 νz′.out(e,z′)−−−−−−→. This trace inequivalence has also been shown using DeepSec.

≈c
r � ≈p

r . To show that ≈c
r � ≈p

r for r ∈ {	, t, m} we show that there exist processes A and B such
that A ≈c

	 B and A 	≈p
m B. As in the first part of the proof, note that, as ≈s

	 ⊂ ≈s
t ⊆ ≈s

m for s ∈ {c, p}
these processes demonstrate that ≈c

	 � ≈p
	, ≈c

t � ≈p
t and ≈c

m � ≈p
m.

Consider the processes A and B defined in Fig. 6. The proof crucially relies on the fact that B may
perform an internal communication in the classical semantics to mimic A, which becomes visible in the
attacker in the private semantics. To see that A ≈c

	 B we first observe that the only first possible action

from A or B is an input. In particular, given a term t , there is a unique B ′ such that B
in(c,t)−−−→ B ′ where

B ′ = νs.(outho(c, s).outho(d, a) | inho(c, y).P (y)). However, if A
in(c,t)−−−→ A′ then either A′ = B ′ or

A′ = A′′ with A′′ =̂ νs.(inho(c, x).outho(c, s).outho(d, a) | P(t)). Therefore, to complete the proof, we

K. Babel et al. / On the semantics of communications when verifying equivalence properties 83

A =̂ νs.(inho(c, x).outho(c, s).outho(d, a) | inho(c, y).P (y))

B =̂ νs.(inho(c, x).(outho(c, s).outho(d, a) | inho(c, y).P (y)))

where

P(y) =̂ if y = s then inho(c, z).outho(c, s).outho(d, a) else outho(d, a)

In the private semantics, a trace of A starting with the execution of inho(c, y) can only be matched on B

by executing inho(c, x). B could then emit on channel c, which is not the case for A, hence yielding non
equivalence. In the classic semantics, an internal communication between outho(c, s) and inho(c, y)

allows to hide the fact that B can emit on c.

Fig. 6. Processes A and B such that A ≈c
	 B and A 	≈p

m B.

only need to find B ′′ such that B
in(c,t)===⇒ B ′′ and A′′ ≈c

	 B ′′. Such a process can be obtained by applying

an internal communication on B ′, i.e. B
in(c,t)−−−→c B ′ τ−→ νs.(outho(d, a) | P(s)). Note that t 	= s since s

is bound, meaning that P(t) ≈c
	 outho(d, a). Moreover, P(s) ≈c

	 inho(c, x).outho(c, s).outho(d, a). This
allows us to conlude that νs.(outho(d, a) | P(s)) ≈c

	 A′′.
Again, as A and B are image-finite may and trace equivalence coincide. To see that A 	≈p

t B we first
observe that A may perform the following transition sequence:

A
in(c,t)−−−→p A′′ τ−→p νs.(inho(c, x).outho(c, s).outho(d, a) | outho(d, a))

νz.out(d,z)−−−−−→p νs.(inho(c, x).outho(c, s).outho(d, a) | {a/z})

We conclude as B
in(c,t)−−−→p B ′ but B ′ 	 νz.out(d,z)−−−−−→p. Violation of this trace equivalence has also been shown

using the DeepSec tool. �

One may also note that the counter-example witnessing that equivalences in the private semantics do
not imply equivalences in the classical semantics is minimal: it does not use function symbols, equational
reasoning, private channels, replication nor else branches. The second part of the proof relies on the use
of else branches. We can however refine this result in the case of labeled bisimulation to processes
without else branches, the counter-example being the same processes A and B described in the proof
but where we replace each outho(d, a) by 0. In the case of trace equivalence, we can also produce a
counter-example without else branches witnessing that trace equivalences in the classical semantics do
no imply trace equivalences in the private semantics but provided that we rely on a function symbol h.
In the Appendix, we describe in more details these processes and give the proofs of them being counter-
examples.

Next, we show that the eavesdropping semantics yields strictly stronger bisimulations, trace and may
testing equivalences: the eavesdropping semantics is actually strictly included in the intersection of the
classic and private semantics.

Theorem 4. ≈e
t � ≈p

t ∩ ≈c
t .

Proof sketch. We show the result in 3 steps: we show that (1) ≈e
t ⊆ ≈p

t , (2) ≈e
t ⊆ ≈c

t , and (3) that the
implication is strict, i.e., there exist A, B such that A ≈p

t B, A ≈c
t B and A 	≈e

t B.

84 K. Babel et al. / On the semantics of communications when verifying equivalence properties

A =̂ νs1.νs2.((outho(c, s1).in
ho(c, x).P1(x)) | (inho(c, y).P2(y)))

B =̂ νs1.νs2.((outho(c, s1).in
ho(c, x).P2(x)) | (inho(c, y).P1(y)))

where

P1(x) =̂ (if x = s1 then inho(d, z).if z = s1 then outho(d, s2)) | (if x = s2 then outho(e, x))

P2(x) =̂ (if x = s1 then inho(d, z).if z = s1 then outho(d, s2))

To emit on channel e, processes A and B must execute P2(s1) by inputing twice s1 followed by P1(s2). In the classical
semantics, an internal communication on A between outho(c, s1) and inho(c, y) forces B to execute P1(s1) but hides s1,
preventing a second input of s1 by A. However, in the eavesdropping semantics, the internal communication reveals s1
allowing A to emit on e but not B.

Fig. 7. Processes A and B such that A ≈c
	 B, A ≈p

	 B but A 	≈e
t B.

(1) We first prove that ≈e
t ⊆ ≈p

t . Suppose that A ≈e
t B. We need to show that for any A′ such that

A
tr=⇒p A′ there exists B ′ such that B

tr=⇒p B ′. It follows from the definition of the semantics

that whenever A
tr=⇒p A′ then we also have A

tr=⇒e A′ as
	−→p ⊂ 	−→e. As A ≈e

t B, we have that

there exists B ′, such that B
tr=⇒e B ′ and φ(A′) ∼ φ(B ′). As tr does not contain labels of the form

eav(c, d) nor νy.eav(c, y) and as no COMM-EAV are possible (A and B are honest processes) we

also have that B
tr=⇒p B ′. Hence A ≈p

t B.

(2) We next prove that ≈e
t ⊆ ≈c

t . Similar to Item 1 we suppose that A ≈e
t B and A

trc=⇒c A′
c. From the

semantics, we obtain that A
tre=⇒e A′

e, where

• φ(A′
c) ⊆ φ(A′

e), i.e., dom(φ(A′
c)) ⊆ dom(φ(A′

e)) and the frames coincide on the common
domain.

• tre is constructed from trc by replacing any τ action resulting from the COMM rule by an
application of an eavesdrop rule (EAV-T, EAV-CH, or EAV-OCH).

The proof is done by induction on the length of trc and the proof tree of each transition. As
A ≈e

t B we also have that B
tre=⇒e B ′

e and A′
e ∼ B ′

e. We show by the definition of the semantics that

B
trc=⇒c B ′

c and φ(B ′
c) ⊆ φ(B ′

e) (replacing each eavesdrop action by an internal communication).
Due to the inclusions of the frames and A′

e ∼ B ′
e we also have that A′

c ∼ B ′
c.

(3) Finally we show that the implication ≈e
t � ≈p

t ∩ ≈c
t is strict, i.e., there exist A and B such that

A ≈c
	 B (which implies A ≈c

t B), A ≈p
	 B (which implies A ≈p

t B) but A 	≈e
t B.

Consider the processes A and B defined in Fig. 7. This example is a variant of the one given in
Fig. 5. The difference is the addition of “inho(d, z).if z = s1 then ” in processes P1(x) and P2(x):
this additional check is used to verify whether the adversary learned s1 or not. The proofs that
A ≈c

	 B and A ≈p
	 B follow the same lines as in Theorem 3. We just additionally observe that

νs1.(in
ho(d, z).if z = s1 then outho(d, s2)) ≈s

	 νs1. (inho(d, z).0) for s ∈ {c, p}.
The trace witnessing that A 	≈e

t B is again similar to the one in Theorem 3, but starting with an
eavesdrop transition which allows the attacker to learn s1, which in turn allows him to learn s2

and distinguish P1(s2) from P2(s2). These trace (in)equivalences have also been verified using
DeepSec. �

K. Babel et al. / On the semantics of communications when verifying equivalence properties 85

We note from the processes defined in Fig. 7 that the implications are strict even for processes that
do not communicate on private channels, do not use replication, nor else branches and terms are simply
names (no function symbols nor equational theories).

Theorem 5. ≈e
	 � ≈p

	 ∩ ≈c
	.

Proof sketch. The proof is structured in 3 steps, as in the proof of Theorem 4.

(1) We first show that ≈e
	 ⊆ ≈p

	. Suppose A≈e
	B and let R be the relation witnessing this equivalence.

We will show that R is also a labelled bisimulation in the private semantics. Suppose A R B.

• as A ≈e
	 B, we have that φ(A) ∼ φ(B).

• if A
τ−→p A′ then, as

τ−→p⊂ τ−→e, A
τ−→e A′. As A ≈e

	 B there exists B ′ such that B
ε=⇒e B ′ and

A′ R B ′. As B is a honest process no COMM-EAV transition is possible, and hence B
ε=⇒p B ′.

• if A
	−→p A′ and bn() ∩ fn(B) = ∅ then we also have that A

	−→e A′ (as
	−→p⊂ 	−→e and there

exists B ′ such that B
	=⇒e B ′ and A′ R B ′. As no COMM-EAV are possible and 	 is not of the

form eav(c, d) nor νy.eav(c, y) we have that B
	=⇒p B ′.

(2) We next show that ≈e
	 ⊆ ≈c

	. We will show that ≈e
	 is also a labelled bisimulation in the classical

semantics. The proof relies on similar arguments as in Item 2 of the proof of Theorem 4 and the
facts that

• νñ.(A′ | {t /x}) ≈e
	 νñ.(B ′ | {u/x}) implies νñ.A′ ≈e

	 νñ.B ′,
• A′ ≈e

	 B ′ implies νc.A′ ≈e
	 νc.B ′

The first property is needed when an internal communication of a term or public channel is re-
placed by an eavesdrop action and an input. The second property handles the case when we replace
the internal communication of a private channel by an application of the EAV-OCH rule and an
input.

(3) To show that the implication ≈e
	 � ≈p

	 ∩ ≈c
	 is strict, we exhibit processes A and B such that

A ≈c
	 B, A ≈p

	 B but A 	≈e
t B (which implies A 	≈e

	 B). The processes defined in Fig. 7 witness
this fact (cf the discussion of these processes in the proof of Theorem 4). �

Again we note that the implications are strict, even for processes containing only public channels.

Theorem 6. ≈e
m � ≈p

m ∩ ≈c
m.

Proof sketch. The proof is structured in 3 parts, as for Theorems 5 and 4.

(1) We first prove that ≈e
m ⊆ ≈p

m. Suppose that A ≈e
m B. Suppose that A ≈e

m B. We need to show
that for all channel c, for all C[_] attacker evaluation contexts p-closing for A and B, C[A] ⇓p

c

is equivalent to C[B] ⇓p
c . It follows from the definition of the private semantics that any process

eav(c, x).P in C[_] has the same behaviour as the process 0. Hence, we generate a context C1[_]
by replacing in C[_] any instance of eav(c, x).P by 0, and thus obtaining C[A] ⇓p

c ⇔ C ′[A] ⇓p
c

and C[B] ⇓p
c ⇔ C ′[B] ⇓p

c . Notice that the definition of semantics gives us →p ⊆ →e. Hence,
C ′[A] ⇓p

c implies C ′[A] ⇓e
c and C ′[B] ⇓p

c implies C ′[B] ⇓e
c . Furthermore, since we built C ′[_]

to not contain any process of the form eav(c, x).P , we deduce that rules C-EAV and C-OEAV

can never be applied in a derivation of C ′[A] or C ′[B]. It implies that C ′[A] ⇓p
c⇔ C ′[A] ⇓e

c and

86 K. Babel et al. / On the semantics of communications when verifying equivalence properties

C ′[B] ⇓p
c⇔ C ′[B] ⇓e

c . Thanks to A ≈e
m B, we know that C ′[A] ⇓e

c ⇔ C ′[B] ⇓e
c and so we

conclude that C[A] ⇓p
c ⇔ C[B] ⇓p

c .
(2) We next prove that ≈e

m ⊆ ≈c
m. Similarly to Item 1, we consider a channel c and an attacker eval-

uation context C[_] that is c-closing for A and B. The main difficulty of this proof is to match
the application of the rule COMM in the classical semantics with the rules C-EAV and C-OEAC.
However, C[_] does not necessarily contain eavesdrop process eav(d, x) | ωc. Moreover, as men-
tioned in Item 1, a process eav(d, x).P has the same behavior as 0 in the classical semantics but
can have a completely different behaviour in the eavesdropping semantics if P is not 0. Thus, we
remove from C[_] the eavesdrop processes, obtaining C ′[_]. Then, we define a new context C ′′[_]
based on C ′[_] where will add harmless eavesdrop process eav(d, y).0. We first add in parallel
the processes !eav(a, y) | ωa for all free channels a in C ′[_], A and B. Moreover, since private
channels can be opened, we also replace any process νd.P , inat(c, x).P where d, x are of channel
type with νd.(P |!eav(d, y)) and inat(c, x).(P |!eav(x, y)). By induction of the derivations, we
can show that C[A] ⇓c

c ⇔ C ′′[A] ⇓e
c and C[B] ⇓c

c ⇔ C ′′[B] ⇓e
c . Since A ≈e

m B, we deduce that
C ′′[A] ⇓e

c ⇔ C ′′[B] ⇓e
c and so C[A] ⇓c

c ⇔ C[B] ⇓c
c.

(3) Finally we show that the implication ≈e
m � ≈p

m ∩ ≈c
m is strict, i.e., there exist processes A and B

such that A ≈c
m B, A ≈p

m B but A 	≈e
m B. The processes defined in Fig. 7 witness this fact. They

already were witness of the strict inclusion ≈e
t � ≈p

t ∩ ≈c
t (see proof of Theorem 4) and since A

and B are image finite, we know from Theorem 1 that may and trace equivalences between A and
B coincide. �

4. Subclasses of processes for which (some of) the semantics coincide

As illustrated in previous sections, the presence of internal communications between public channels
is the main issue when comparing the different semantics. Thus, the most natural class of processes on
which the semantics coincide are processes where no internal communication on a public channel is
possible.

Definition 7. Let P be a closed honest process. P is internal communication free if and only for all

P
tr=⇒c P ′ τ−→c P ′′, the τ action in P ′ τ−→c P ′′ is not the application of the rule COMM.

We denote by ICF the set of internal communication free processes.

Lemma 1. When restricted to ICF , ≈s1
r = ≈s2

r for r ∈ {	, o, m, t} and s1, s2 ∈ {c, p, e}.

Proof. Immediate from the semantics. �

However, this class is very restrictive as it prevents any process of the form outho(c, u).P |
inho(c, x).Q(x). Therefore, we study in the rest of this section alternate classes of processes. The class
of processes we study are mainly related to the notion of determinism: we first study the class of de-
terminate processes, denoted D, and then mainly restrict our attention to the case when the number of
sessions is bounded. This is motivated by the fact that most tools able to verify these equivalences are
restricted to a bounded number of sessions. We study three increasingly restrictive classes: (i) bounded
determinate processes (denoted BD), (ii) action-determinate processes (denoted AD), and (iii) strong

K. Babel et al. / On the semantics of communications when verifying equivalence properties 87

Fig. 8. Summary of results for (bounded) determinate processes.

action determinate processes (denoted SAD). As the definition of determinism depends on the seman-
tics, we may add the semantics as a parameter, e.g., we write D(e) for the class of processes that are
determinate in the eavesdrop semantics. Figure 8 provides an overview of the results of this section.

Finally, we also identify a new syntactic subclass of processes, called I/O-unambiguous and show
relations among the equivalences for different semantics.

4.1. Determinate processes

4.1.1. Defining classes of determinate processes and their relations
In this section we define a subclass of determinate processes. These subclasses however depend on

the semantics and therefore we also study the relations between these different subclasses. The notion
of determinacy was defined in [15] for the classical semantics. It was shown that for determinate pro-
cesses, observational and trace equivalence coincide. Intuitively, on determinate processes the attacker
can determine, at each step of the execution, the position of the executed action in the process tree: this
means that either the labels leading to the executed action differ, or, in case of two identical sequence of
labels, the frames may be distinguished.

Definition 8 (Determinacy). Let s ∈ {c, p, e}. Let ∼= be an equivalence relation on closed honest

extended processes. A closed honest extended process A is ∼=-s-determinate if whenever A
	=⇒s B,

A
	=⇒s B ′ and φ(B) ∼ φ(B ′) then B ∼= B ′.

We denote by D(s, ∼=) the set of closed honest extended processes that are ∼=-s-determinate.

It was shown in [15] that D(c, ≈c
) = D(c, ≈c

t). We can show that this equality also holds in the private
and eavesdrop semantics.

Lemma 2. For all s ∈ {c, p, e}, D(s, ≈s
) = D(s, ≈s

t).

Proof. The proof of [15, Lemma 2] literally holds for all semantics. �

88 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Fig. 9. Examples differentiating classical and private semantics for determinate processes.

Thanks to the previous lemma, we may simply consider the set of s-determinate processes, denoted
D(s), as the set of closed honest extended processes that are ≈s

	-s-determinate or ≈s
t -s-determinate

coincide. It was also shown in [15] that when restricted to c-determinate processes, we have that ≈c
	=≈c

t .
Once again, this result directly extends to p-determinate and e-determinate processes.

Lemma 3. When restricted to D(s), ≈s
	 = ≈s

t for s ∈ {c, p, e}.

Proof. The proof of [15, Theorem 2] literally holds for all semantics. �

The notion of determinacy depends on equivalences. Therefore one might expect the relations between
determinate processes for different semantics to follow similar result as for the equivalences. However,
we show that the sets of determinate processes coincide for eavesdrop and private semantics, while they
are incomparable to the classic semantics

Lemma 4. D(p) = D(e), D(c) � D(p) and D(p) � D(c).

Proof sketch. We sketch the proof here. A more detailed version is available in Appendix F.
We start by showing that D(p) � D(c). Consider the process A displayed in Fig. 9a. A ∈ D(c) since

A
τ−→c outho(c, a) by the rule COMM and outho(c, a) 	≈c

	 A. Moreover, A ∈ D(p) since for all tr, there is

a unique A′ such that A
tr=⇒p A′. Hence D(p) � D(c).

We now show that D(c) � D(p). Consider the process B displayed in Fig. 9b. Intuitively, the use of
the private channel s in B encodes a non determinist choice between the two processes P and Q. We
can show that P, Q ∈ D(c) which allows us to deduce that B ∈ D(c). However, B

ε=⇒p P , B
ε=⇒p Q and

P 	≈p
t Q imply B /∈ D(p).

Let us show D(e) ⊆ D(p). Consider an honest closed process A such that A ∈ D(e). Let A
tr=⇒p A1 and

A
tr=⇒p A2. By definition of the semantics, A

tr=⇒p Ai implies A
tr=⇒e Ai , for i = 1, 2. Since A ∈ D(e),

we deduce A1 ≈e
	 A2. By applying Theorem 5, we obtain A1 ≈p

	 A2 which concludes the proof of
D(e) ⊆ D(p).

Finally, we need to show that D(p) ⊆ D(e). This part of the proof is detailed in Appendix F. �

4.1.2. Relations between semantics for determinate processes
We will now compare the equivalences when we restrict the processes to D(s) for a given semantics s.

We start with the subclass D(p) (which coincides with D(e)).

Theorem 7. When restricted to D(p), we have ≈s1
r1

= ≈s2
r2
� ≈c

r3
for s1, s2 ∈ {p, e}, r1, r2, r3 ∈ {	, t}.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 89

The proof is given in Appendix F.
Next, we consider the subclass D(c). We show that even for this subclass of processes, the equiva-

lences for the classical semantics are not included in the other ones.

Lemma 5. When restricted to D(c), we have ≈c
r � ≈s

r for s ∈ {p, e} and r ∈ {	, t}.
Proof. In the proof of Theorem 7 we showed that the processes P and Q displayed in Fig. 9 satisfy the
following properties: P, Q ∈ D(c), P ≈c

	 Q and P 	≈p
t Q. Note that we also have P 	≈e

t Q. Hence P

and Q allow us to prove that ≈c
r � ≈s

r for s ∈ {p, e} and r ∈ {	, t}. �

4.2. Determinacy for bounded processes

As many verification tools [13,14,16,18,29] consider a bounded number of sessions we study in this
section, notions of determinacy when restricted to processes without replication. We also consider the
notion of action-determinate which was introduced in [10] as a subclass of determinate processes that
enable partial order reductions that significantly speed-up verification. Finally, we discuss the notion
of strong action-determinate processes: this class was introduced in several tools, as this property can
easily be checked syntactically. Interestingly, for this class of action-determinate processes, all notions
of equivalences and semantics coincide.

4.2.1. Bounded determinate processes
We investigate in this section whether additional relations hold between the semantics when restricted

to bounded processes, i.e., processes without replication. In particular we show that when restricted
to such bounded processes, a c-determinate P cannot have internal communication. However, we also
show that even when restricted to bounded processes, ≈p

	 and ≈c
	 do not coincide.

We denote by BD(s) the set of bounded processes in D(s) for s ∈ {p, c, e}.
Lemma 6. BD(c) � BD(p) = BD(e) and BD(c) � ICF .

Proof. Note that Lemma 4 directly gives us BD(p) = BD(e). Moreover, consider the process A dis-
played in Fig. 9a. We already showed in Lemma 4 that A ∈ D(p) and A /∈ D(c). Since A does not
contain a replication, we deduce that BD(p) � BD(c).

Let us now show that BD(c) ⊆ ICF . Let A ∈ BD(c). Assume by contradiction that A
tr=⇒c A1

τ−→c A2

where the transition A1
τ−→c A2 is the application of the rule COMM. Hence A1 ≡ νñ.(outho(c, u).P |

inho(c, x).Q | R) and A2 = νñ.(P | Q{u/x} | R) for some c, u, P, Q. Since A ∈ BD(c), we deduce
that A1 ≈c

t A2. Consider the maximal trace trm of A1 (the trace trm exists since A is bounded), i.e.

A1
trm=⇒c A′

1. Since A1 ≈c
t A2, the trace trm is also maximal for A2 with A2

trm=⇒c A′
2. But A1

νz.out(c,z).in(c,z)=========⇒c

νñ.(P | Q{u/x} | R | {u/x}). Since A2 = νñ.(P | Q{u/x} | R) and A2
trm=⇒c A′

2, we deduce that

νñ.(P | Q{u/x} | R | {u/x}) trm=⇒c A′′
2 for some A′′

2 and so νz.out(c, z).in(c, z).trm is a trace of A1 which
contradicts the maximality of trm. Hence BD(c) ⊆ ICF .

To see that the inclusion BD(c) � ICF is strict, observe that for the process

P =̂ outho(c, a).outho(c, a1) | outho(c, a).outho(c, a2)

we have that P ∈ ICF , but P /∈ BD(c).

90 K. Babel et al. / On the semantics of communications when verifying equivalence properties

P =̂ νk1, . . . , k7.(in
ho(c, x1).R1(x1) | outho(c, k1) | inho(d, x2).if x2 = k2 then outho(c, k3))

Q =̂ νk1, . . . , k7.(in
ho(c, x1).R1(x1) | outho(c, k1).in

ho(d, x2).if x2 = k2 then outho(c, k3))

where

R1(x1) =̂ if x1 = k1 then outho(d, k2).in
ho(c, x3).if x3 = k3 then R3 else inho(d, x)

R3 =̂ outho(c, k4).in
ho(d, x5).R5(x5) | inho(c, x4).if x4 = k4 then outho(d, k5)

R5(x5) =̂ if x5 = k5 then
inho(d, z).

(outho(c, k6) | inho(c, x6).if x6 = k6 then outho(d, k7).in
ho(c, x3).in

ho(d, x))

Fig. 10. P ≈c
	 Q but P 	≈p

t Q.

Finally, let us prove BD(c) ⊆ BD(p). Let A ∈ BD(c), A
tr=⇒p A1 and A

tr=⇒p A2. Note that A
tr=⇒p Ai

implies A
tr=⇒c Ai , for i = 1, 2. As A ∈ BD(c), A1 ≈c

	 A2. As BD(c) ⊆ ICF , A ∈ ICF and so
A1, A2 ∈ ICF . By Lemma 1, we obtain A1 ≈p

	 A2 which allows us to conclude. �

In particular, as BD(c) ⊂ ICF we directly have that all semantics coincide (Lemma 1), and by
determinacy all equivalences coincide as well (Lemma 3).

Corollary 1. When restricted to BD(c), we have that ≈s1
r1

= ≈s2
r2

for r1, r2 ∈ {	, o, m, t} and s1, s2 ∈
{c, p, e}.

We next investigate the relations when processes are restricted to the subclass BD(p) (which coincides
with BD(e)).

Theorem 8. When restricted to BD(p), we have that ≈p
r = ≈e

r � ≈c
r for r ∈ {	, t}.

The proof is given in Appendix G.

Action-determinate. As mentioned above, the class of action determinate processes is of interest for
verification tools since it supports partial order reduction techniques [10] which speed-up verification by
several orders of magnitude. Such techniques have been implemented in several verification tools such
as APTE, AKISS and DeepSec.

Definition 9. Let P be a closed honest process. We say that P is action-determinate if bn(P) ∩ Ch = ∅
and for all P

tr=⇒c P ′, P ′ 	≡ νk̃.(outho(c, u1).Q1 | outho(c, u2).Q2|Q3) and P ′ 	≡ νk̃.(inho(c, x1).Q1 |
inho(c, x2).Q2|Q3) for all k̃, c, u1, u2, x1, x2, Q1, Q2, Q3.

We define AD to be the set of all action determinate processes.

Intuitively, a process is action determinate when there are never two similar available actions, i.e. two
inputs or two outputs on the same channel. Note in particular that any (non-trivial) replicated process
violates action-determinism.

We first show that the class of action determinate processes is strictly included in the class of determi-
nate processes (for the private and, hence, eavesdropping semantics).

K. Babel et al. / On the semantics of communications when verifying equivalence properties 91

Lemma 7. AD � BD(p).

The proof is give in Appendix H.
We can now show that the relations among equivalences that did hold for the subclass BD(p) (Theo-

rem 8) do also hold for the subclass AD.

Theorem 9. When restricted to AD, we have that ≈p
r = ≈e

r � ≈c
r for r ∈ {	, t}.

Note that, while the equality and inclusion is a direct corollary of Theorem 8 and Lemma 7, the fact
that the inclusion is strict needs to be shown. The proof is given in Appendix I.

Strong action determinate. In the context of automated verification, deciding whether a process is
action-determinate is still rather costly as it basically requires to verify a reachability property. We there-
fore introduce a stronger and more syntactical notion of action determinate, which is actually imple-
mented in the verification tools AKISS and DeepSec. Intuitively, while action determinate processes
never reach a situation where two “similar” actions are available, strong action-determinate processes
verify that such similar actions never appear in parallel, syntactically.

We first define the set of action skeletons S = {out(c), in(c) | c ∈ Ch}.
Definition 10 (strong action determinate). The set Sa(S) built on S ⊆ S is the smallest set of honest
processes such that {u/x}, 0 ∈ Sa(∅) for all u, x and such that if P ∈ Sa(S) and Q ∈ Sa(S ′) then

• outho(c, u).P ∈ Sa({out(c)} ∪ S) when c ∈ Ch

• inho(c, x).P ∈ Sa({in(c)} ∪ S) when c ∈ Ch

• νk;P ∈ Sa(S) when {in(k), out(k)} ∩ S = ∅
• if u = v then P else Q ∈ Sa(S ∪ S ′)
• Sa(P | Q) ∈ Sa(S ∪ S ′) when S ∩ S ′ = ∅

We define the set of strong action determinate process as SAD = ⋃
S⊆S

Sa(S).

As the name indicates, it is easy to see that any strong action determinate process is also an action
determinate process.

Lemma 8. SAD � AD.

Proof. The implication follows directly from the definition, as any strongly action determinate process
forbids two identic skeletons in parallel. To see that the implication is strict we observe that, for

P =̂νk. (outho(c, k) | inho(c, x).if x = k then outho(c, a))

we have that P ∈ AD, but P /∈ SAD. �

While for action determinate processes we have that ≈p
	 � ≈c

	, we can show that for strong action
determinate processes we actually have ≈c

	 ⊆ ≈p
	.

Theorem 10. When restricted to SAD, we have ≈c
	 ⊆ ≈p

	.

92 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Proof of Theorem 10 can be found in Appendix J.
This implies the following corollary stating that for strong action determinate processes, all semantics

and equivalences coincide. This is particularly interesting as the AKISS and DeepSec tools check this
condition. Moreover, it means that partial-order reduction optimizations, developed and shown correct
for the private semantics [10], are correctly applied by these tools, regardless of the chosen semantics.

Corollary 2. When restricted to SAD, we have that ≈s1
r1
=≈s2

r2
for r1, r2 ∈ {	, o, m, t} and s1, s2 ∈

{c, p, e}.

4.3. I/O-unambiguous processes

Restricting processes to action-determinate processes may sometimes be too restrictive. For instance,
when verifying unlinkability and anonymity properties, two outputs by different parties should not be
distinguishable due to the channel name. We therefore introduce another class of processes, that we
call I/O-unambiguous for which we also show that the different semantics (although not the different
equivalences) do coincide.

Intuitively, an io-unambiguous process forbids an output and input on the same public channel to
follow each other directly (or possibly with only conditionals in between). For instance, we forbid
processes of the form outθ (c, t).inθ (c, x).P , outθ (c, t).(inθ (c, x).P | Q) as well as outθ (c, t).if t1 =
t2 then P else inθ (c, x).Q. We however allow inputs and outputs on the same channel in parallel.

Definition 11. We define an honest extended process A to be I/O-unambiguous when ioua(A, _) = �
where

ioua(0, c) = � ioua({u/x}, c) = � ioua(!P, c) = ioua(P, c)

ioua(A | B, c) = ioua(A, c) ∧ ioua(B, c) ioua(νx.A, c) = ioua(A, c)

ioua(νn.A, c) =
{

⊥ if n ∈ Ch

ioua(A, c) otherwise
ioua(if u = v then P else Q, c) = ioua(P, c) ∧ ioua(Q, c)

ioua(outθ (d, u).P, c) =
{

⊥ if u is of channel type

ioua(P, d) otherwise

ioua(inθ (d, x).P , c) =
{

⊥ if x is of channel type or d = c

ioua(P, _) otherwise

Note that an I/O-unambiguous process does not contain private channels and always input/output
base-type terms. We also note that a simple way to enforce that processes are I/O-unambiguous is to use
disjoint channel names for inputs and outputs (at least in the same parallel thread).

Theorem 11. When restricted to I/O-unambiguous processes, we have that ≈p
r=≈e

r but ≈e
r�≈c

r for
r ∈ {	, t}.

Proof. From Theorems 5 and 4, we already know that ≈e
r⊆≈p

r and ≈e
r⊆≈c

r . Hence, we only need to
show that ≈p

r⊆≈e
r and ≈p

r�≈c
r . The latter is easily shown by noticing that the processes A and B in

Fig. 6 are I/O-unambiguous. Thus, we focus on ≈p
r⊆≈e

r .

K. Babel et al. / On the semantics of communications when verifying equivalence properties 93

We start by proving that for all I/O-unambiguous processes A, for all A
tr=⇒ A′, we have that A′ is I/O-

unambiguous. Note that structural equivalence preserves I/O-unambiguity, i.e. for all extended processes
A, B, for all channel name c, A ≡ B implies ioua(A, c) = ioua(B, c). Hence, we assume w.l.o.g. that a
name is bound at most once and the set of bound and free names are disjoint.

Second, we show that for all I/O-unambiguous processes A, for all A
νz.out(c,z).in(c,z)=========⇒p A′, we have

that
νz.eav(c,z)=====⇒e A′. To prove this property, denoted P , let us assume w.l.o.g. that A

νz.out(c,z)−−−−−→p A1 →∗
p

A2
in(c,z)−−−→p A′. The transition A

νz.out(c,z)−−−−−→p A1 indicates that A ≡ νñ.(outho(c, u).P | Q) and A1 ≡
ñ.(P | Q | {u/z}) for some P, Q, ñ, c, u. Note that A is I/O-unambiguous, and hence ioua(P, c) = �.

As A is I/O-unambiguous implies that A does not contain private channels, we have that the rule
applied in A1 →∗

p A2 is either the rule THEN or ELSE. Therefore, there exists P ′ and Q′ such that
P →∗

p P ′, Q →∗
p Q′, An ≡ νñ.(P ′ | Q′ | {u/x}) and ioua(P ′, c) = �. Hence, we deduce that there

exists Q1, Q2 such that Q′ ≡ νm̃.(in.(c, x)Q1 | Q2) and A′ ≡ νñ.νm̃.(P ′ | Q1{u/x} | Q2). We conclude
the proof of this property by noticing that we can first apply on A the reduction rules of Q →∗

p Q′, then
apply the rule C-EAV and finally apply the rules of P →∗

p P ′.

(1) To prove ≈p
t ⊆≈e

t , we assume that A, B are two closed honest extended processes such that A ≈p
t

B. For all A
tr=⇒e A′, it follows from the semantics that A

trp=⇒p A′ where trp is obtained by replacing

in tr each νz.eav(c, z) by νz.out(c, z).in(c, z). Since A ≈p
t B, there exists B ′ such that B

trp=⇒p B ′

and φ(A′) ∼ φ(B ′). Thanks to the property P , we conclude that B
tr=⇒e B ′.

(2) To prove ≈p
	⊆≈e

	, we assume that A, B are two closed honest extended processes such that A ≈p
	

B and let R be the relation witnessing this equivalence. We will show that R is also a labelled
bisimulation in the eavesdropping semantics. Suppose ARB.

• as A ≈p
	 B, we have that φ(A) ∼ φ(B).

• if A
τ−→e A′ then, as A is honest, A

τ−→p A′. As A ≈p
	 B there exists B ′ such that B

ε=⇒p B ′ and

A′RB ′. As
τ−→p ⊂ τ−→e, B

ε=⇒e B ′

• if A
	−→e A′ then, as A is I/O-unambiguous, A

tr=⇒e A′ where tr = νz.out(c, z).in(c, z) when 	 =
νz.eav(c, z) else tr = 	. As A ≈p

	 B, there exists B ′ such that B
tr=⇒p B ′ and A′RB ′. When tr =

	, the definition of the semantics directly gives us B
	=⇒e B ′. When tr = νz.out(c, z).in(c, z),

the property P gives us B
	=⇒e B ′. �

5. Different semantics in practice

As we have seen, in general, the three proposed semantics may yield different results. A conservative
approach would consist in verifying always the eavesdropping semantics which is stronger than the two
other ones, as shown before. However, this semantics seems also to be the least efficient one to verify.
Moreover, partial-order reduction techniques that provide tremendous speed-ups were only developed
for the private semantics.

We have implemented the three different semantics in the DeepSec tool. This allowed us to investigate
the difference in results and performance between the semantics. In our experiments we considered
several examples from DeepSec’s example repository. We rely on the existing modelling and do not
describe these protocols, as these details are not important for the observations we wish to make. All

94 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Table 1

Experimental results

Property/Protocol #roles Single channel I/O unambiguous SAD
≈p

t ≈e
t ≈c

t ≈p
t = ≈e

t ≈c
t ≈p

t = ≈e
t = ≈c

t

Strong secrecy
Denning–Sacco 6 33 s 2 m 7 s 1 m 58 s 9 s 35 s <1 s
NSL 4 29 s 1 m 43 s 3 s 6 s <1 s
Wide Mouth Frog 9 12 m 16 s 34 m 43 s 20 m 1 s 24 s 58 s <1 s
Yahalom–Lowe 6 2 h 46 m 11 h 11 m 5 h 17 m 4 m 5 s 13 m 47 s <1 s

Anonymity
Passive Authentication 6 1 h 59 m 5 h 6 m 6 h 49 m 7 m 2 s 1 h 50 m <1 s
Private Authentication 4 9 s 9 s 11 s 1 s 2 s <1 s

Unlinkability
Passive Authentication 6 3 h 15 m 7 h 15 m 11 h 6 m 10 m 30 s 2 h 49 m <1 s
AKA 4 13 m 26 m 9 s 17 m 13 s 18 s 49 s <1 s

Vote privacy
Helios 10 10 m 9 s 19 m 10 s 14 m 50 s – – –
Scytl 3 2 m 47 s 5 m 9 s 5 m 14 s – – –

benchmarks, summarized in Table 1, were carried out on a machine with 20 Intel Xeon 3.10 GHz cores
and 50 Gb of memory. The implementation and the specification files are available at [17].

The specifications we used for these experiments include verification of

• strong secrecy in several classical authentication protocols (Denning–Sacco, Needham–Schroeder–
Lowe (NSL), Wide Mouth Frog, and Yahalom–Lowe protocols);

• anonymity of the Private Authentication protocol proposed by Abadi and Fournet [2];
• anonymity and unlinkability of the passive authentication protocol implemented in the European

Passport protocol [5,23];
• unlinkability of the AKA protocol, deployed in 3G mobile telephony [7];
• vote privacy in the Helios e-voting protocol [4], and the e-voting protocol proposed by Scytl for

elections in the Swiss Neuchâtel canton [19].

For all these examples we found that the results were unchanged, independent of the semantics. How-
ever, as expected, performance was generally better for the private semantics, and much better for strong
action determinate processes, as this class allows for powerful partial-order reductions. The existing
protocol encodings generally used a single public channel. To enforce membership in a particular sub-
class we had to use different channel names. Surprisingly, the use of distinct channels to enforce I/O-
unambiguity, significantly enhances the tool’s performance. We could not make the voting protocols
I/O unambiguous and action determinate, because the encodings use private channels. In the absence
of private channels using different channel names to enhance efficiency is tempting. One must however
be careful as changing channel names changes the attacker’s observation and may change the result.
Typically, a single channel name models that the attacker does a priori not know which process sent a
given message. Binding the channel name to the identity allows the attacker to know which host sent a
message, but not necessarily which of the possibly multiple processes, e.g. sessions, on the given host.
However, this modelling is typically not adequate when checking anonymity, or unlinkability, as it re-
veals the sender’s identity. For such properties, it may be possible to use different channel names for each
session, modelling that the adversary can distinguish different sessions, but not necessarily whether the

K. Babel et al. / On the semantics of communications when verifying equivalence properties 95

same host executed one or several sessions. This is the encoding we used for verifying anonymity and
unlinkability properties to enforce strong action determinism in the AKA and Passive Authentication
protocols.

6. Conclusion

In this paper we investigated two families of Dolev–Yao models, depending on how the hypothesis
that the attacker controls the network is reflected. While the two semantics coincide for reachability
properties, they yield incomparable notions of behavioral equivalences, which have recently been exten-
sively used to model privacy properties. The fact that forcing all communication to be routed through
the attacker may diminish his distinguishing power may at first seem counter-intuitive. We also pro-
pose a third semantics, where internal communication among honest participants is permitted but leaks
the message to the attacker. This new communication semantics entails strictly stronger equivalences
than the two classical ones. We also identify several subclasses of protocols for which (some) semantics
coincide. Finally, we implemented the three semantics in the DeepSec tool. Our experiments showed
that the three semantics provide the same result on the case studies in the DeepSec example repository.
However, the private semantics is slightly more efficient, as less interleavings have to be considered. Our
results illustrate that behavioral equivalences are much more subtle than reachability properties and the
need to carefully choose the precise attacker model.

Acknowledgments

We would like to thank Catherine Meadows and Stéphanie Delaune for interesting discussions, as well
as the anonymous reviewers for their comments. This work has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program
(grant agreement No 645865-SPOOC) and the ANR projects SEQUOIA ANR-14-CE28-0030-01 and
TECAP ANR-17-CE39-0004-01.

Part of the work was carried out while the first author was a student at IIT Bombay during an internship
at Inria Nancy Grand-Est.

Appendix A. Refining Theorem 3

We here give a more refined version of Theorem 3. In particular we show that the private and classical
semantics are incomparable for trace equivalence and labelled bisimulation, even when restricted to
processes that do not use else branches.

Theorem 12. When restricted to processes without else branches, we have that ≈p
r � ≈c

r and ≈c
r � ≈p

r

for r ∈ {	, t}.
Proof. The fact that ≈p

r � ≈c
r for r ∈ {	, t} has already been shown in the proof of Theorem 3 as the

processes A, B witnessing the result did not have else branches.
To show that ≈c

	 � ≈p
	 we show that there exist processes A and B without else branches such that

A ≈c
	 B and A 	≈p

	 B. Such processes are defined in Fig. 11. To see that A ≈c
	 B we first observe that

96 K. Babel et al. / On the semantics of communications when verifying equivalence properties

A =̂ νs.(inho(c, x).outho(c, s) | inho(c, y).P (y))

B =̂ νs.(inho(c, x).(outho(c, s) | inho(c, y).P (y)))

where

P(y) =̂ if y = s then inho(c, z).outho(c, s)

Fig. 11. A and B (without else branches) such that A ≈c
	 B and A 	≈p

	 B.

Ai =̂ νs1.νs2.(outho(c, h(s1)) | outho(c, h(s2)) |
inho(d, x).(if x = h(s1) then Qi | if x = h(s2) then P2)

where Q1=̂P1, Q2=̂P2 and

P1 =̂ outho(e, a)

P2 =̂ outho(f, a).outho(e, a) | inho(f, x)

Fig. 12. A1 and A2 such that A1 ≈c
t A2, but A1 	≈p

t A2.

the only first possible action from A or B is an input. In particular, given a term t , there is a unique B ′

such that B
in(c,t)−−−→ B ′ where B ′ = νs.(outho(c, s) | inho(c, y).P (y)). On the other hand, if A

in(c,M)−−−−→ A′
then either A′ = B ′ or A′ = A′′ where A′′ =̂ νs.(inho(c, x).outho(c, s) | P(t)). Therefore, to complete

the proof, we only need to find B ′′ such that B
in(c,t)===⇒ B ′′ and A′′ ≈c

	 B ′′. Such process can be obtain

by applying an internal communication on B ′, i.e. B
in(c,t)−−−→c B ′ τ−→ νs.P (s). Note that t 	= s since s is

bound, meaning that P(t) ≈c
	 0. Moreover, P(s) ≈c

	 inho(c, x).outho(c, s). This allows us to conclude
that νs.P (s) ≈c

	 A′′.

To see that A 	≈p
	 B we first observe that when A

in(c,t)−−−→p A′′, B can only mimic A by preforming the

transition B
in(c,t)−−−→ B ′. We conclude as B ′ νz.out(c,z)−−−−−→p νs.(inho(c, y).P (y) | {s/z}) and A′′ 	 νz.out(c,z)−−−−−→p.

We next show that there also exist A1 and A2 such that A1 ≈c
t A2, but A1 	≈p

t A2.
We define such processes in Fig. 12. Using the DeepSec tool we have shown that indeed A1 ≈c

t A2

and A1 	≈p
t A2. The main argument why the result holds is that P1 is trace included in P2 in the classical

semantics (as the output on channel f can be made silent through an internal communication) while this
is not the case in the private semantics. �

Appendix B. Proof of Proposition 2

Definition 12. We say that a plain process P (resp. extended process P) is name-cleaned if P is of the
form P1 | . . . | Pm and every Pi is not of the form νk.B ′ with k a name or variable of any type.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 97

Lemma 9. Let A be an extended process. There exist a sequence of names and variables k̃ and a name-
cleaned extended process A′ such that A ≡ νk̃.A′.

Proof. Direct from the definition of structural equivalence. �

Proposition 2. For all closed honest plain processes A, for all s ∈ {c, e, p}, A �s
c iff there exists an

attacker plain process I s such that I s | A ⇓s,ho
c .

Proof. We will prove that A �s
c implies there exists an attacker plain process I s such that Cs[A] ⇓s

c for
s ∈ {c, e, p} by constructing I s .

Let us first focus on s = c. Since A �c
c, we know that there exist A′, t and tr ∈ (A \ {τ })∗ such that

A
tr=⇒c A′, c /∈ bn(tr) and out(c, t) ∈ tr. Note that we can assume w.l.o.g. that no name in tr is bound

twice and bound names in tr are distinct from free names that occurs in A and tr.
Let {a1, . . . , ak} be all the channel names that occur in tr (bound or free). To each a1, . . . , ak , we

associate a variable of channel type xa1, . . . , xak
. Given a subset S ⊆ {a1, . . . , ak}, we denote by σ(S)

the substitution {xa → a | a ∈ S}. We define I c such that I c = Qc(tr, σ (f c(tr))) where Qc(tr, σ) is
defined by induction on tr as follows:

• if tr = ε then Qc(tr, σ) = 0;
• if tr = in(a, M).tr′ then Qc(tr, σ) = outat(xaσ, M).Qc(tr′, σ);
• if tr = out(a, c).tr′ with c of channel-type then

Qc(tr, σ) = inat(xaσ, y).Qc(tr
′, σ)

where y is fresh variable of channel type;
• if tr = νx.out(a, x).tr′ and x is of base type then

Qc(tr, σ) = inat(xaσ, x).Qc(tr
′, σ)

• if tr = νc.out(a, c).tr′ and c is of channel type then

Qc(tr, σ) = inat(xaσ, xc).Qc(tr
′, σ)

Since A
tr=⇒c A′, there exist A0, . . . , An and 	1, . . . , 	N such that A′ = AN , A = A0 and A0

	1−→c

A1
	2−→c . . .

	N−→c AN . We can show by induction that for all n � N , there exist a plain process Qn and
two sequences of names ỹn, r̃n such that:

• I cA →∗
c νỹn.νr̃n.(An | Qn)

• r̃n is the sequence of bounded channel names in 	1 · · · . . . 	n−1

• ỹn ⊆ dom(φ(An))

• trn is the sequence 	n · . . . · 	N where the τ action are removed
• Qn = Qc(trn, σ (f c(trn)))

To conclude this proof, recall that out(c, t) ∈ tr and c /∈ bn(tr) so there exists n � N such that

	n = out(c, t) or 	n = νt.out(c, t). But since An−1
	n−→c An and An−1 ≡ νk̃n−1.Bn−1 with Bn−1 being

name-cleaned, we deduce that there exist P, R such that Bn−1 = outho(c, t).P | R and c /∈ k̃n−1.

98 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Therefore, I c | A →∗
c νỹn−1.νr̃n−1.νk̃n−1.(outho(c, t).P | R | Qn−1). Note that ỹn−1 ⊆ dom(φ(Bn−1))

hence c /∈ ỹn−1. Moreover, we assumed that c /∈ bn(tr) hence c /∈ r̃n−1 by definition of r̃n−1. It allows us
to conclude I c | A ⇓c,ho

c .
The proof for the other two semantics is very similar. First, the construction of the context changes to

adapt the changes in the labeled semantics. Second, we prove a slightly different property on the traces
to account the presence of opened channels that are generated by the rule C-OPEN. The rest stay the
same (up to renaming of c into p and e respectively).

Concerning the semantics private, we define I p =̂ I c and we can prove the following property: For all
n � N , there exist two extended processes Qn, Rn and thwo sequences of names ỹn, r̃n such that:

• Cp[A] →∗
p νỹn.νr̃n.(An | Qn | Rn)

• r̃n is the sequence of bounded channel names in 	1 · · · . . . 	n−1

• Rn =̂ ωc1 | . . . | ωcm for some c1, . . . , cm such that r̃n ⊆ {c1, . . . , cm}
• ỹn ⊆ dom(φ(Bn))

• trn is the sequence 	n · . . . · 	N where the τ action are removed
• Qn = Qc(trn, σ (f c(trn)))

Notice that the presence of Rn is the only difference between the property in the classical and private se-
mantics. This is the consequence of the application of the rule C-OPEN that introduces opened channels
ωc1 and that we apply when the trace contains labeled transitions out(c, d) or νd.out(c, d).

For the eavesdropping semantics, we can prove the same property as for private semantics (up
to renaming of p into e) but we need to modify the context as follows. We define Ce[_] such that
I e[_] =̂ Qe(tr, σ) is defined by induction on tr as follows:

• if tr = ε then Qe(tr, σ) = 0;
• if tr = in(a, M).tr′ then Qe(tr, σ) = outat(xaσ, M).Qe(tr′, σ);
• if tr = out(a, c).tr′ with c of channel-type then

Qe(tr, σ) = inat(xaσ, y).Qe(tr
′, σ)

where y is fresh variable of channel type;
• if tr = νx.out(a, x).tr′ and x is of base type then

Qe(tr, σ) = inat(xaσ, x).Qe(tr
′, σ)

• if tr = νc.out(a, c).tr′ and c is of channel type then

Qe(tr, σ) = inat(xaσ, xc).Qe(tr
′, σ)

• if tr = eav(a, c).tr′ with c of channel-type then

Qe(tr, σ) = eav(xaσ, y).Qe(tr
′, σ)

where y is fresh variable of channel type;
• if tr = νx.eav(a, x).tr′ and x is of base type then

Qe(tr, σ) = eav(xaσ, x).Qe(tr
′, σ)

K. Babel et al. / On the semantics of communications when verifying equivalence properties 99

• if tr = νc.eav(a, c).tr′ and c is of channel type then

Qe(tr, σ) = eav(xaσ, xc).Qe(tr
′, σ)

Let us now focus on the other implications, that are: if there exists an attacker plain process I s such
that I s | A ⇓s,ho

c then A �s
c for s ∈ {c, e, p}. By Lemma 9, we can assume w.l.o.g. that I s = νk̃.D for

some name-cleaned plain process D and some sequence of names and variables of any type k̃. We now
prove that for all I s | A →∗

s B, there exist an attacker evaluation context C ′[_] = νk̃′.(D′ | _) with D′
name-cleaned, an honest extended process A′ and tr such that C ′[_] is s-closing for A, B ≡ C ′[A′] and

A
tr=⇒s A′. We first focus on s = c. Note that it is not necessary to prove the property name-cleaned since

it is implied by Lemma 9.
We prove this result by induction on the number of reduction rules in I c | A →∗

c B.
Base case: By structural equivalence, there exists k̃′ and D′ such that I | A ≡ νk̃′.(D′ | A). Moreover,

since fv(A) = ∅, k̃′.(D′ | _) is closing for A and so the base case holds.
Inductive step Cc[A] →∗

c B ′ →c B: By our inductive hypothesis, we know that there exist C ′[_] =
νk̃′.(D′ | _), and honest extended process A′ and tr such that C ′[_] is c-closing for A′, B ′ ≡ C ′[A′] and

A
tr=⇒c A′. Note that due to the structural equivalence, we can assume w.l.o.g. that A′ = νr̃.P where P

is name-cleaned. Moreover, since B ′ →c B and B ′ ≡ C ′[A′], we deduce that C ′[A′] →c B. Let us do a
case analysis on the rule applied.

Case 1, internal reduction on A′, i.e. there exists A′′ such that A′ τ−→c A′′ and B ≡ C ′[A′′]. In such a
case, we have that C ′[A′] τ−→c C ′[A′′]. Moreover, since A

tr=⇒c A′ then we directly obtain that A
tr=⇒c A′′

and so the result holds.
Case 2, internal reduction on C ′, i.e. there exists D′′ such that D′ τ−→c D′′ and B ≡ νk̃′.(D′′ | A′).

By the structural equivalence, we know that there exist k̃′′ and D′′′ such that D′′ is named-cleaned and
νk̃′.(D′′ | A′) ≡ νk̃′′.(D′′′ | A′). Therefore, we can define C ′′[_] = νk̃′′.(D′′′ | _) and obtain that
C ′[A′] τ−→c C ′′[A′]. Since A

tr=⇒c A′, the result holds.
Case 3, rule COMM between C ′ (input) and A′ (output), i.e. D′ = inat(c, x).D1 | D2, A′ =

νr̃.(outho(c, u).P1 | P2) and B ≡ νk̃′.νr̃.(D1{u/x} | D2 | P1 | P2) (We assume w.l.o.g. that the names
and variables in r̃ are not in D′). Note that in such a case, c /∈ r̃ . We do a case analysis on u.

• Case 3.a, u ∈ Ch ∩ r̃: Let us redenote νr̃ as νr̃ ′.νu. Thus A′ νu.out(c,u)−−−−−→c νr̃ ′.(P1 | P2). Hence, since
the names and variables in r̃ are not in D′, we obtain that B ≡ νk̃′.νu.(D1{u/x} | D2 | νr̃ ′.(P1 |
P2)). Hence, by denoting C ′′[_] = νk̃′.νu.(D1{u/x} | D2 | _) and A′′ = νr̃ ′.(P1 | P2), the result
hold.

• Case 3.b, u ∈ Ch but u /∈ r̃ . In such a case, A′ out(c,u)−−−−→c νr̃.(P1 | P2). Hence, since the names and
variables in r̃ are not in D′, we obtain that B ≡ νk̃′.(D1{u/x} | D2 | νr̃.(P1 | P2)). By denoting
C ′′[_] = νk̃′.(D1{u/x} | D2 | _) and A′′ = νr̃.(P1 | P2), the result holds.

• Case 3.c, u /∈ Ch: In such a case, A′ νy.out(c,y)−−−−−→c νr̃.(P1 | P2 | {u/y}) with y /∈ fv(A′)∪v(u). Note we
can take y such that y /∈ fv(C ′[A′]) ∪ bn(C ′[A′]). Note that B ≡ νk̃′.νr̃.(D1{u/x} | D2 | P1 | P2).
By definition of the structural equivalence and since we took y /∈ fv(C ′[A′]) ∪ bn(C ′[A′]), we
deduce that B ≡ νk̃′.νy.νr̃.(D1{y/x} | D2 | P1 | P2 | {u/y}). Lastly, since the names and variables
in r̃ are not in D′, we deduce that B ≡ νk̃′.νy.(D1{y/x} | D2 | νr̃.(P1 | P2 | {u/y})). By denoting
C ′′[_] = νk̃′.νy.(D1{y/x} | D2 | _) and A′′ = νr̃.(P1 | P2 | {u/y}), the result holds.

100 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Case 4, rule COMM between A′ (input) and C ′ (output), i.e. D′ = outat(c, u).D1 | D2, A′ =
νr̃.(inho(c, x).P1 | P2) and B ≡ νk̃′.νr̃.(D1 | D2 | P1{u/x} | P2) (We assume w.l.o.g. that the names
and variables in r̃ are not in D′). Note that in such a case, c /∈ r̃ . Moreover, we know that the names
and variables in r̃ are not in D′, meaning that the names and variables in r̃ does not occur in u. Hence,

A′ in(c,u)===⇒c νr̃.(P1{u/x} | P2). Once again due to the fact the names and variables in r̃ are not in D′,
we obtain that B ′′ ≡ νk̃′.(D1 | D2 | νr̃.(P1{u/x} | P2)). By denoting C ′′[_] = νk̃′.(D1 | D2 | _) and
A′′ = νr̃.(P1{u/x} | P2), the result holds.

We have concluded the proof of the property: for all Cc[A] →∗
c B, there exist an evaluation attacker

context C ′[_] = νk̃′.(D′ | _) with D′ name-cleaned, an honest extended process A′ and tr such that C ′[_]
is c-closing for A′, B ≡ C ′[A′] and A

tr=⇒c A′. It remains to prove this result for s = e and s = p. Let
us focus first on the case s = p. The proof is in fact similar to the case s = c. Notice that the case of the
rule C-ENV correspond to either Case 2, 3.c or 4 when u is of base type. Hence it remains the case of
the rules C-PRIV and C-OPEN.

Case 5, rule C-OPEN between C ′ (input) and A′ (output), i.e. D′ = inθ (c, x).D1 | D2, A′ =
νr̃.(outho(c, d).P1 | P2) and B ≡ νk̃′.νr̃.(D1{d/x} | D2 | P1 | P2 | ωd). Lets us do a case analysis
on whether (5.a) d ∈ r̃ or (5.b) d /∈ r̃ . Note that Case (5.a) is in fact almost identical to Case (3.a)
and that the result holds with C ′′[_] = νk̃′.νd.(D1{u/x} | D2 | ωd | _) and A′′ = νr̃ ′.(P1 | P2) with
νr̃ = νr̃ ′.νd. Furthermore, note that Case (5.b) is also very similar to Case (3.b) and that the result holds
with C ′′[_] = νk̃′.(D1{d/x} | D2 | ωd_) and A′′ = νr̃.(P1 | P2). Notice that in both case C ′′[_] is indeed
p-closing for A′′.

Case 6, rule C-OPEN between A′ (input) and C ′ (output), i.e. D′ = outθ (c, d).D1 | D2, A′ =
νr̃.(inho(c, x).P1 | P2) and B ≡ νk̃′.νr̃.(D1 | D2 | P1{d/x} | P2 | ωd). This case if very similar to
Case 4 when u is of channel type and the result holds with C ′′[_] = νk̃′.(D1 | D2 | ωd | _) and
A′′ = νr̃.(P1{d/x} | P2).

Case 7, rule C-PRIV with a communication on a channel c. Notice that this rule is in fact partially cov-
ered by the beginning of the proof. Indeed, Case 1 and 2 cover the cases where c is not in k̃′. Therefore,
we only need to focus on the case where the private channel is in k̃′, i.e. νk̃′ = νk̃′′.νc for some k̃′′. We
know that C ′[_] is p-closing for A′. Hence since c is a channel bound in C ′[_] whose scope includes _,
we deduce that if c ∈ fn(A) then ωc is also in the scope of c. But according to the definition of the rule,
we know that ωc is not in the scope of νc. Moreover, if the output or input is done by A′ then it would
implies that c ∈ fn(A). Thus, this allows us to deduce that this both output and input are tagged with at,
meaning that there exists D′′ such that νc.(D′ | A′) τ−→p νc.(D′′ | A′) and B ≡ νk̃′′.νc.(D′′ | A′). In
such a case, by denoting C ′′[_] = νk̃′′.νc.(D′′ | _) and A′′ = A′, the result directly holds.

We have concluded the proof of the property for s = p hence it remains the case s = e. Once, again

several cases are already covered since
	−→p⊂ 	−→e. Hence we only need to focus on the cases of the rules

C-EAV and C-OEAV:
Case 8, rule C-EAV, i.e. A′ = νr̃.(outho(c, u).P1 | inho(c, x).P2 | P3), D′′ = eav(c, y).Q1 | Q2),

B ≡ νk̃′.νr̃.(Q1{u/y} | Q2 | P1 | P2{u/x} | P3) and u is of base type (We assume w.l.o.g. that the
names and variables in r̃ are not in D′). Note that in such a case c /∈ r̃ . Moreover, note this is the
only possible combinaison of input and output since C ′ is an attacker evaluation context and A′ is an
honest extended process. Let us consider a variable z such that z /∈ fv(C ′[A′]) ∪ bn(C ′[A′]). Hence

A′ νz.eav(c,z)−−−−−→ νr̃.(P1 | P2{u/x} | P3 | {u/z}). But since z /∈ fv(C ′[A′]) ∪ bn(C ′[A′]), we deduce that B ≡
νk̃′.νz.νr̃.(Q1{u/y} | Q2 | P1 | P2{u/x} | P3 | {u/z}). Hence, by denoting C ′′[_] = νk̃′.νz.(Q1{z/y} |
Q2 | _) and A′′ = νr̃.(P1 | P2{u/x} | P3 | {u/z}), the result holds.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 101

Case 9, rule C-OEAV, i.e. A′ = νr̃.(outho(c, d).P1 | inho(c, x).P2 | P3), D′′ = eav(c, y).Q1 | Q2),
B ≡ νk̃′.νr̃.(Q1{d/y} | Q2 | P1 | P2{d/x} | P3 | ωd) and d is of channel type (We assume w.l.o.g. that
the names and variables in r̃ are not in D′). We have to do a case analysis on d:

• Case d ∈ r̃: Let us denote νr̃ = νr̃ ′.νd. In such a case A′ νd.eav(c,d)−−−−−−→ νr̃ ′.(P1 | P2{u/x} | P3).
But we know that the names and variables in r̃ are not in D′ hence B ′′ ≡ νk̃′.νd.(Q1{d/y} | Q2 |
νr̃ ′.(P1 | P2{d/x} | P3)). Therefore, by denoting C ′′[_] = νk̃′.νd.(Q1{u/y} | Q2 | ωd | _) and
A′′ = νr̃ ′.(P1 | P2{d/x} | P3), the result holds.

• Case d /∈ r̃: In such a case A′ eav(c,u)−−−−→ νr̃.(P1 | P2{u/x} | P3) and so the result holds by denoting
C ′′[_] = νk̃′.(Q1{u/y} | Q2 | ωd | _) and A′′ = νr̃.(P1 | P2{u/x} | P3).

Note that in both case, C ′′[_] is indeed e-closing for A′′.
We have proved that for all s ∈ {c, p, e}, for all Cs[A] →∗

s B, there exist an attacker evaluation
context C ′[_] = νk̃′.(D′ | _) with D′ name-cleaned, an honest extended process A′ and tr such that

C ′[_] is s-closing for A′, B ≡ C ′[A′] and A
tr=⇒s A′. This property allows us to conclude the main

proof. Indeed, consider s ∈ {c, e, p} and Cs[_] an attacker evaluation context such that Cs[A] ⇓s,ho
c .

By definition, we deduce that Cs[A] →∗
s C[outho(c, t).P] for some evaluation context C that does

not bind c, some t and some plain process P . By our property, we deduce that there exists an attacker
evaluation context C ′[_] = νk̃′.(D′ | _) with D′ name-cleaned, an honest extended process A′ and tr such

that C[outho(c, t).P] ≡ C ′[A′] and A
tr=⇒s A′. More specifically, since C ′[_] is an attacker evaluation

context, C[outho(c, t).P] ≡ C ′[A′] and C does not bind c, we deduce that A′ ≡ νr̃.(outho(c, t ′).P ′ | Q′)
for some t ′, P ′, Q′, r̃ such that c /∈ r̃ . Therefore, if t ′ ∈ Ch but t ′ /∈ r̃ then A′ out(c,t ′)−−−−→s A′′ for some

A′′ meaning that A
tr.out(c,t ′)=====⇒s A′′; else A′ νz.out(c,z)−−−−−→s A′′ for some A′′ and some z fresh (z being either a

base type variable or a channel), meaning that A
tr.νz.out(c,z)======⇒s A′′. In both cases, we obtain that A

tr′=⇒ A′′,
out(c, t) ∈ tr′ and c /∈ bn(tr′) for some tr′, A′′ and t . It allows us to conclude that A �s

c. �

Appendix C. Proof of Theorem 1

We start by restating the a proposition from [15] that was used to prove that trace equivalence implies
may equivalence in the classical semantics. In order to prove the proposition for the semantics private
and eavesdrop, we will first write exactly the proof of from [15] for the classical semantics and then
highlight what changes are required to obtain the proofs for the private and eavesdropping semantics.

Proposition 3. Let s ∈ {c, p, e}. Let A and B be two honest closed extended process with dom(A) =
dom(B), and C[_] = νñ.(D | _) be an attacker evaluation context s-closing for A. If C[A] →∗

s A′′
for some process A′′, then there exist a closed extended process A′, an attacker evaluation context C ′ =
νñ′.(D′ | _) s-closing for A′, and a trace tr ∈ (A � {τ })∗ such that A′′ ≡ C ′[A′], A

tr=⇒s A′, and for all
closed extended process B ′, we have:

C[_] is s-closing for B and B
tr=⇒s B ′ and φ(B ′) ∼ φ(A′)

implies that
C ′ is s-closing for B ′ and C[B] →∗

s C ′[B ′].

102 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Proof. We first focus on the case s = c. Let A and B be two extended processes with dom(A) = dom(B)

and C[_] = νñ.(D | _) be an evaluation context c-closing for A. Let A′′ be such that C[A] →∗
s A′′. We

prove the result by induction on the length 	 of the derivation.
Base case 	 = 0: In such a case, we have that A′′ ≡ C[A]. Let A′ = A, C ′ = C and tr = ε, we

have that A′′ ≡ C ′[A′], and A
tr=⇒c A′. Let B ′ be a closed extended process such that B

ε=⇒c B ′ and
φ(B ′) ∼ φ(A′) for some B ′. Clearly, we have that C[B] →∗

c C ′[B ′] and C ′[_] is c-closing for B ′ since
C ′ = C and B →∗

c B ′.
Inductive case 	 > 0: In such a case, we have that there exists a closed extended process A1 such

that C[A] →∗
c A1 with a derivation whose length is smaller than 	, and A1 →c A′′. Thus, we can apply

our induction hypothesis allowing us to deduce that there exist an extended process A′
1, an evaluation

context C ′
1[_] = νñ′

1.(D
′
1 | _) c-closing for A′

1, and a trace tr1 ∈ (A � {τ })∗ such that A1 ≡ C ′
1[A′

1],
A

tr1=⇒c A′
1, and for all closed extended processes B ′

1, we have that:

C[_] is c-closing for B and B
tr=⇒s B ′

1 and φ(B ′
1) ∼ φ(A′

1)

implies that
C ′

1[_] is c-closing for B ′
1 and C[B] →∗

s C ′
1[B ′

1].

Since A1 ≡ C ′
1[A′

1] and A1 →c A′′, we have that C ′
1[A′

1] →c A′′. (internal reduction is closed under
structural equivalence). W.l.o.g., we can assume that D′

1 is name-cleaned, the bound names and variables
in C ′

1[A′
1] are bound once and distinct from the free names. We do a case analysis on the rule involved

in this reduction.
Case 1: internal reduction in A′

1, i.e. there exists A′ such that A′
1 →c A′ and A′′ ≡ C ′

1[A′]. In such
a case, we have that C ′

1[A′
1] →c C ′

1[A′]. Let C ′[_] = C ′
1[_] and tr = tr1. We have that A′′ ≡ C ′

1[A′] =
C ′[A′] and A

tr1=⇒c A′
1 →c A′, i.e. A

tr=⇒c A′. Lastly, let B ′ be a closed extended process such that

B
tr=⇒c B ′ and φ(B ′) ∼ φ(A′). We have that B

tr1=⇒c B ′ and φ(B ′) ∼ φ(A′
1) ≡ φ(A′), and thus relying

on our induction hypothesis, we obtain that C ′
1[_] is c-closing for B ′ and C[B] →∗

c C ′
1[B ′]. Since

C ′
1[_] = C ′[_], we conclude.
Case 2.a: rule THEN in D′

1, i.e. D′
1 = if u = v then P1 else P2 | P3 and A′′ ≡ νñ′

1.(P1 | P3 | A′
1). In

such a case, we have C ′
1[A′

1] →c νñ′
1.(P1 | P3 | A′

1). Let A′ = A′
1, C ′[_] = νñ′

1.(P1 | P3 | _) and tr = tr1.

We have that A′′ ≡ C ′[A′] and A
tr=⇒c A′. Lastly, let B ′ be a closed extended process such that B

tr=⇒c B ′
and φ(B ′) ∼ φ(A′). By renaming, we can assume that the bound names of B ′ are distinct from the
free names of C ′

1. Moreover, we know that C ′
1 is c-closing for A′

1 meaning that v(u, v) ⊆ dom(φ(A′
1)).

Furthermore, since the free names are distinct from bound names, we obtain that fn(u, v) ∩ bn(A′
1) = ∅.

But φ(A′
1) = φ(A′) ∼ φ(B ′) and (u =E v)φ(A′) hence we obtain (u =E v)φ(B ′) meaning that

C ′
1[B ′] → νñ′

1.(P1 | P3 | B ′) = C ′[B ′]. By our inductive hypothesis, we also have that C ′
1 is c-closing

for B ′ and C[B] →∗
c C ′

1[B ′]. Hence, we conclude that C[B] →∗
c C ′[B ′] and C ′[_] is c-closing for B ′.

Case 2.b: rule ELSE in D′
1, i.e. D′

1 = if u = v then P1 else P2 | P3 and A′′ ≡ νñ′
1.(P2 | P3 | A′

1).
Similar to case 2.a.

Case 3: rule COMM in D′
1, i.e. D′

1 = outat(c, u).P1 | inat(c, x).P2 | P3 and A′′ ≡ νñ′
1.(P1 | P2{u/x} |

P3 | A′
1). In such a case, we have C ′

1[A′
1] →c νñ′

1.(P1 | P2{u/x} | P3 | A′
1). Let A′ = A′

1, C ′[_] =
νñ′

1.(P1 | P2{u/x} | P3 | _) and tr = tr1. We have that A′′ ≡ C ′[A′] and A
tr=⇒c A′. Lastly, let B ′ be

a closed extended process such that B
tr=⇒c B ′ and φ(B ′) ∼ φ(A′). Since φ(A′) = φ(A′

1) then by our

K. Babel et al. / On the semantics of communications when verifying equivalence properties 103

inductive hypothesis, we obtain C ′
1 is c-closing for B ′ and C[B] →∗

c C ′
1[B ′]. But C ′

1[B ′] →c νñ′
1.(P1 |

P2{u/x} | P3 | B ′) = C ′[B ′] and so the result holds.
Case 4: rule COMM between D′

1 (output) and A′
1 (input), i.e. D′

1 = outat(c, M).P1 | P2, A′
1 =

νr̃.(inho(c, x).Q1 | Q2) and A′′ ≡ νñ′
1.νr̃.(P1 | P2 | Q1 | Q2) (recall that we assume that bound names

and variables are distinct from free names and variables and are only bound once). Note that in such

a case, c /∈ r̃ . Hence A′
1

in(c,M)−−−−→ νr̃.(Q1{M/x} | Q2). Moreover, since r̃ are not in P1, P2, we have
A′′ ≡ νñ′

1.(P1 | P2 | νr̃.(Q1{M/x} | Q2)). Let A′ = νr̃.(Q1{M/x} | Q2), C ′[_] = νñ′
1.(P1 | P2 | _) and

tr = tr1.in(c, M). We have that A′′ ≡ C ′[A′] and A
tr=⇒c A′. Lastly let B ′ be a closed extended process

such that B
tr=⇒c B ′ and φ(B ′) ∼ φ(A′). We have that there exists B ′

1 such that B
tr1=⇒c B ′

1
in(c,M)−−−−→c B ′

2 →∗
c

B ′. By renaming, we can assume that the bound names of B ′
1 are distinct from the names of C ′

1 and are
bound only once. Since φ(B ′) ∼ φ(A′), we have also that φ(B ′

1) ∼ φ(A′
1). Thus, we can apply our

induction hypothesis on B ′
1. This allows us to deduce that C[B] →∗

c C ′
1[B ′

1] and C ′
1 is c-closing for B ′

1.
In order to conclude, it remains to show that C ′

1[B ′
1] →c C ′[B ′

2] and C ′[_] is c-closing for B ′
2 (since

C ′[_] is c-closing for B ′
2 and B ′

2 →∗
c B ′ implies C ′[B ′

2] →∗
c C ′[B ′] and C ′ is c-closing for B ′).

We have seen that B ′
1

in(c,M)−−−−→ B ′. Hence, we know that B ′
1 = νr̃ ′.(inho(c, x).Q′

1 | Q′
2) for some r̃ ′,

Q′
1, Q

′
2 and B ′

2 ≡ νr̃ ′.(Q′
1{M/x} | Q′

2). But since we assumed that the bound names of B ′
1 are distinct

from the names of C ′
1 and are bound only once, we obtain that C ′

1[B ′
1] ≡ νñ′

1.νr̃ ′.(outat(c, M).P1 | P2 |
inho(c, x).Q′

1 | Q′
2). Hence C ′

1[B ′
1] →c νñ′

1.νr̃ ′.(P1 | P2 | Q′
1{M/x} | Q′

2) ≡ C ′[νr̃ ′.(Q′
1{M/x} | Q′

2)] ≡
C ′[B ′

2]. Notice that C ′[_] is c-closing for B ′
2 since fv(C ′

1[B ′
1]) = ∅.

Case 5: rule COMM between C ′
1 (input) and A′

1 (output), i.e. D′
1 = inat(c, x).P1 | P2, A′

1 =
νr̃.(outho(c, M).Q1 | Q2) and A′′ ≡ νñ′

1.νr̃.(P1{M/x} | P2 | Q1 | Q2) (recall that we assume that
bound names and variables are distinct from free names and variables and are only bound once). Note
that in such a case, c /∈ r̃ . We do a case analysis on M .

• Case 5.a, M ∈ Ch ∩ r̃: Let us denote νr̃ = νr̃ ′.νM . Thus A′
1

νM.out(c,M)−−−−−−→c νr̃ ′.(Q1 | Q2). Hence,
since the names and variables in r̃ are not in D′

1, we obtain that A′′ ≡ νñ′
1.νM.(P1{M/x} |

P2 | νr̃ ′.(Q1 | Q2)). Let A′ = νr̃ ′.(Q1 | Q2), C ′[_] = νñ′
1.νM.(P1{M/x} | P2 | _) and

tr = tr1.νM.out(c, M). We have that A′′ ≡ C ′[A′] and A
tr=⇒c A′. Lastly let B ′ be a closed ex-

tended process such that B
tr=⇒c B ′ and φ(B ′) ∼ φ(A′). We have that there exists B ′

1 such that

B
tr1=⇒c B ′

1
νM.out(c,M)−−−−−−→c B ′

2 →∗
c B ′. By renaming, we can assume that the bound names of B ′

1 are
distinct from the names of C ′

1 and are bound only once. Since φ(B ′) ∼ φ(A′), we have also that
φ(B ′

1) ∼ φ(A′
1). Thus, we can apply our induction hypothesis on B ′

1. This allows us to deduce
that C[B] →∗

c C ′
1[B ′

1] and C ′
1[_] is c-closing for B ′

1. In order to conclude, it remains to show that
C ′

1[B ′
1] →c C ′[B ′

2] (since fv(C ′
1[B ′

1]) and since B ′
2 →∗

c B ′ implies C ′[B ′
2] →∗

c C ′[B ′]).
We have seen that B ′

1
νM.out(c,M)−−−−−−→ B ′

2. Hence, B ′
1 = νm̃.νM.(outho(c, M).Q′

1 | Q′
2) for some m̃,

Q′
1, Q

′
2 and B ′

2 ≡ νm̃.(Q′
1 | Q′

2). But since we assumed that the bound names of B ′
1 are distinct

from the names of C ′
1 and are bound only once, we obtain that C ′

1[B ′
1] ≡ νñ′

1.νm̃.νM.(inat(c, x).P1 |
P2 | outho(c, M).Q′

1 | Q′
2). Hence C ′

1[B ′
1] →c νñ′

1.νm̃.νM.(P1{M/x} | P2 | Q′
1 | Q′

2) ≡
C ′[νm̃.(Q′

1 | Q′
2)] ≡ C ′[B ′

2].
• Case 5.b, M ∈ Ch but M /∈ r̃: Thus A′

1
out(c,M)−−−−→c νr̃.(Q1 | Q2). Hence, since the names and

variables in r̃ are not in D′
1, we obtain that A′′ ≡ νñ′

1.(P1{M/x} | P2 | νr̃.(Q1 | Q2)). Let A′ =
νr̃.(Q1 | Q2), C ′[_] = νñ′

1.(P1{M/x} | P2 | _) and tr = tr1.out(c, M). We have that A′′ ≡ C ′[A′]

104 K. Babel et al. / On the semantics of communications when verifying equivalence properties

and A
tr=⇒c A′. Lastly let B ′ be a closed extended process such that B

tr=⇒c B ′ and φ(B ′) ∼ φ(A′).
We have that there exists B ′

1 such that B
tr1=⇒c B ′

1
out(c,M)−−−−→c B ′

2 →∗
c B ′. By renaming, we can assume

that the bound names of B ′
1 are distinct from the names of C ′

1 and are bound only once. Since
φ(B ′) ∼ φ(A′), we have also that φ(B ′

1) ∼ φ(A′
1). Thus, we can apply our induction hypothesis

on B ′
1. This allows us to deduce that C[B] →∗

c C ′
1[B ′

1] and C ′
1[_] is c-closing for B ′

1. In order to
conclude, it remains to show that C ′

1[B ′
1] →c C ′[B ′] (since fv(C ′

1[B ′
1]) and since B ′

2 →∗
c B ′ implies

C ′[B ′
2] →∗

c C ′[B ′]).
We have seen that B ′

1
out(c,M)−−−−→ B ′

2. Hence, B ′
1 = νm̃.(outho(c, M).Q′

1 | Q′
2) for some m̃, Q′

1, Q
′
2

such that M /∈ m̃ and B ′
2 ≡ νm̃.(Q′

1 | Q′
2). But since we assumed that the bound names

of B ′
1 are distinct from the names of C ′

1 and are bound only once, we obtain that C ′
1[B ′

1] ≡
νñ′

1.νm̃.(inat(c, x).P1 | P2 | outho(c, M).Q′
1 | Q′

2). Hence C ′
1[B ′

1] →c νñ′
1.νm̃.(P1{M/x} | P2 |

Q′
1 | Q′

2) ≡ C ′[νm̃.(Q′
1 | Q′

2)] ≡ C ′[B ′
2].

• Case 5.c, M /∈ Ch: Consider y a fresh variable. Thus A′
1

νy.out(c,y)−−−−−→c νr̃.(Q1 | Q2 | {M/y}).
Hence, since the names and variables in r̃ are not in D′

1 and since y is fresh, we obtain that A′′ ≡
νñ′

1.νy.νr̃.(P1{y/x} | P2 | Q1 | Q2 | {M/y}) ≡ νñ′
1.νy.(P1{y/x} | P2 | νr̃.(Q1 | Q2 | {M/y})).

Let A′ = νr̃.(Q1 | Q2 | {M/y}), C ′[_] = νñ′
1.νy.(P1{y/x} | P2 | _) and tr = tr1.νy.out(c, y). We

have that A′′ ≡ C ′[A′] and A
tr=⇒c A′. Lastly let B ′ be a closed extended process such that B

tr=⇒c B ′

and φ(B ′) ∼ φ(A′). We have that there exists B ′
1 such that B

tr1=⇒c B ′
1

νy.out(c,y)−−−−−→c B ′
2 →∗

c B ′. By
renaming, we can assume that the bound names of B ′

1 are distinct from the names of C ′
1 and are

bound only once. Since φ(B ′) ∼ φ(A′), we deduce that dom(B ′
1) = dom(A′

1) and φ(B ′
1) ∼ φ(A′

1).
Thus, we can apply our induction hypothesis on B ′

1. This allows us to deduce that C[B] →∗
c C ′

1[B ′
1]

and C ′
1[_] is c-closing for B ′

1. In order to conclude, it remains to show that C ′
1[B ′

1] →c C ′[B ′] (since
fv(C ′

1[B ′
1]) and since B ′

2 →∗
c B ′ implies C ′[B ′

2] →∗
c C ′[B ′]).

We have seen that B ′
1

νy.out(c,y)−−−−−→ B ′
2. Hence, B ′

1 = νm̃.(outho(c, N).Q′
1 | Q′

2) for some m̃,
N /∈ Ch, Q′

1, Q
′
2 and B ′

2 ≡ νm̃.(Q′
1 | Q′

2 | {N/y}). But since we assumed that the bound
names of B ′

1 are distinct from the names of C ′
1 and are bound only once, we obtain that C ′

1[B ′
1] ≡

νñ′
1.νm̃.(inat(c, x).P1 | P2 | outho(c, N).Q′

1 | Q′
2). Moreover, since y is fresh, we obtain that

νñ′
1.νy.νm̃.(inat(c, x).P1 | P2 | outho(c, y).Q′

1 | Q′
2 | {N/y}). Hence C ′

1[B ′
1] →c νñ′

1.νy.

νm̃.(P1{y/x} | P2 | Q′
1 | Q′

2 | {N/y}) ≡ C ′[νm̃.(Q′
1 | Q′

2 | {N/y})] ≡ C ′[B ′
2].

This conclude the proof of the proposition for s = c. Therefore, it remains to take care of the cases
s = p and s = e. Let us focus first on the case s = p. The proof is in fact very similar to the classical
semantics. Considering that the differences between the classical semantics and the private semantics
are on the internal communication, we only need the rules that are not already covered in the classical
proof. Notice that the rule C-ENV correspond to either Case 3 or Case 4 when M is of base type or
Case 5.c. Moreover, the rules THEN and ELSE are already covered either Case 1 or 2.a or 2.b. Hence it
remains the case of the rules C-PRIV and C-OPEN.

Case 6, rule C-OPEN between C ′
1 (input) and A′

1 (output), i.e. D′
1 = inθ (c, x).P1 | P2, A′

1 =
νr̃.(outho(c, d).Q1 | Q2) and A′′ ≡ νñ′

1.νr̃.(P1{d/x} | P2 | Q1 | Q2 | ωd). Lets us do a case anal-
ysis on whether (6.a) d ∈ r̃ or (6.b) d /∈ r̃ . Note that Case (6.a) is in fact almost identical to Case (5.a)
and that the result holds with C ′[_] = νñ′

1.νd.(P1{d/x} | P2 | ωd | _), A′ = νr̃ ′.(Q1 | Q2) and tr = tr.νd

with νr̃ = νr̃ ′.νd. Furthermore, note that Case (6.b) is also very similar to Case (5.b) and that the result
holds with C ′[_] = νñ′

1.(P1{d/x} | P2 | ωd | _) and A′′ = νr̃.(Q1 | Q2). Notice that in both cases C ′[_]
is p-closing for A′ and B ′ since ωd was added to C ′[_].

K. Babel et al. / On the semantics of communications when verifying equivalence properties 105

Case 7, rule C-OPEN between A′
1 (input) and C ′

1 (output), i.e. D′
1 = outθ (c, d).P1 | P2, A′

1 =
νr̃.(inho(c, x).Q1 | Q2) and A′′ ≡ νñ′

1.νr̃.(P1 | P2 | Q1{d/x} | Q2 | ωd). This case if very similar
to Case 4 when M is of channel type and the result holds with C ′[_] = νñ′

1.(P1 | P2 | ωd | _) and
A′ = νr̃.(Q1{d/x} | Q2). Notice that in both cases C ′[_] is p-closing for A′ and B ′ since ωd was added
to C ′[_].

Case 8, rule C-PRIV with a communication on a channel c. Notice that this rule is in fact partially
covered by the beginning of the proof. Indeed, Case 1 and 3 cover the cases where c is not in ñ′

1.
Therefore, we only need to focus on the case where the private channel is in ñ′

1, i.e. νñ′
1 = νñ′′

1.νc for
some ñ′′

1. We know that C ′
1[_] is p-closing for A′

1. Hence since c is a channel bound in C ′
1[_] whose

scope includes _, we deduce that if c ∈ fn(A1) then ωc is also in the scope of c. But according to the
definition of the rule, we know that ωc is not in the scope of νc. Moreover, if the output or input is
done by A′

1 then it would implies that c ∈ fn(A1). Thus, this allows us to deduce that this both output

and input are tagged with at, meaning that there exists D′′
1 such that νc.(D′

1 | A′
1)

τ−→p νc.(D′′
1 | A′

1)

and A′′ ≡ νñ′′
1.νc.(D′′

1 | A′
1). In such a case, by denoting C ′[_] = νñ′′

1.νc.(D′′
1 | _), A′ = A′

1 and

tr = tr1, we obtain A′′ ≡ C ′[A′] and A
tr1=⇒p A′. Lastly let B ′ be a closed extended process such that

B
tr=⇒p B ′ and φ(B ′) ∼ φ(A′). By our inductive hypothesis, we know that C[B] →∗

p C ′
1[B ′]. But

C ′
1[B ′] = νñ′′

1.νc.(D′
1 | B ′) →p νc.(D′′

1 | B ′) ≡ C ′[B ′]. Hence the result holds.
We have concluded the proof of the property for s = p hence it remains the case s = e. Once, again

several cases are already covered since
	−→p⊂ 	−→e. Hence we only need to focus on the cases of the rules

C-EAV and C-OEAV:
Case 8, rule C-EAV, i.e. A′

1 = νr̃.(outho(c, u).Q1 | inho(c, x).Q2 | Q3), D′
1 = eav(c, y).P1 | P2),

A′′ ≡ νñ′
1.νr̃.(P1{u/y} | P2 | Q1 | Q2{u/x} | Q3) and u is of base type (We assume w.l.o.g. that the

names and variables in r̃ are not in D′
1). Note that in such a case c /∈ r̃ . Moreover, note this is the only

possible combinaison of input and output since C ′
1 is an attacker evaluation context and A′

1 is an honest

extended process. Let us consider a fresh variable z. Hence A′
1

νz.eav(c,z)−−−−−→ νr̃.(Q1 | Q2{u/x} | Q3 | {u/z}).
But since z is fresh, we deduce that A′′ ≡ νñ′

1.νz.νr̃.(P1{u/y} | P2 | Q1 | Q2{u/x} | Q3 | {u/z}). Let
C ′[_] = νñ′

1.νz.(P1{z/y} | P2 | _), A′ = νr̃.(Q1 | Q2{u/x} | Q3 | {u/z}) and tr = tr1.νz.eav(c, z).

We have A′′ ≡ C ′[A′] and A
tr=⇒p A′. Let B ′ be a closed extended process such that B

tr=⇒ B ′ and

φ(B ′) ∼ φ(A′). We have that there exists B ′
1 such that B

tr1=⇒e B ′
1

νz.eav(c,z)−−−−−→e B ′
2 →∗

e B ′. By renaming,
we can assume that the bound names of B ′

1 are distinct from the names of C ′
1 and are bound only once.

Since φ(B ′) ∼ φ(A′), we deduce that dom(B ′
1) = dom(A′

1) and φ(B ′
1) ∼ φ(A′

1). Thus, we can apply
our induction hypothesis on B ′

1. This allows us to deduce that C[B] →∗
e C ′

1[B ′
1] and C ′

1[_] is e-closing
for B ′

1. In order to conclude, it remains to show that C ′
1[B ′

1] →e C ′[B ′
2] and C ′[_] is p-closing for B ′

2
(since C ′[_] is e-closing for B ′

2 and B ′
2 →∗

e B ′ implies C ′[B ′
2] →∗

e C ′[B ′] and C ′[_] is p-closing for B ′).

We have seen that B ′
1

νz.eav(c,z)−−−−−→e B ′
2. Hence, B ′

1 = νm̃.(outho(c, N).Q′
1 | in.(c, x)Q′

2 | Q′
3) for some

m̃, N is of base type, Q′
1, Q

′
2, Q

′
3 and B ′

2 ≡ νm̃.(Q′
1 | Q′

2{N/x} | Q′
3 | {N/y}). But since we assumed

that the bound names of B ′
1 are distinct from the names of C ′

1 and are bound only once, we obtain
that C ′

1[B ′
1] ≡ νñ′

1.νm̃.(eav(c, y).P1 | P2 | outho(c, N).Q′
1 | in.(c, x)Q′

2 | Q′
3). Moreover, since z is

fresh, we obtain that νñ′
1.νz.νm̃.(eav(c, y).P1 | P2 | outho(c, z).Q′

1 | in.(c, x)Q′
2 | Q′

3 | {N/z}). Hence
C ′

1[B ′
1] →e νñ′

1.νy.νm̃.(P1{z/y} | P2 | Q′
1 | Q′

2{N/x} | Q′
3 | {N/z}) ≡ C ′[νm̃.(Q′

1 | Q′
2{N/x} | Q′

3 |
{N/z})] ≡ C ′[B ′

2]. Note that since the rule is focused on base type terms, we directly have that C ′[_] is
e-closing for B ′

2.

106 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Case 9, rule C-OEAV, i.e. A′
1 = νr̃.(outho(c, d).Q1 | inho(c, x).Q2 | Q3), D′

1 = eav(c, y).P1 | P2),
A′′ ≡ νñ′

1.νr̃.(P1{d/y} | P2 | Q1 | Q2{d/x} | Q3 | ωd) and d is of channel type (We assume w.l.o.g. that
the names and variables in r̃ are not in D′). We have to do a case analysis on d:

• Case d ∈ r̃: Let us denote νr̃ = νr̃ ′.νd. In such a case A′
1

νd.eav(c,d)−−−−−−→ νr̃ ′.(Q1 | Q2{d/x} | Q3).
But we know that the names and variables in r̃ are not in D′

1 hence A′′ ≡ νñ′
1.νd.(P1{d/y} | P2 |

ωd | νr̃ ′.(Q1 | Q2{d/x} | Q3)). Let C ′[_] = νk̃′.νd.(Q1{d/y} | Q2 | ωd | _), A′ = νr̃ ′.(Q1 |
Q2{d/x} | Q3) and tr = tr1.νd.eav(c, d). We have A′′ ≡ C ′[A′] and A

tr=⇒e A′. Let B ′ be a closed

extended process such that B
tr=⇒e B ′ and φ(B ′) ∼ φ(A′). We have that there exists B ′

1 such that

B
tr1=⇒e B ′

1
νd.eav(c,d)−−−−−−→e B ′

2 →∗
e B ′. By renaming, we can assume that the bound names of B ′

1 are
distinct from the names of C ′

1 and are bound only once. Since φ(B ′) ∼ φ(A′), we deduce that
dom(B ′

1) = dom(A′
1) and φ(B ′

1) ∼ φ(A′
1). Thus, we can apply our induction hypothesis on B ′

1.
This allows us to deduce that C[B] →∗

e C ′
1[B ′

1] and C ′
1[_] is e-closing for B ′

1. In order to conclude,
it remains to show that C ′

1[B ′
1] →e C ′[B ′

2] and C ′[_] is e-closing for B ′
2 (since C ′[_] is e-closing

for B ′
2 and B ′

2 →∗
e B ′ implies C ′[B ′

2] →∗
e C ′[B ′] and C ′[_] is e-closing for B ′).

We have seen that B ′
1

νd.eav(c,d)−−−−−−→e B ′
2. Hence, B ′

1 = νm̃.νd.(outho(c, d).Q′
1 | in.(c, x)Q′

2 | Q′
3)

for some m̃, Q′
1, Q

′
2, Q

′
3 and B ′

2 ≡ νm̃.(Q′
1 | Q′

2{d/x} | Q′
3). But since we assumed that the

bound names of B ′
1 are distinct from the names of C ′

1 and are bound only once, we obtain that
C ′

1[B ′
1] ≡ νñ′

1.νm̃.νd.(eav(c, y).P1 | P2 | outho(c, d).Q′
1 | in.(c, x)Q′

2 | Q′
3). Hence C ′

1[B ′
1] →e

νñ′
1.νm̃.νd.(P1{d/y} | P2 | Q′

1 | Q′
2{d/x} | Q′

3 | ωd) ≡ C ′[νm̃.(Q′
1 | Q′

2{d/x} | Q′
3)] ≡ C ′[B ′

2].
Note that d is possible a new free channel of B ′

2. However, since we have ωd in C ′, we ensure that
C ′ is e-closing for B ′

2

• Case d /∈ r̃: In such a case A′
1

eav(c,d)−−−−→ νr̃.(Q1 | Q2{d/x} | Q3). But we know that the names and
variables in r̃ are not in D′

1 hence A′′ ≡ νñ′
1.(P1{d/y} | P2 | ωd | νr̃.(Q1 | Q2{d/x} | Q3)). Let

C ′[_] = νk̃′.(Q1{d/y} | Q2 | ωd | _), A′ = νr̃.(Q1 | Q2{d/x} | Q3) and tr = tr1.eav(c, d). We

have A′′ ≡ C ′[A′] and A
tr=⇒e A′. Let B ′ be a closed extended process such that B

tr=⇒e B ′ and

φ(B ′) ∼ φ(A′). We have that there exists B ′
1 such that B

tr1=⇒e B ′
1

eav(c,d)−−−−→e B ′
2 →∗

e B ′. By renaming,
we can assume that the bound names of B ′

1 are distinct from the names of C ′
1 and are bound only

once. Since φ(B ′) ∼ φ(A′), we deduce that dom(B ′
1) = dom(A′

1) and φ(B ′
1) ∼ φ(A′

1). Thus,
we can apply our induction hypothesis on B ′

1. This allows us to deduce that C[B] →∗
e C ′

1[B ′
1] and

C ′
1[_] is e-closing for B ′

1. In order to conclude, it remains to show that C ′
1[B ′

1] →e C ′[B ′
2] and C ′[_]

is e-closing for B ′
2 (since C ′[_] is e-closing for B ′

2 and B ′
2 →∗

e B ′ implies C ′[B ′
2] →∗

e C ′[B ′] and
C ′[_] is e-closing for B ′).
We have seen that B ′

1
eav(c,d)−−−−→e B ′

2. Hence, B ′
1 = νm̃.(outho(c, d).Q′

1 | in.(c, x)Q′
2 | Q′

3) with
d /∈ m̃ for some m̃, Q′

1, Q
′
2, Q

′
3 and B ′

2 ≡ νm̃.(Q′
1 | Q′

2{d/x} | Q′
3). But since we assumed that

the bound names of B ′
1 are distinct from the names of C ′

1 and are bound only once, we obtain that
C ′

1[B ′
1] ≡ νñ′

1.νm̃.(eav(c, y).P1 | P2 | outho(c, d).Q′
1 | in.(c, x)Q′

2 | Q′
3). Hence C ′

1[B ′
1] →e

νñ′
1.νm̃.(P1{d/y} | P2 | Q′

1 | Q′
2{d/x} | Q′

3 | ωd) ≡ C ′[νm̃.(Q′
1 | Q′

2{d/x} | Q′
3)] ≡ C ′[B ′

2]. Note
that d is possible a new free channel of B ′

2 and b could be bound in ñ′
1. However, since we have ωd

in C ′, we ensure that C ′ is e-closing for B ′
2. �

K. Babel et al. / On the semantics of communications when verifying equivalence properties 107

Lemma 10. Let A and B be two closed extended processes such that A ≈s
t B. Let u be a name that

occurs in fn(A) ∪ fn(B) and not in bn(A) ∪ bn(B), and u′ be a fresh name. For all s ∈ {c, p, e}, we have
A{u′

/u} ≈s
t B{u′

/u}.
Proof. By induction on the derivation. �

The previous lemma indicates that the trace equivalence are preserved by replacement of free names.
As for the previous proposition, the proof of Theorem 1 is taken from [15] for the classical semantics

and we adapt it for the private and eavesdropping semantics.

Theorem 1. ≈s
t � ≈s

m and ≈s
t = ≈s

m on image-finite processes for s ∈ {c, e, p}.
Proof. We first prove that for all s ∈ {c, p, e}, ≈s

t ⊆ ≈s
m. Since we already proved in the body of the

paper that there exists two closed honest extended processes such that A ≈s
m B but A ≈s

t B, we would
thus obtain that ≈s

t � ≈s
m.

Let A, B be two closed extended processes such that A ≈s
t B. Let C[_] be an evaluation context

s-closing for A and B, and c be a channel name. We assume w.l.o.g. that C[_] = νñ.(D1 | νm̃.(_ | D2))

for some extended processes D, D′ and for some sequences of names and variables ñ, and m̃. We assume
w.l.o.g. that m̃ ∩ (bn(A) ∪ bv(A)) = ∅ and m̃ ∩ (bn(B) ∪ bv(B)) = ∅.

Let A2 = A{m̃′
/m̃} and B2 = B{m̃′

/m̃} where m̃′ is a sequence of fresh names and variables. Thanks to
Lemma 10, we have that A2 ≈s

t B2. Hence, by structural equivalence, there exists C2[_] = νk̃.(D | _)

such that C[A] ≡ C2[A2] and C[B] ≡ C2[B2].
Assume now that C[A] ⇓s

c. This means that there exist a evaluation context C1 that does not bind c, a
term M , and a plain process P , θ ∈ {at, ho} such that C[A] ≡ C2[A2] →∗

s C1[outθ (c, M).P]. Applying
Proposition 3 on A2, B2 and C2[_], we know that there exist a closed extended process A′

2, an evaluation
context C ′

2[_] = νr̃.(E | _) s-closing for A′
2 and tr ∈ (A� {τ })∗ such that C1[outθ (c, M).P] ≡ C2[A′

2],
and A2

tr=⇒s A′
2, and for all closed extended process B ′

2 such that B2
tr=⇒s B ′

2 and φ(B ′
2) ∼ φ(A′

2), we
have that C2[B2] →∗

s C ′
2[B ′

2]. Moreover, we assume w.l.o.g. that bn(()tr) ∩ fn(()B2) = ∅.
Since C ′

2 = νr̃.(E|_), we can deduce from C1[outθ (c, M).P] ≡ C ′
2[A′

2] that the output outθ (c, M)

comes from the process E when θ = at or from A′
2 when θ = ho. We distinguish these two cases:

• Case θ = at: Since, we have that A2 ≈s
t B2, we know that there exists B ′

2 such that B2
tr=⇒s B ′

2 and
φ(A′

2) ∼ φ(B ′
2). Therefore, we have that C2[B2] →∗

s C ′
2[B ′

2] ≡ νr̃.(E | B ′
2). But by hypothesis,

we know that the output outθ (c, M) comes from E and c /∈ r̃ . Hence we have that C2[B2] ⇓s
c, and

since C[B] ≡ C2[B2], we conclude that C[B] ⇓s
c.• Case θ = ho: Thus, we have that A′

2 ≡ νṽ.(outθ (c, M).P | A3) with c /∈ ṽ, r̃ . Thus, we have

that A′
2

νz.out(c,z)−−−−−→s νṽ.(P | A3 | {M/z}) where z is fresh (if M is a term of channel type, the
transition is different but the proof can be done in a similar way.) Let A′′ = νṽ.(P | A3 | {M/z})
and tr′ = tr · νz.out(c, z), we have that A2

tr′=⇒s A′′. Since we have that A2 ≈s
t B2, we have that there

exists B ′
2 such that B2

tr′=⇒s B ′
2 and φ(A′′) ∼ φ(B ′

2). Since internal reduction rules do not modify
the frame (modulo structural equivalence), we can deduce w.l.o.g. that there exists B ′ such that

B2
tr=⇒s B ′ νz.out(c,z)−−−−−→s B ′

2. Therefore, we have that there exists a term N , an evaluation context C3 and
a process Q such that B ′ ≡ C3[outho(c, N).Q] and c is not bind by C3. Furthermore, we have that
φ(A′

2) ∼ φ(B ′) which means that C2[B2] →∗
s C ′

2[B ′], and thus C2[B2] →∗
s C ′

2[C3[outho(c, N).Q]].
Hence, we have that C2[B2] ⇓s

c, and since C[B] ≡ C2[B2], we conclude that C[B] ⇓s
c.

108 K. Babel et al. / On the semantics of communications when verifying equivalence properties

This conclude the proof of ≈s
t ⊆ ≈s

m. It remains to prove that on imagine-finite processes, ≈s
t = ≈s

m

for all s ∈ {c, e, p}. We first focus on s = c.
Assume that A 	≈c

t B. We assume w.l.o.g. that A 	�s
t B. In such a case, there exists a witness for

the non equivalence. This means that there exists A′, tr such that bn(()tr) ∩ fn(()B) = ∅, and for all

B ′, B
tr=⇒c B ′ implies φ(A′) � φ(B ′). Moreover, we assume that no name in tr is bound twice (i.e. νa.

cannot occur twice in tr) and bound names in tr are distinct from free names that occur in A, B, and tr.
We build an evaluation context Cc[_] according to the trace tr and also the tests that witness the fact

that static equivalence does not hold. Let Str = {φ(B ′) | B
tr=⇒c B ′}. Since B is image-finite, we know

that Str/ ∼ is finite. Let {φ1, . . . , φm} = S/ ∼. Note that m can be equal to 0 if there is no B ′ such that

B
tr=⇒c B ′.

We know that {1, . . . , m} = T + � T − with:

• for each i ∈ T +, there exist two terms Mi and Ni such that v(Mi) ∪ v(Ni) ⊆ dom(φ(A′)), (Mi =E

Ni)φ(A′), and (Mi 	=E Ni)φi ; and
• for each i ∈ T −, there exist two terms Mi and Ni such that v(Mi) ∪ v(Ni) ⊆ dom(φ(A′)), (Mi 	=E

Ni)φ(A′), and (Mi =E Ni)φi .

Let bad be a fresh channel name that does not occur in A and B. Let P1, . . . , Pm, Pm+1 be the plain
processes defined as follows:

• Pm+1 =̂ outat(bad, bad).0
• for 1 � i � m, we define Pi as follows:

Pi =̂ if Mi = Ni then Pi+1 else 0 when i ∈ T +
Pi =̂ if Mi = Ni then 0 else Pi+1 when i ∈ T −

Let {a1, . . . , ak} be channel names that occur free in A, B, and tr. Let X 0
ch = {xa1, . . . , xak

} be a set
of variables of channel type, and σ = {xa1 �→ a1, . . . , xak

�→ ak}. Moreover, for all channel names
{d1, . . . , dm} that are bound in tr, we also associate fresh variables xd1, . . . , xdm

.
We define Cc[_] such that Cc[_] = νz̃.(Qc(tr,X 0

ch) | _) where z̃ = dom(φ(A)) and Qc(tr,Xch) is
defined by recurrence on tr as follows:

• if tr = ε then Qc(tr,Xch) = P1;
• if tr = in(a, M).tr′ then Qc(tr,Xch) = outat(xaσ, M).Qc(tr′,Xch);
• if tr = νz.out(a, z).tr′ and z is of base type then Qc(tr,Xch) = inat(xaσ, x).Qc(tr′,Xch)

• it tr = out(a, c).tr′ then Qc(tr,Xch) = inat(xaσ, y).if y = xcσ then Qc(tr′,Xch) else 0 where y is
fresh variable of channel type; and

• if tr = νc.out(a, c) and c is of channel type then Qc(tr,Xch) = inat(xaσ, xc).if xc ∈ Xchσ then 0 else
Qc(tr′,X ′

ch) where X ′
ch = Xch � {xc}.

We use the conditional if u ∈ {u1, . . . , uk} then 0 else P as a shortcut for

if u = u1 then 0 else (if u = u2 then 0 else (. . . (if u = uk then 0 else P) . . .)).

We can see that Cc[A] ⇓c
bad since A

tr=⇒ A′ and φ(A′) satisfies by definition all the tests that are tested
in P1, . . . , Pm. However, by construction of Cc[_], we have that Cc[B] 	⇓c

bad.
This conclude the proof for the case s = c. The proof for s = p and e are very similar. We only need

to slightly modify the context Cc[_]. In fact since the possible labels in the private semantics are the

K. Babel et al. / On the semantics of communications when verifying equivalence properties 109

same as in the original semantics, we have Cp[_] = Cc[_]. However, for the eavesdropping semantics,
we define Ce[_] such that Ce[_] = νz̃.(Qe(tr,X 0

ch) | _) where z̃ = dom(φ(A)) and Qe(tr,Xch) is defined
by recurrence on tr as follows:

• if tr = ε then Qe(tr,Xch) = P1;
• if tr = in(a, M).tr′ then Qe(tr,Xch) = outat(xaσ, M).Qe(tr′,Xch);
• if tr = νz.out(a, z).tr′ and z is of base type then Qe(tr,Xch) = inat(xaσ, z).Qe(tr′,Xch)

• it tr = out(a, c).tr′ then Qe(tr,Xch) = inat(xaσ, y).if y = xcσ then Qe(tr′,Xch) else 0 where y is
fresh variable of channel type; and

• if tr = νc.out(a, c) and c is of channel type then Qe(tr,Xch) = inat(xaσ, xc).if xc ∈ Xchσ then 0 else
Qe(tr′,X ′

ch) where X ′
ch = Xch � {xc}.

• if tr = eav(a, c).tr′ with c of channel-type then Qe(tr,Xch) = eav(xaσ, y).if y = xcσ then Qe(tr′,
Xch) else 0 where y is fresh variable of channel type;

• if tr = νz.eav(a, z).tr′ and z is of base type then Qe(tr,Xch) = eav(xaσ, z).Qe(tr′,Xch)

• if tr = νc.eav(a, c).tr′ and c is of channel type then Qe(tr,Xch) = eav(xaσ, xc).if xc ∈
Xchσ then 0 else Qe(tr′,X ′

ch) where X ′
ch = Xch � {xc}. �

Appendix D. Proof of Theorem 6

In this section, we want to prove that ≈e
m � ≈p

m ∩ ≈c
m. In order to show that ≈e

m � ≈c
m, we need to

build a transformation of context that would allows us to go from the classic semantics to eavesdropping
semantics, and vice versa.

Notice that in the definition of structural equivalence !A |!A is not equivalence to !A even though
they have the same behavior. In fact, for reachability, may equivalence, trace equivalence, observational
equivalence and labeled bissimilar, using the structural equivalence coincides with using the structural
equivalence augmented with the equality !A |!A ≡!A. As such in this section, we will consider the
structural equivalence augmented with the equality !A |!A ≡!A.

Definition 13. Let P be an extended attacker process. We define P inductively as follows:

• 0 when P = 0
• P1 | P2 when P = P1 | P2

• P when P = {u/x}
• ωc when P = ωc

• νn.(P ′ |!eav(n, y) |!eav(n, z)) when P = νn.P ′, n is of channel type and y, z are variables of base
and channel type respectively.

• νk.P ′ when P = νn.P ′, n is of base type
• if u = v then P1 else P2 when P = if u = v then P1 else P2

• eav(c, x).P ′ when P = eav(c, x).P ′

• outat(c, u).P ′ when P = outat(c, u).P

• inat(c, x).P ′ when P = inat(c, x).P ′ and x is of base type
• inat(c, x).(P ′ |!eav(x, y) |!eav(x, z)) when P = inat(c, x).P ′, y, z are variables of base and channel

type respectively.

110 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Let Tch be the terms of channel type, i.e. names and variables of channel type. Let C[_] = νñ.(D | _) be
an attacker evaluation context and S a set of channel names. We define CS[_] as follows:

νñ.

(
D | _ |

∏
a∈ñ∩Tch

!eav(a, y) |!eav(a, z) | ωa

)
|
∏
a∈S

!eav(a, y) |!eav(a, z) | ωa

where y and z are variables of base and channel type respectively.

In order to facilitate the readability of the proof, for a set S of names and variables, we will denote
P(S) = ∏

a∈S∩Tch
!eav(a, y) |!eav(a, z) and Po(S) = ∏

a∈S∩Tch
!eav(a, y) |!eav(a, z) | ωa. Moreover, we

will consider that P(S) | P(S) ≡ P(S).
Hence, CS[_] can now be written as νñ.(D | _ | Po(ñ)) | Po(S).
Note that from the definition, we have that for all A closed honest extended process, if C[_] = νñ.(D |

) is c-closing for A then CS[] is e-closing for A for all S.

Lemma 11. Let A be an extended process and νñ a sequence of names and variables. We have νñ.A ≡
νñ.(A | P(ñ).

Proof. Direct from the definition. �

Lemma 12. Let A be an closed honest extended process. Let C[_] = νñ.(νm̃.D | _) be an attacker
evaluation context c-closing for A such that D is named-cleaned and eavesdrop-free. Let S be a set of
channel names such that f c(C[A]) ⊆ S.

(1) For all C[A] →c A0, there exist A′ closed honest extended process, C ′[_] = νñ′.(νm̃′.D′ | _)

an attacker evaluation context c-closing for A′ such that D′ is name-cleaned and eavesdrop-free,
C ′[A′] ≡ A0 and CS[A] →e C ′

S[A′]
(2) For all CS[A] →e A0, there exist A′ closed honest extended process, C ′[_] = νñ′.(νm̃′.D′ | _)

an attacker evaluation context c-closing for A′ such that D′ is name-cleaned and eavesdrop-free,
C ′

S[A′] ≡ A0 and C[A] →c C ′[A′]

Proof. We first start by proving the first property. Notice that by structural equivalence, we can always
assume that the bound names and variables in C[A] are only bound once and are distinct from the free
names in S. Indeed, for all C ′′[_], A′′, if C[A] ≡ C ′′[A′′] only by renaming of bound names and variables
then we obtain that CS[A] ≡ C ′′

S[A′′].
We do a case analysis on the internal rule applied.
Case 1.a, rule THEN on D, i.e. D = if u = v then D1 else D2 | D3 and A0 ≡ νñ.(D2 | D3 | A): In

such a case we have D →e D1 | D3 and so νm̃.(D | P(m̃)) →e νm̃.(D1 | D3 | P(m̃)). By Lemma 11,
we obtain that νm̃.D → νm̃.(D1 | D3). Let us denote C ′[_] = νñ.(νm̃.(D1 | D3) | _) and A′ = A. Since
C ′

S[_] = νñ.(νm̃.(D1 | D3) | _ | Po(ñ)) | Po(S), we obtain that A0 ≡ C ′[A′] and CS[A] →e C ′
S[A′].

Case 1.b, rule ELSE on D: Similar to Case 1.a.
Case 2.a, rule THEN on A, i.e. A ≡ νr̃.(if u = v then P1 else P2 | P3) and A0 ≡ C[νr̃.(P1 | P3)]: In

such a case, let us denote C ′[_] = C[_] and A′ = νr̃.(P1 | P3). Therefore, C ′[A′] = C[A′] ≡ A0. Note
that A →e A′. Hence C[A] →e C[A′] and CS[A] →e CS[A′]. Thus the result holds.

Case 2.b, rule ELSE on A: Similar to Case 2.a.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 111

Case 3, rule COMM on A, i.e. A ≡ νr̃.(outho(c, u).P1 | inho(c, x).P2 | P3) and A0 ≡ C[νr̃.(P1 |
P2{u/x} | P3)]: Note that even though A →c νr̃.(P1 | P2{u/x} | P3), we don’t necessarily have that
A →e νr̃.(P1 | P2{u/x} | P3). We have to do a case analysis on u and c:

• Case 3.a, c ∈ r̃: In such a case, we know from A being an honest processes that c /∈ oc(P3).
Thus we can apply rule C-PRIV to obtain that A →e νr̃.(P1 | P2{u/x} | P3). Hence, by denoting
C ′[_] = C[_] and A′ = νr̃.(P1 | P2{u/x} | P3), we obtain that C ′[A′] = C[A′] ≡ A0, A →e A′ and
so C[A] →e C[A′] and CS[A] →e CS[A′]. Therefore, the result holds.

• Case 3.b, c /∈ r̃ and u of base type: In such a case, outho(c, u).P1 | inho(c, x).P2 | P3 | eav(c, y) →e

P1 | P2{u/x} | P3 by the rule C-EAV. Let us denote A′ = νr̃.(P1 | P2{u/x} | P3). Since c /∈ r̃ , we
obtain that A | eav(c, y) →e A′ and so A |!eav(c, y) →e A′ |!eav(c, y). By noticing that c is either
in ñ or in f c(C[A]) and so in S, the structural equivalence gives us that CS[A] →e CS[A′]. Hence
the result holds with C ′[_] = C[_].

• Case 3.c, c /∈ r̃ and u of channel type: This case is very similar to Case 3.b. Indeed, outho(c, u).P1 |
inho(c, x).P2 | P3 | eav(c, z) →e P1 | P2{u/x} | P3 | ωc by the rule C-OEAV. Let us denote
A′ = νr̃.(P1 | P2{u/x} | P3). Since c /∈ r̃ , we obtain that A | eav(c, z) →e A′ | ωc and so
A |!eav(c, z) | ωc →e A′ |!eav(c, z) | ωc. By noticing that c is either in ñ or in f c(C[A]) and
so in S, the structural equivalence gives us that CS[A] →e CS[A′]. Hence the result holds with
C ′[_] = C[_].

Case 4, rule COMM on D, i.e. D = outat(c, u).D1 | inat(c, x).D2 | D3 and A0 ≡ νñ.(νm̃.(D1 |
D2{u/x} | D3) | A): Let us do a case analysis on u:

• Case 4.a, u is of base type: In such a case, we have outat(c, u).D1 | inat(c, x).D2 | D3 →e D1 |
D2{u/x} | D3 by the rule C-ENV. Hence, νm̃.(outat(c, u).D1 | inat(c, x).D2 | D3 | P(m̃)) →e

νm̃.(D1 | D2{u/x} | D3 | P(m̃)). Let us denote D′ = (D1 | D2{u/x} | D3). By Lemma 11,
we obtain that νm̃.D →e νm̃.D′. Hence, we deduce that νñ.(νm̃.D | A | Po(ñ)) | Po(S) →e

νñ.(νm̃.D′ | A | Po(ñ)) | Po(S). Let us denote C ′[_] = νñ.(νm̃.D′ | _) and A′ = A. We have
A0 ≡ C ′[A′] and CS[A] →e C ′

S[A′]. Hence the result holds.
• Case 4.b, u is of channel type and u /∈ m̃ ∪ ñ: In such a case, u ∈ fv(C[A]) ⊆ S and we have

outat(c, u).D1 | inat(c, x).(D2 | P(x)) | D3 →e D1 | D2{u/x} | D3 | P(u) | ωu by the rule C-
OPEN. Since u /∈ m̃, we obtain that νm̃.(outat(c, u).D1 | inat(c, x).(D2 | P(x)) | D3 | P(m̃)) →e

νm̃.(D1 | D2{u/x} | D3 | P(m̃)) | Po(u). Let us denote D′ = (D1 | D2{u/x} | D3). By Lemma 11,
we obtain that νm̃.D →e νm̃.D′ | Po(u). Moreover, since u /∈ ñ then νñ.(νm̃.D | A | Po(ñ)) →e

ñ.(νm̃.D′ | A | Po(ñ)) | Po(u). Lastly, since u ∈ S and Po(u) | Po(u) ≡ Po(u), we obtain that
νñ.(νm̃.D | A | Po(ñ)) | Po(S) →e ñ.(νm̃.D′ | A | Po(ñ)) | Po(S). Therefore, the result holds
with A′ = A and C ′[_] = νñ.(νm̃.D′ | _).

• Case 4.c, u is of channel type and u ∈ ñ: This case is similar to Case 4.b. Since u /∈ m̃, we can
apply the same reasoning and obtain νm̃.D →e νm̃.D′ | Po(u) where D′ = (D1 | D2{u/x} | D3).
Since u ∈ ñ and Po(u) | Po(u) ≡ Po(u), we deduce that νñ.(νm̃.D | A | Po(ñ)) →e νñ.(νm̃.D′ |
A | Po(ñ)). Therefore, we obtain that νñ.(νm̃.D | A | Po(ñ)) | Po(S) →e νñ.(νm̃.D′ | A | Po(ñ)) |
Po(S) and so the result holds with A′ = A and C ′[_] = νñ.(νm̃.D′ | _).

• Case 4.d, u is of channel type and u ∈ m̃: First of all, note that since u ∈ m̃, νm̃.D ≡ νu.νm̃′.D
for some m̃′ such that u /∈ m̃′. Note that since u is bound, u /∈ fv(A) ∪ fn(A). Hence, by applying
the same reasoning as in Case 4.b, we obtain that νm̃′.D →e νm̃′.D′ | Po(u) where D′ = (D1 |
D2{u/x} | D3). Since P(u) | Po(u) ≡ P(u) | ωu | P(u) ≡ Po(u), we deduce that νu.(νm̃′.D |
P(u)) →e νu.(νm̃′.D′ | Po(u)). First, notice that νu.(νm̃′.D | P(u)) = νu.νm̃′.D = νm̃.D by

112 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Lemma 11. Second, since u does not appear in A, we deduce that νñ.(νm̃.D | A | Po(ñ)) →e

νñ.(νu.(νm̃′.D′ | Po(u)) | A | Po(ñ) ≡ νñ.νu.(νm̃′.D′ | A | Po(ñ ∪ {u})). Hence, if we denote
ñ′ = νñ.νũ then νñ.(νm̃.D | A | Po(ñ)) →e νñ′.(νm̃′.D′ | A | Po(ñ

′)). Therefore, by denoting
C ′[_] = νñ′.(νm̃′.D′ |) and A′ = A, we deduce CS[A] →e C ′

S[A′]. Thus the result holds.

Case 5, rule COMM between A (input) and D (output), i.e. D = outat(c, u).D1 | D2, A ≡
νr̃.(inho(c, x).P1 | P2) and A0 ≡ νñ.νm̃.νr̃.(D1 | D2 | P1{u/x} | P2): Note that c /∈ m̃ ∪ r̃ . Let us
do a case analysis on u:

• Case 5.a, u is of base type: In such a case, let us split r̃ and m̃ in r̃b.r̃c and m̃b.m̃c respec-
tively, such that r̃c and m̃c are of channel type, and r̃b and m̃b are of base type. Since u is of
base type, we deduce that A0 ≡ νñ.νm̃b.νr̃b.(νm̃c.(D1 | D2) | νr̃c.(P1{u/x} | P2)). Note that
outat(c, u).D1 | D2 | inho(c, x).P1 | P2 →e D1 | D2 | P1{u/x} | P2 by the rule C-ENV. Hence
outat(c, u).D1 | D2 | inho(c, x).P1 | P2 | P(m̃) →e D1 | D2 | P1{u/x} | P2 | P(m̃). There-
fore, νm̃.νr̃.(outat(c, u).D1 | D2 | inho(c, x).P1 | P2 | P(m̃)) →e νm̃.νr̃.(D1 | D2 | P1{u/x} |
P2 | P(m̃)). But νm̃.νr̃.(outat(c, u).D1 | D2 | inho(c, x).P1 | P2 | P(m̃)) ≡ νm̃.D | A thanks to
Lemma 11 and since we assume that bound names and variables are bound once and distinct from
free names and variables. Moreover, νm̃.νr̃.(D1 | D2 | P1{u/x} | P2 | P(m̃)) ≡ νm̃b.νr̃b.(νm̃c.(D1 |
D2 | P(m̃c)) | νr̃c.(P1{u/x} | P2)). Therefore, let us denote ñ′ = ñ.m̃b.r̃b, D′ = D1 | D2 and
A′ = νr̃c.(P1{u/x} | P2). Notice that m̃b and r̃b being of base type implies that Po(ñ) = Po(ñ

′).
Hence νñ.(νm̃.D | A | Po(ñ)) | Po(S) →e νñ′.(νm̃c.D′ | A′ | Po(ñ

′)) | Po(S). Hence, the result
holds with C ′[_] = νñ′.(νm̃c.D

′ | _).
• Case 5.b, u is of channel type and u /∈ m̃ ∪ ñ: Notice that in such a case A0 ≡ νñ.(νm̃.(D1 | D2) |

νr̃.(P1{u/x} | P2)). The rest of the proof follows a similar reasoning as in Case 4.b and the result
will hold with C ′[_] = νñ.(νm̃.D′ | _), D′ = D1 | D2 and A′ = νr̃.(P1{u/x} | P2).

• Case 5.c, u is of channel type and u ∈ ñ: Notice that in such a case A0 ≡ νñ.(νm̃.(D1 | D2) |
νr̃.(P1{u/x} | P2)). The rest of the proof follows a similar reasoning as in Case 4.c and the result
will hold with C ′[_] = νñ.(νm̃.D′ | _), D′ = D1 | D2 and A′ = νr̃.(P1{u/x} | P2).

• Case 5.d, u is of channel type and u ∈ m̃: Note that since u ∈ m̃, νm̃.D ≡ νu.νm̃′.D for some m̃′
such that u /∈ m̃′. Hence, A0 ≡ νñ.νu.(νm̃′.(D1 | D2) | νr̃.(P1{u/x} | P2)). The rest of the proof
follows a similar reasoning as in Case 4.d and the result will hold with C ′[_] = νñ′.(νm̃′.D′ | _),
D′ = D1 | D2, ñ′ = ñ.u and A′ = νr̃.(P1{u/x} | P2).

Case 6, rule COMM between A (output) and D (input), i.e. D = inat(c, x).D1 | D2, A ≡
νr̃.(outho(c, u).P1 | P2) and A0 ≡ νñ.νm̃.νr̃.(D1{u/x} | D2 | P1 | P2): Note that c /∈ m̃ ∪ r̃ . Let
us do a case analysis on u:

• Case 6.a, u is of base type: In such a case, let us split r̃ and m̃ in r̃b.r̃c and m̃b.m̃c respectively, such
that r̃c and m̃c are of channel type, and r̃b and m̃b are of base type. The rest of the proof follows a
similar reasoning as in Case 5.a and the result holds with C ′[_] = νñ′.(νm̃c.D

′ | _), ñ′ = ñ.m̃b.r̃b,
D′ = D1{u/x} | D2 and A′ = νr̃c.(P1 | P2).

• Case 6.b, u is of channel type and u /∈ m̃ ∪ ñ: Notice that in such a case A0 ≡ νñ.(νm̃.(D1{u/x} |
D2) | νr̃.(P1 | P2)). The rest of the proof follows a similar reasoning as in Case 4.b and the result
will hold with C ′[_] = νñ.(νm̃.D′ | _), D′ = D1{u/x} | D2 and A′ = νr̃.(P1 | P2).

• Case 6.c, u is of channel type and u ∈ ñ: Notice that in such a case A0 ≡ νñ.(νm̃.(D1 | D2) |
νr̃.(P1{u/x} | P2)). The rest of the proof follows a similar reasoning as in Case 4.c and the result
will hold with C ′[_] = νñ.(νm̃.D′ | _), D′ = D1{u/x} | D2 and A′ = νr̃.(P1 | P2).

K. Babel et al. / On the semantics of communications when verifying equivalence properties 113

• Case 6.d, u is of channel type and u ∈ m̃: Note that since u ∈ m̃, νm̃.D ≡ νu.νm̃′.D for some m̃′

such that u /∈ m̃′. Hence, A0 ≡ νñ.νu.(νm̃′.(D1 | D2) | νr̃.(P1{u/x} | P2)). The rest of the proof
follows a similar reasoning as in Case 4.d and the result will hold with C ′[_] = νñ′.(νm̃′.D′ | _),
D′ = D1{u/x} | D2, ñ′ = ñ.u and A′ = νr̃.(P1 | P2).

This conclude the proof of the first property. The second property is in fact easy to prove: All rules
in the eavesdropping semantics other than THEN and ELSE will be mapped by the rule COMM in the
classical semantics. One can notice that since we know that A and C do not contain eavesdrop processes
and since the transformation from A to A and C[_] to CS[_] only adds processes of the form eav(c, y).0,
the communication rules all becomes instances of the rule COMM. For instance, an application of rule
C-EAV would result into the following

outho(c, u).P | inho(c, x).Q | eav(c, y).0
τ−→e P | Q{u/x}

which is typically the rule COMM when we remove the transformation and so the process eav(c, y).0.
Lastly, since any instance of ωd has no impact on the classical semantics, every rules thus corresponds
to the rule COMM once the transformation removed. �

Corollary 3. Let A be an closed honest extended process. Let C[_] = νñ.(νm̃.D | _) be an attacker
evaluation context c-closing for A such that D is named-cleaned and eavesdrop-free. Let S be a set of
channel names such that f c(C[A]) ⊆ S. For all channel c, C[A] ⇓c

c iff CS[A] ⇓e
c .

Theorem 6. ≈e
m � ≈p

m ∩ ≈c
m.

Proof. Consider two closed honest extended process A and B. We assume A ≈e
m B. We first show that

A ≈c
m B.

Let C[_] be an attacker evaluation context c-closing for A and B. Notice that in the classical semantics,
a process eav(c, x).P as the same behaviour as the process 0. Hence, there exists C1[_] an attacker
evaluation context eavesdrop-free and c-closing for A and B such that for all c, C[A] ⇓c

c⇔ C1[A] ⇓c
c

and C[B] ⇓c
c⇔ C1[B] ⇓c

c (1). Moreover, relying on the structural equivalence, we deduce that there
exists C2 = νñ.(νm̃.D | νr̃.(_ | E)) attacker evaluation context eavesdrop-free and c-closing for A and
B such that D is named-cleaned, C1[A] ≡ C2[A] and C1[B] ≡ C2[B]. Lastly, by renaming r̃ through
the structural equivalence, we deduce that there exist A′, B ′ two closed honest extended process and
C3[_] = νñ′.(νm̃′.(D′ | _)) attacker evaluation context eavesdrop-free and c-closing for A and B such
that D is named-cleaned, C2[A] ≡ C3[A′] and C2[B] ≡ C3[B ′]. Therefore, we have C1[A] ≡ C3[A′]
and C1[B] ≡ C3[B ′]. Lastly, let us denote S = f c(C3[A′]) ∪ f c(C3[B ′]), relying on Lemma 11 and
Definition 13, one can note that there exists C4 attacker evaluation context e-closing for A and B such
that C3

S[A′] ≡ C4[A] and C3
S[B ′] ≡ C4[B].

114 K. Babel et al. / On the semantics of communications when verifying equivalence properties

We can conclude the proof as follows: Let S = f c(C[A]) ∪ f c(C[B]). For all channel c,

C[A] ⇓c
c

iff C1[A] ⇓c
c by (1)

iff C3[A′] ⇓c
c since C1[A] ≡ C3[A′]

iff C3
S[A′] ⇓e

c by Corollary 3
iff C4[A] ⇓e

c since C3
S[A′] ≡ C4[A]

iff C4[B] ⇓e
c since A ≈e

m B

iff C3
S[B ′] ⇓e

c since C3
S[B ′] ≡ C4[B]

iff C3[B ′] ⇓c
c by Corollary 3

iff C1[B] ⇓c
c since C1[B] ≡ C3[B ′]

iff C[B] ⇓c
c by (1)

Let us now prove that A ≈p
m B. Let C[_] be an attacker evaluation context p-closing for A and B.

As for the classical semantics, notice that in the private semantics, a process eav(c, x).P as the same
behaviour as the process 0. Hence, there exists C1[_] an attacker evaluation context eavesdrop-free and
p-closing for A and B such that for all c, C[A] ⇓p

c⇔ C1[A] ⇓p
c and C[B] ⇓p

c⇔ C1[B] ⇓p
c . Moreover,

notice that →p ⊆ →e. Hence, for all c, C1[A] ⇓p
c implies C1[A] ⇓e

c and C1[B] ⇓p
c implies C1[B] ⇓e

c .
Furthermore, since C1[_] is eavesdrop-free and A, B are both honest, we deduce that rules C-EAV

and C-OEAV can never be applied in a derivation of C1[A] or C1[B]. Hence, we obtain that for all c,
C1[A] ⇓p

c⇔ C1[A] ⇓e
c and C1[B] ⇓p

c⇔ C1[B] ⇓e
c . Lastly, A ≈e

m B implies that for all channel c,
C1[A] ⇓e

c⇔ C1[B] ⇓e
c . We can conclude the proof by combining all these statements as follows: for all

channel c,

C[A] ⇓p
c ⇔ C1[A] ⇓p

c ⇔ C1[A] ⇓e
c ⇔ C1[B] ⇓e

c ⇔ C1[B] ⇓p
c ⇔ C[B] ⇓p

c

We have concluded the proof of ≈e
m ⊆ ≈p

m∩≈c
m. Therefore, it remains to show that this inclusion is not

strict. In Fig. 7, we have provided two processes A and B such that A ≈c
	 B, A ≈p

	 B but A 	≈e
t B. Notice

that these processes do not contain replication and so are imagine-finite. Thus, by Theorem 1, A 	≈e
t B

implies A 	≈e
m B. Moreover, by Proposition 3, A ≈c

	 B and A ≈p
	 B implies A ≈c

t B, A ≈p
t B. Once

again by Theorem 1, we deduce that A ≈c
m B, A ≈p

m B. Hence, we conclude that ≈e
m � ≈p

m ∩ ≈c
m. �

Appendix E. Proof of Theorem 2

Theorem 2. For all ground, closed honest extended processes A, for all channels d, we have that A �p
d

iff A �c
d iff A �e

d .

Proof. We will prove that the following three implications: (1) A �c
d ⇒ A �p

d , (2) A �p
d ⇒ A �e

d and
(3) A �e

d ⇒ A �c
d .

Given a trace tr, let us denote S(tr) = {c | tr1out(c, t)tr2 = tr and tr1 does not bind c}.
Implication 1, A �c

d ⇒ A �p
d : Since A is honest, the only rules that differs are the rules COMM and

C-PRIV. Furthermore, since A is honest we also know that c /∈ oc(A).
We show that for all A

tr=⇒c A′, there exist νñ.A′′ ≡ A′, tr′ and a frame φ such that S(tr) ⊆ S(tr′)
and A

tr′=⇒p νñ.(A′′ | φ) such that. We prove this result by induction on the length of the derivation

A
	1...	m−−−→c A′ with tr being 	1 . . . 	m without the τ actions.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 115

Base case m = 0: Hence tr = ε and so the result directly holds with φ = 0.
Inductive step m > 0: In such a case, by our inductive hypothesis, there exists νr̃.B ≡ Am−1 and a

frame φ such that S(tr) ⊆ S(tr′) and A
tr′=⇒p νr̃.(B | φ). W.l.o.g. we can assume that bound names and

variables in r̃ .(B | φ) are bound once and distinct from free names and variables. We can also assume

that B is name-cleaned. We do a case analysis on the rule applied in Am−1
	m−→ Am.

• Case 1, any rule but the rule COMM: In such a case, by definition of the semantics, the result directly
holds

• Case 2, rule COMM: In such a case, B = inho(c, x).P1 | outho(c, u).P2 | P3 and Am = νr̃.(P1{u/x} |
P2 | P3). We do a case analysis on c and u:

∗ c ∈ r̃: then since c /∈ oc(A) (Am−1 is honest) and by applying rule C-PRIV we obtain that
r̃ .(B | φ)

ε=⇒p r̃ .(P1{u/x} | P2 | P3 | φ). Hence the result holds.
∗ c /∈ r̃ and u is of base type: By applying OUT-T followed by IN, we obtain that νr̃.(B |

φ)
νz.out(c,z).in(c,z)−−−−−−−−−→p νr̃.(P1{u/x} | P2 | P3 | φ | {u/z}) with z fresh. Hence the result holds.

∗ c /∈ r̃ and u is of channel type: By applying OUT-CH followed by IN, we obtain that νr̃.(B |
φ)

out(c,u).in(c,u)=======⇒p νr̃.(P1{u/x} | P2 | P3 | φ | {u/x}). Hence the result holds.

We conclude by noticing that if A �c
d then there exist Ac, trc such that A

trc=⇒c Ac and d ∈ S(trc).

Thus by our property, we obtain that there exist Ap, trp such that A
trp=⇒p Ap and S(trc) ⊆ S(trp) and so

d ∈ S(trp) which implies A �p
d .

Implication 2, A �p
d ⇒ A �e

d : As A �p
d , there exists tr, A′ such that A

tr=⇒p A′ and d ∈ S(tr). Since
	−→p ⊂ 	−→e, A

tr=⇒e A′ and so A �e
d .

Implication 3, A �e
d ⇒ A �c

d : Since A is honest, the only rules that differ are the rules COMM,
C-PRIV, EAV-OCH, EAV-CH, EAV-T.

We show that for all A
tr=⇒e A′, there exist tr′ such that A

tr′=⇒c A′ and S(tr) ⊆ S(tr′). We prove this

result by induction on the length of the derivation A
	1...	m−−−→c A′ with tr being 	1 . . . 	m without the τ

actions.
Base case m = 0: Hence tr = ε and so the result directly holds with tr′ = ε.

Inductive step m > 0: In such a case, by our inductive hypothesis, there exists tr′′ such that A
tr′′=⇒e

Am−1. W.l.o.g. we can assume that bound names and variables in Am−1 are bound once and distinct from
free names and variables. Moreover we can assume that Am−1 = νñ.B with B name-cleaned. We do a

case analysis on the rule applied in Am−1
	m−→ Am.

• Case 1, rule C-PRIV: In such a case, B = outho(c, u).P | inho(c, x).Q | R, c ∈ ñ and Am ≡ νñ.(P |
Q{u/x} | R). Notice that B

τ−→c νñ.(P | Q{u/x} | R) by rule COMM hence the result holds with
tr′ = tr′′.

• Case 2, rule EAV-OCH: In such a case, B = outho(c, u).P | inho(c, x).Q | R, 	 = νu.eav(c, u),
u is of channel type, u ∈ ñ and Am ≡ νñ′.(P | Q{u/x} | R) with ñ = ñ′.u. By applying rule

OPEN-CH followed by rule IN, we obtain that Am−1
νu.out(c,u).in(c,u)=========⇒c Am. Hence the result holds

with tr′ = tr′′.νu.out(c, u).in(c, u).

116 K. Babel et al. / On the semantics of communications when verifying equivalence properties

• Case 3, rule EAV-CH: In such a case, B = outho(c, u).P | inho(c, x).Q | R, 	 = eav(c, u), u is of
channel type, u /∈ ñ and Am ≡ νñ.(P | Q{u/x} | R). By applying rule OUT-CH followed by rule

IN, we obtain that Am−1
out(c,u).in(c,u)=======⇒c Am. Hence the result holds with tr′ = tr′′.out(c, u).in(c, u).

• Case 4, rule EAV-T: In such a case, B = outho(c, u).P | inho(c, x).Q | R, 	 = νz.eav(c, z), u is of
base type and Am ≡ νñ.(P | Q{u/x} | R | {u/z}). By applying rule OUT-T followed by rule IN, we

obtain that Am−1
νz.out(c,z).in(c,z)=========⇒c Am. Hence the result holds with tr′ = tr′′.νz.out(c, z).in(c, z).

• Case 5, any other rule: In such a case, by definition of the semantics, the result directly holds.

We conclude by noticing that if A �e
d then there exist A′, tre such that A

tre=⇒e A′ and d ∈ S(tre). Thus

by our property, we obtain that there exist trc such that A
trc=⇒c A′ and S(tre) ⊆ S(trc) and so d ∈ S(trc)

which implies A �c
d . �

Appendix F. Proof of Theorem 7

Lemma 13. When restricted to D(p), we have ≈p
r = ≈e

r � ≈c
r for r ∈ {	, t}.

Proof. By Lemma 3, we only need to consider the case r = 	.
Before proving the main result, we show the following preliminary result: For all honest processes

A, B, if B ∈ D(p), A ≈p
	 B, A ≡ νñ.(outho(c, u).P | inho(c, x).Q | R) and c /∈ ñ then B

ε=⇒p B ′ with
B ′ = νm̃.(outho(c, v).P ′ | inho(c, x).Q′ | R′) and νñ.({u/z} ∪ φ(R)) ∼ νm̃.({v/z} ∪ φ(R′)) where z is
fresh.

Note that A
in(c,a)−−−→ νñ.(outho(c, u).P | Q{a/x} | R) for any a. As A ≈p

	 B, there exists B
ε=⇒p

B1
in(c,a)−−−→p B ′

1
ε=⇒p B ′′

1 with B1 = νm̃.(in(c, x).Q′ | R′′). Since B ∈ D(p), we deduce that B ≈p
	

B1 and so B1 ≈p
	 A. But A

νz.out(c,z)−−−−−→p A′′ for some A′′. Thus, B1 ≈p
	 A implies that there exists

B1
ε=⇒p B2

νz.out(c,z)−−−−−→p B ′
2

ε=⇒p B ′′
2 with B2 = νk̃.(in(c, x).Q′ | out(c, v).P ′ | R′) for some P ′, R′

and φ(A′′) ∼ φ(B ′′
2). Second, note that the subprocess in(c, x).Q′ in B1 is also in B2 since no internal

communication can be applied on the public channel c. Hence we consider the result with B ′ = B2.

Second, notice that φ(B ′′
2) = φ(B ′

2) and v is the term output in the transition B2
νz.out(c,z)−−−−−→p B ′

2. Hence,
we obtain νñ.({u/z} ∪ φ(R)) ∼ νk̃.({v/z} ∪ φ(R′)) for some fresh variable z. Thus the result holds.

Let us now focus on the main result. We start by proving ≈p
	 = ≈e

	. By Theorem 5 we have that
≈e

	 ⊆ ≈p
	. It remains to show that ≈p

	 ⊆ ≈e
	.

Let A, B ∈ D(p) such that A ≈p
	 B. We show that ≈p

	 is also a labelled bisimulation in the eavesdrop
semantics.

• Since A ≈p
	 B, we have that φ(A) ∼ φ(B).

• if A
τ−→e A′ then, as B is a honest process, no C-EAV or C-OEAV transition is possible. Thus

A
τ−→p A′. As A ≈p

	 B, there exists B
ε=⇒p B ′ such that A′ ≈p

	 B ′. Since
τ−→p ⊆ τ−→e, we have

B
ε=⇒e B ′.

• if A
	−→e A′ with 	 = νx.out(c, x) or 	 = in(c, M) then A

	−→p A′. As A ≈p
	 B, there exists

B
	=⇒p B ′ such that A′ ≈p

	 B ′. Once again since
τ−→p ⊆ τ−→e, we have B

	=⇒e B ′.

• if A
νz.eav(c,z)−−−−−→e A′ then A ≡ νñ.(outho(c, u).P | inho(c, x).Q | R) and A′ = νñ.(P | Q{u/x} |

R | {u/z}). Note that A
νz.out(c,z).in(c,z)=========⇒p A′. As A ≈p

	 B, there exists B
νz.out(c,z).in(c,z)=========⇒p B ′ and

K. Babel et al. / On the semantics of communications when verifying equivalence properties 117

A′ ≈p
	 B ′. Thanks to our preliminary result, we know that there exists B

ε=⇒p B2 with B2 =
νm̃.(outho(c, v).P ′ | inho(c, x).Q′ | R′) and νñ.({u/z} ∪ φ(R)) ∼ νm̃.({v/z} ∪ φ(R′)) where z is

fresh. Thus, B
ε=⇒e B2

νz.eav(c,z)−−−−−→e B3, φ(B3) ∼ φ(A′) and B
νz.out(c,z).in(c,z)=========⇒p B3 for some B3. Recall

that A′ ≈p
	 B ′ meaning that φ(A′) ∼ φ(B ′) and so φ(B ′) ∼ φ(B3). As B ∈ D(p), φ(B ′) ∼ φ(B3),

B
νz.out(c,z).in(c,z)=========⇒p B3 and B

νz.out(c,z).in(c,z)=========⇒p B ′ imply B3 ≈p
	 B ′. As A′ ≈p

	 B ′, A′ ≈p
	 B3. Hence,

we showed that B
νz.eav(c,z)=====⇒e B3 and A′ ≈p

	 B3 which allows us to conclude the proof of ≈p
	 ⊆ ≈e

	.

Let us now prove that ≈p
	 ⊆ ≈c

	. We showed above that ≈p
	 = ≈e

	. Moreover, we have that ≈e
	 ⊆ ≈c

	

by Theorem 5, which allows us to conclude.
We conclude our proof by showing that the inclusion ≈p

	 ⊆ ≈c
	 is strict. Consider the processes P and

Q displayed in Fig. 9b. First notice that P 	≈p
	 Q since Q

νx.out(d,x)=====⇒p Q′ for some Q′ but the process
P cannot output on d directly. We can also easily show that P, Q ∈ D(p) and P ≈c

	 Q. Indeed, first
the frame of any transition consists only of multiple outputs of the public name a. Therefore the static
equivalence always holds. Second, any action on P , i.e. output on c or d and input on c can always be
matched on Q by unfolding a replication. Similarly, any output or input on c from Q can be matched
P by unfolding a replication. Finally, any output on d from Q can be matched on P by unfolding the
replications and applying an internal communication on c. Therefore P ≈c

	 Q. The proof of Q ∈ D(p)

is similar. To prove that P ∈ D(p), one must notice that in P
tr=⇒p P ′, the number of output transitions

on d available on P ′ is uniquely defined by tr. Thus, when considering P
tr=⇒p P1 and P

tr=⇒p P2, an
output on d is possible on P1 if and only if an output on d is possible on P2. Hence P1 ≈p

	 P2 and so
P ∈ D(p). �

Lemma 4. D(p) = D(e), D(c) � D(p) and D(p) � D(c).

Proof. We start by showing that D(p) � D(c). Consider the process A displayed in Fig. 9a. A ∈ D(c)

since A
τ−→c outho(c, a) by the rule COMM and outho(c, a) 	≈c

	 A. Moreover, A ∈ D(p) since for all tr,

there is a unique A′ such that A
tr=⇒p A′. Hence D(p) � D(c).

We now show that D(c) � D(p). Consider the process B displayed in Fig. 9b. Intuitively, the use of
the private channel s in B encodes a non determinist choice between the two processes P and Q. We
already showed in the proof of Lemma 13 that P 	≈p

	 Q ands P ≈c
	 Q. With a similar proof, we can also

show that P, Q ∈ D(c) which allows us to deduce that B ∈ D(c). However, B
ε=⇒p P , B

ε=⇒p Q and
P 	≈p

t Q imply B /∈ D(p).
Let us show D(e) ⊆ D(p). Consider an honest closed process A such that A ∈ D(e). Let A

tr=⇒p A1 and

A
tr=⇒p A2. By definition of the semantics, A

tr=⇒p Ai implies A
tr=⇒e Ai , for i = 1, 2. Since A ∈ D(e),

we deduce A1 ≈e
	 A2. By applying Theorem 5, we obtain A1 ≈p

	 A2 which concludes the proof of
D(e) ⊆ D(p).

Finally, let us show that D(p) ⊆ D(e). Let A ∈ D(p), A
tr=⇒e A1 and A

tr=⇒e A2. We can define tr′ from

tr by replacing all instances of νz.eav(c, z) by νz.out(c, z).in(c, z) to obtain A
tr′=⇒p A1 and A

tr′=⇒p A2.
As A ∈ D(p), A1 ≈p

	 A2. Moreover, by definition of D(p), A ∈ D(p) also implies that A1, A2 ∈ D(p).
By Lemma 13, A1 ≈p

	 A2 implies A1 ≈e
	 A2 which allows us to conclude. �

The following theorem now follows directly from Lemmas 4 and 13.

118 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Theorem 7. When restricted to D(p), we have ≈s1
r1

= ≈s2
r2
� ≈c

r3
for s1, s2 ∈ {p, e}, r1, r2, r3 ∈ {	, t}.

Appendix G. Proof of Theorem 8

Theorem 8. When restricted to BD(p), we have that ≈p
r = ≈e

r � ≈c
r for r ∈ {	, t}.

Proof. Thanks to Lemma 13, we already know that ≈p
	 = ≈e

	 and ≈p
	 ⊆ ≈c

	. We will show in Lemma 15
the stronger result that the implication is strict for the class AD of action determinate processes which
is a subset of BD(p) (Lemma 7). �

Appendix H. Proof of Lemma 7

Lemma 14. AD � BD(p).

Proof. Let P ∈ AD. We will show that P ∈ D(p) which allows us to conclude as processes in AD
do not use replication. Let us define the following transition rule

if−→ such that P
if−→ P ′ iff P

τ−→∗
p P ′

with only application of the rules THEN or ELSE, and these two rules cannot be applied on P ′. Since
bn(P) ∩ Ch = ∅, we deduce that the rule C-PRIV cannot be applied (all channels are public). Hence the
only possible τ transitions are the applications of the rules THEN and ELSE.

Notice that P
if−→ P ′ implies P ≈p

	 P ′. Moreover for all traces P
tr=⇒ P ′, we can always swap the

internal transitions in the trace so that they are always applied before visible actions when possible.

Hence we can always obtain a trace of the form P
if−→ P1

	1−→p P ′
1

if−→ P2
	2−→p . . .

if−→ Pn

	n−→p P ′
n such that

P ′
n ≈p

	 P ′ and tr = 	1 . . . 	n.

To prove that P ∈ D(p), we show the following property: for all P
if−→ P1

	1−→p P ′
1

if−→ P2
	2−→p

. . .
if−→ Pn

	n−→p P ′
n, for all P

if−→ Q1
	1−→p Q′

1
if−→ Q2

	2−→p . . .
if−→ Qn

	n−→p Q′
n, we have Qi ≡ Pi and

Q′
i ≡ P ′

i for all i ∈ {1, . . . , n}. This property can be proved by induction on n. The base case n = 0
being trivial, we focus on the inductive case n > 0. In such a case, by applying our inductive hypothesis,

we deduce that Q′
n−1 ≡ P ′

n−1. Note that Q′
n−1

if−→ Qn, P ′
n−1

if−→ Pn and Q′
n−1 ≡ P ′

n−1 implies that

P ′
n−1

if−→ Qn. As mentioned in the previous paragraph, it entails Pn ≡ Qn. Thus, it remains to show that
P ′

n ≡ Q′
n. If 	n = in(c, t) then in such a case, P ′

n ≡ νk̃.(in(c, x).R | U) for some R and U . But by
definition of an action determinate process, we know that U does not have an input on c at top-level, i.e.
U 	≡ in(c, y).R′ | V . Hence, there is only one possible transition 	n on Pn meaning that P ′

n ≡ Q′
n. A

similar reasoning holds for the case 	n = νz.out(c, z).
To see that the inclusion is strict, simply observe that for the process P =̂ outho(c, a) | outho(c, a), we

have P ∈ D(p), but P /∈ AD. �

Appendix I. Proof of Theorem 9

Lemma 15. There exist P, Q ∈ AD such that P ≈c
	 Q but P 	≈p

t Q.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 119

Proof. Consider the processes P and Q displayed in Fig. 10. Notice that an input transition with channel
d in the private semantics is possible on P but not on Q. Therefore, we directly deduce that P 	≈p

t Q.
Let us now prove that P ≈c

	 Q. We do an analysis on the transitions on P and Q.

• P
τ−→c P ′: Note that from P , the only possible τ action is an internal communication on the channel

c. More specifically,

P ′ = νk1, . . . , k7.(R1(k1) | inho(d, x2).if x2 = k2 then outho(c, k3))

We can also apply an internal communication on Q to obtain the same process, i.e., Q
τ−→c P ′. Note

that we trivially have P ′ ≈c
	 P ′.

• Q
τ−→c Q′: Once again the only possible τ action is an internal communication on the channel c. In

fact, we have Q′ = P ′ where P ′ was defined in the previous case with P
ε−→c P ′.

• P
νz.out(c,z)−−−−−→c P ′: In such a case, P ′ = νk1, . . . , k5.(in

ho(c, x1).R1(x1) | inho(d, x2).if x2 =
k2 then outho(c, k3) | {k1/z}). Moreover, notice that Q

νz.out(c,z)−−−−−→c P ′ too. Hence the result holds.

• P
in(c,t)−−−→c P ′: Since k1, . . . , k5 are all bound and there is no frame in P , we know that t 	= ki for all

i = 1 . . . 5. Thus, P ′ = νk1, . . . , k5.(R1(t) | outho(c, k1) | inho(d, x2).if x2 = k2 then outho(c, k3)).
We can make two observations on the process P ′: The first one being that the only possible transition
on R1(t) is the execution of the conditional leading to the nil process. The second one being that in
k2 does not appear anymore in P ′ other than in the test x2 = k2. Therefore, k2 cannot be deducible
from P ′ and so we deduce that P ′ ≈c

	 νk1.(outho(c, k1) | inho(d, x2)).

For sake of readability, we denote by
τ(c)−−→c a τ action corresponding to an internal communication

on a channel c. Moreover, we denote by
if−→c a τ action corresponding to a conditional (i.e. rules

THEN or ELSE) and we denote by
τ(c)=⇒c the transition

if−→∗
c

τ(c)−−→c
if−→∗

c . Finally, we denote by k̃ =
k1, . . . , k5. Let us execute Q as follows:

Q
τ(c)−−→c νk̃.(R1(k1) | inho(d, x2).if x2 = k2 then outho(c, k3))
τ(d)==⇒c νk̃.(inho(c, x3).if x3 = k3 then R3 else inho(d, x) | outho(c, k3))

in(c,t)−−−→c
if−→c νk̃.(inho(d, x) | outho(c, k3))

Let us denote Q′ = k̃.(inho(d, x) | outho(c, k3)). We trivially have that Q′ ≈c
	 νk1.(outho(c, k1) |

inho(d, x2)) and so P ′ ≈c
	 Q′.

• Q
in(c,t)−−−→c Q′: Once again, we know that t 	= ki for all i = 1 . . . 5. Thus Q′ = νk̃.(R1(t) |

outho(c, k1).in
ho(d, x2).if x2 = k2 then outho(c, k3)). With t 	= k1 and the fact that k2 is no longer

deducible in Q′, we obtain that Q′ ≈c
	 νk1.outho(c, k1).in

ho(d, x2).
Let us execute P as follows:

P
τ(c)−−→c νk̃.(R1(k1) | inho(d, x2).if x2 = k2 then outho(c, k3))
τ(d)==⇒c νk̃.(inho(c, x3).if x3 = k3 then R3 else inho(d, x) | outho(c, k3))
τ(c)=⇒c νk̃.R3

in(c,t)−−−→c
if−→c νk̃.(outho(c, k4).in

ho(d, x5).R5(x5))

120 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Let us denote P ′ = νk̃.(outho(c, k4).in
ho(d, x5).R5(x5)). Note that k5 is not deducible in

P ′ meaning that P ′ ≈c
	 νk4.outho(c, k4).in

ho(d, x5). Since we already showed that Q′ ≈c
	

νk1.outho(c, k1).in
ho(d, x2), we conclude that P ′ ≈c

	 Q′.

• P
in(d,t)−−−→c P ′: In such a case, we have P ′ = νk̃.(inho(c, x1).R1(x1) | outho(c, k1) | if t =

k2 then outho(c, k3)). Note that t 	= k2 and that so k3 is not deducible in P ′. Thus, we obtain
the following:

P ′≈c
	νk̃.(inho(c, x1).if x1 = k1 then outho(d, k2).in

ho(c, x3).in
ho(d, x) | outho(c, k1))

Let us execute Q as follows:

Q
τ(c)−−→c νk̃.(R1(k1) | inho(d, x2).if x2 = k2 then outho(c, k3))
τ(d)==⇒c νk̃.(inho(c, x3).if x3 = k3 then R3 else inho(d, x) | outho(c, k3))
τ(c)=⇒c νk̃.R3
τ(c)=⇒c νk̃.(inho(d, x5).R5(x5) | outho(d, k5))
τ(d)−−→c νk̃.R5(k5)

if−→c
in(c,t)−−−→c νk̃.(inho(c, x6).if x6 = k6 then outho(d, k7).in

ho(c, x3).in
ho(d, x)

| outho(c, k6))

As we already proved P ′ ≈c
	 νk̃.(inho(c, x1).if x1 = k1 then outho(d, k2).in

ho(c, x3).in
ho(d, x) |

outho(c, k1)), we conclude that P ′ ≈c
	 Q′.

We conclude that P ≈c
	 Q.

It remains to prove that P, Q ∈ D(p). We show in fact that P and Q are both action-determinate and
we conclude by applying Lemma 7.

We do a case analysis on the trace of P .

Case 1: P
in(c,t)−−−→c P1. In such a case,

P1 = νk̃.(R1(t) | outho(c, k1) | inho(d, x2).if x2 = k2 then outho(c, k3))

Since t 	= k1, R1(t) can only be reduced into the nil process. Moreover, k2 is not deducible in P1,
meaning that outho(c, k3) can never be executed. Thus, P1 is action-determinate.

Case 2: P
in(d,t)−−−→c P1. In such a case,

P1 = νk̃.(inho(c, x1).R1(x1) | outho(c, k1) | if t = k2 then outho(c, k3))

Since t 	= k2, outho(c, k3) can never be executed meaning that k3 is not deducible in P1. As such, we
deduce that proving that P1 is action-determinate is equivalent to proving that the following process is
action-determinate:

νk̃.(inho(c, x1).if x1 = k1 then outho(d, k2).in
ho(c, x3).in

ho(d, x) | outho(c, k1))

Since there is no common actions between the two parallel processes in the previous process, we con-
clude that it is action-determinate.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 121

Case 3: P
νz.out(c,z)−−−−−→c P1. In such a case,

P1 = νk̃.(inho(c, x1).R1(x1) | inho(d, x2).if x2 = k2 then outho(c, k3) | {k1/z})

We have to consider two possible actions next, that are either an input on c or an input on d. If we con-

sider P1
in(d,t)−−−→c P2 then once again, t 	= k2 meaning that outho(c, k3) can never be executed. Thus prov-

ing P2 is action-determinate is equivalent to proving that the following process is action-determinate:

νk̃.(inho(c, x1).if x1 = k1 then outho(d, k2).in
ho(c, x3).in

ho(d, x) | {k1/z})

This process is trivially action-determinate. Thus, let us consider P1
in(c,t)−−−→ P2, i.e.

P2 = νk̃.(R1(t{k1/z}) | inho(d, x2).if x2 = k2 then outho(c, k3) | {k1/z})

If t 	= z, i.e. t{k1/z} 	= k1, then R1(t{k1/z}) can only be reduced to the nil process and so P2 would be
trivially action-determinate. Thus, let us assume that t = z.

Note that the determinacy of P2 can only be broken if R3 can be executed but after the following

transitions P2
νz2.out(d,z2)−−−−−−→c

in(d,z2)−−−−→c
νz3.out(c,z3)−−−−−−→c

in(c,z3)−−−→c P3 = νk̃.(R3 | {k1/z |k2 /z2 |k3 /z3}).
Therefore, we only need to show that R3 is action-determinate. Once again, this may not be

the case only if R5(k5) is executed. However, this is only possible with transitions as follows:

P3
νz4out(c,z4)−−−−−−→c

in(c,z4)−−−→c
νz3.out(d,z5)−−−−−−→c

in(d,z5)−−−−→c νk̃.R5(k5). Since R5(k5) is trivially action-determinate, we
conclude that P is an action-determinate process.

The proof of Q being action-determinate is similar. �

Theorem 9. When restricted to AD, we have that ≈p
r = ≈e

r � ≈c
r for r ∈ {	, t}.

Proof. Thanks to Lemmas 13 and 7, we already know that ≈p
	 = ≈e

	 and ≈p
	 ⊆ ≈c

	. The fact that the
implication is strict follows from Lemma 15. �

Appendix J. Proof of Theorem 10

Lemma 16. Let P, Q ∈ SAD such that P ≈c
	 Q. If there exists c such that P

νx.out(c,x)=====⇒p P1 then there
exists d such that:

• P
νx.out(d,x)=====⇒p P ′

• Q
νx.out(d,x)=====⇒p Q′

• P ′ ≈c
	 Q′.

Proof. Consider the maximal trace P
νx.out(d,x)=====⇒c P2

tr=⇒c P3 of P that starts with an output. Note that in

fact P
νx.out(d,x)=====⇒p P2. Indeed, if P

νx.out(d,x)=====⇒c P2 contains an internal communication transition, the we

can transform this transition into two transitions
νz.out(c,z)−−−−−→c

in(c,z)−−−→c which would contradicts the maximal-

ity hypothesis on P
νx.out(d,x)=====⇒c P2

tr=⇒c P3. Since P ≈c
	 Q, we know that Q

νx.out(d,x)=====⇒c Q2
tr=⇒c Q3 with

122 K. Babel et al. / On the semantics of communications when verifying equivalence properties

P2 ≈c
	 Q2 and P3 ≈c

	 Q3. If Q
νx.out(d,x)=====⇒p Q2 then the result holds. Otherwise, there is an internal com-

munication transition on some channel c in Q
νx.out(d,x)=====⇒c Q2. Once again, we can replace this transition

into two transitions
νz.out(c,z)−−−−−→c

in(c,z)−−−→c with tr′ = νz.out(c, z).in(c, z), yielding Q
tr′=⇒c

νx.out(d,x)=====⇒c
tr=⇒c Q′

3

or Q
νx.out(d,x)=====⇒c

tr′=⇒c
tr=⇒c Q′

3 for some Q′
3. In both case, tr′.νx.out(d, x).tr and νx.out(d, x).tr′.tr start with

an output. As P ≈c
	 Q, tr′.νx.out(d, x).tr or νx.out(d, x).tr′.tr is also a trace of P which contradicts the

maximality of νx.out(d, x).tr. �

Lemma 17. Let P, Q ∈ SAD such that P ≈c
	 Q. If

• for all d, P ′, P 	 νx.out(d,x)=====⇒p P ′

• for all d, Q′, Q 	 νx.out(d,x)=====⇒p Q′

then for all c, M , for all P
in(c,M)===⇒p P ′, there exists Q

in(c,M)===⇒p Q′ such that P ′ ≈c
	 Q′.

Proof. Since P
in(c,M)===⇒p P ′ and P ≈c

	 Q then there exists Q
in(c,M)===⇒c Q′ and P ′ ≈c

	 Q′. Thanks to our

hypothesis on Q we know that Q
in(c,M)===⇒p Q′′ τ−→∗

c Q′ (No internal communication are possible directly

on Q since not output is available). But P ≈c
	 Q and Q

in(c,M)===⇒p Q′′ implies that P
in(c,M)===⇒c P ′′ with

P ′′ ≈c
	 Q′′. Once again by our hypothesis on P , we have that P

in(c,M)===⇒p P ′′′ τ−→∗
c P ′′. As P ∈ SAD,

P ∈ D(p). As P
in(c,M)===⇒p P ′′′ and P

in(c,M)===⇒p P ′, we deduce P ′′′ ≈p
	 P ′ which implies P ′′′ ≈c

	 P ′ by
Lemma 13. To summarize, we have:

• P ′′ ≈c
	 Q′′

• P ′ ≈c
	 Q′

• Q′′ ε−→∗
c Q′

• P ′′′ ε−→∗
c P ′′

• P ′′′ ≈c
	 P ′

If in fact Q′′ ε−→∗
p Q′ then the result directly holds. Else there exists an internal communication transition

in Q′′ ε−→∗
c Q′. Hence, Q′′ νz.out(d,z).in(d,z)=========⇒p Q′ | φ for some φ.

Take Q′ tr=⇒c Q1 a maximal trace of Q′, we deduce that νz.out(d, z).in(d, z).tr is a trace of Q′′. Since
P ′′ ≈c

	 Q′′, we know that νz.out(d, z).in(d, z).tr is a trace of P ′′. With P ′′′ ε−→∗
c P ′′, we deduce that

νz.out(d, z).in(d, z).tr is a trace of P ′′′. As P ′′′ ≈c
	 P ′ ≈c

	 Q′, νz.out(d, z).in(d, z).tr is also a trace of
Q′ which gives a contradiction with tr being a maximal trace of Q′. �

Lemma 18. Let P, Q ∈ SAD such that P ≈c
	 Q. If there exists c such that

• P
νx.out(c,x)−−−−−→p P ′,

• Q
νx.out(c,x)−−−−−→p Q′, and

• P ′ ≈p
	 Q′

then for all d, P
νy.out(d,y)−−−−−→p P1 implies Q

νy.out(d,y)=====⇒p Q1 and P1 ≈c
	 Q1.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 123

Proof. Consider P
νy.out(d,y)−−−−−→p P1. If c = d then P being strongly action determinate implies that

P1 = P ′ and so the result trivially holds. Therefore, let us consider that c 	= d.
In such a case, we deduce P = νñ.(outho(c, u).R1 | outho(d, v).R2 | R3) and Q =

νñ′.(outho(c, u′).S1 | S). Since P
νx.out(c,x)−−−−−→p P ′ and Q

νx.out(c,x)−−−−−→p Q′, we deduce that P ′ = νñ.(R1 |
outho(d, v).R2 | R3 | {u/x}) and Q′ = νñ′.(S1 | S | {u′

/x}). Note that P ′ ≈p
	 Q′ implies that one of the

following two cases:

(1) S = outho(d, v′).S2 | S3

(2) S1 = outho(d, v′).S2 | S3

As P ′ ≈p
	 Q′, we know that P

νx.out(c,x)−−−−−→p
νy.out(d,y)−−−−−→p νñ.P2 and Q

νx.out(c,x)−−−−−→p
νy.out(d,y)=====⇒p νñ′.Q2 where

• P2 = R1 | R2 | R3 | {u/x;v /y}
• Q2 = S1 | S2 | S3 | {u′

/x;v′
/y}

• νñ.P2 ≈p
	 νñ′.Q2.

Moreover, by P ≈c
	 Q, we deduce that Q

νy.out(d,y)=====⇒c Q4
νx.out(c,x)=====⇒c νñ′.Q3 with νñ.P2 ≈c

	 νñ′.Q3 and

P1 ≈c
	 Q4. If Q

νy.out(d,y)=====⇒p Q4 then the result trivially holds. Therefore, let us for now assume that

Q
νy.out(d,y)=====⇒c Q4 contains some internal communication transitions.

In both cases 1 and 2, since Q is strongly action determinate, the outputs outho(c, u′) and outho(d, v′)
in Q are necessarily executed either within an internal communication or with the output rule in the

transition Q
νy.out(d,y)=====⇒c Q4

νx.out(c,x)=====⇒c νñ′.Q3. In both case, we can make apparent the internal com-

munications in Q
νy.out(d,y)=====⇒c

νx.out(c,x)=====⇒c νñ′.Q3 and output first outho(d, v′) and outho(c, u′) giving us the
following trace:

Q
νx′.out(c,x′)−−−−−−→p

νy′.out(d,y′)======⇒p νñ′.Q′
2

tr=⇒c νñ′(Q3 | �)

for some �, x ′, y ′ such that νy.out(d, y) and νx.out(c, x) are included in νy ′.out(d, y ′).νx ′.out(c, x ′).tr
and Q′

2 = S1 | S2 | S3 | {u′
/x′ ;v′

/y′ }
Since we assumed that Q

νy.out(d,y)=====⇒c Q4 contains some internal communications, we deduce that
tr 	= ε. To summarized, we showed that:

• νñ.P2 ≈p
	 νñ′.Q2

• νñ.P2 ≈c
	 νñ′.Q3

• νñ′.Q′
2

tr=⇒c νñ′(Q3 | �)

• tr 	= ε

• Q′
2 is the process Q2 where x and y in the domain of the frame have been replaced by x ′ and y ′

respectively.

Consider now a maximal trace of νñ′.Q3, i.e. νñ′.Q3
tr′=⇒c Q5. Hence, tr′ is a trace of νñ′.(Q3 | �).

Hence, tr.tr′ is a trace of νñ′.Q′
2. Thus, tr.tr′{x/x′ ; y/y′ } is a trace of νñ′.Q2. As νñ.P2 ≈p

	 νñ′.Q2

implies νñ.P2 ≈c
	 νñ′.Q2 (Lemma 13), tr.tr′{x/x′ ; y/y′ } is a trace of νñ.P2 and so a trace of νñ′.Q3

thanks to νñ.P2 ≈c
	 νñ′.Q3. Since we assumed that tr 	= ∅, we obtain a contradiction with tr′ being a

maximal trace of νñ′.Q3. �

124 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Corollary 4. Let P, Q ∈ SAD such that P ≈c
	 Q. Assume that for all P ′, Q′, |P ′| + |Q′| < |P | + |Q|

and P ′ ≈c
	 Q′ implies P ′ ≈p

	 Q′.

For all d, P
νy.out(d,y)−−−−−→p P1 implies Q

νy.out(d,y)=====⇒p Q1 and P1 ≈p Q1.

Proof. Let P
νy.out(d,y)−−−−−→p P0. By Lemma 16, we know that there exists c such that P

νx.out(c,x)=====⇒p P ′,
Q

νx.out(c,x)=====⇒p Q′ and P ′ ≈c Q′. Since |P ′| + |Q′| < |P | + |Q|, we deduce that P ′ ≈p Q′. Note

that P, Q ∈ D(p). Hence, there exists P1, P2, Q1, Q2 such that P
ε=⇒p P1

νx.out(c,x)−−−−−→p P2
ε=⇒p P ′ and

Q
ε=⇒p Q1

νx.out(c,x)−−−−−→p Q2
ε=⇒p Q′ such that P ≈p

	 P1, P2 ≈p
	 P ′, Q ≈p

	 Q1 and Q2 ≈p
	 Q′. Note that by

Lemma 13, P ≈p
	 P1 and Q ≈p

	 Q1 implies P ≈c
	 P1 and Q ≈c

	 Q1. Hence P1 ≈c
	 Q1 and P2 ≈p

	 Q2.
We conclude by application Lemma 18. �

Lemma 19. Let P, Q ∈ SAD such that P 	 τ−→p, Q 	 τ−→p and P ≈c
	 Q. Assume that for all P ′, Q′,

|P ′| + |Q′| < |P | + |Q| and P ′ ≈c
	 Q′ implies P ′ ≈p

	 Q′. We have skel(P) = skel(Q).

Proof. Consider first that for all d, P 	 νx.out(d,x)−−−−−−→p and Q 	 νx.out(d,x)−−−−−−→p. By applying Lemma 17, we deduce
that skel(P) = skel(Q). By applying Corollary 4, we also deduce that {out(d) ∈ skel(P) | d ∈ Ch} =
{out(d) ∈ skel(Q) | d ∈ Ch}. Therefore, it only remains to prove that {in(d) ∈ skel(P) | d ∈ Ch} =
{in(d) ∈ skel(Q) | d ∈ Ch}.

Consider P
in(d,M)−−−−→c P ′ such that in(d) /∈ skel(Q). Since P ≈c

	 Q, then Q
in(d,M)====⇒c Q′ for some Q′.

As in(d) /∈ skel(Q) and Q 	 νx.out(d,x)−−−−−−→p, we deduce that Q
τ−→c Q′′ in(d,M)====⇒c Q′ where Q

τ−→c Q′′ is an
internal communication on some public channel c. Since {out(d) ∈ skel(P) | d ∈ Ch} = {out(d) ∈
skel(Q) | d ∈ Ch}, we deduce that:

• P = νk̃.(outho(c, u).R1 | inho(d, x).R2 | R3).
• Q = νk̃′.(outho(c, v).S1 | inho(c, x).S2 | S3)

Moreover, Corollary 4 also tells us that P1 = νk̃.(R1 | inho(d, x).R2 | R3 | {u/z}) ≈p
	 νk̃′.(S1 |

inho(c, x).S2 | S3 | {v/z}) = Q1. Since P, Q ∈ D(p), we can assume w.l.o.g. that P1 	 τ−→p, Q1 	 τ−→p. As
P1 ≈p

	 Q1, skel(P1) = skel(Q1). Hence in(d) ∈ skel(S1) or in(d) ∈ skel(S3). As we assumed in(d) /∈
skel(Q), in(d) ∈ skel(S1). Therefore, Q = νk̃′.(outho(c, v).(inho(d, y).S ′

1 | S ′′
1) | inho(c, x).S2 | S3).

Note that Q
in(c,N)−−−→c Q2 = νk̃′.(outho(c, v).(inho(d, y).S ′

1 | S ′′
1) | S2{N/y} | S3). As Q ≈c

	 P , there

exists P
in(c,N)===⇒c P2 and Q2 ≈c

	 P2 for some P2. Since |Q2| + |P2| < |P | + |Q|, Q2 ≈c
	 P2 implies

Q2 ≈p
	 P2. Note that in Q2, outho(c, v) and inho(d, y) are sequential. As Q2 ≈p

	 P2, P2 should also

contain a similar sequence of outho(c, u′) and inho(d, y ′) for some u′ and y ′. Since P
in(c,N)===⇒c P2, we

deduce that this sequence should appear either in outho(c, u).R1 or in inho(d, x).R2 or in R3. However,
by definition of strong action determinate, there cannot be any instance of inho(d, y) in R1 or R3 because
of inho(d, x).R2. Similarly, there cannot be any instance of outho(c, u′) for some u′ in inho(d, x).R2 or R3

because of outho(c, u).R1. Thus we obtain a contradiction and so in(d) ∈ skel(Q). �

Lemma 20. Let P, Q ∈ SAD such that P 	 τ−→p and Q 	 τ−→p. If P ≈c
	 Q and skel(P) = skel(Q) then

P ≈p
	 Q.

K. Babel et al. / On the semantics of communications when verifying equivalence properties 125

Proof. Thanks to Lemma 17, we know that the result trivially holds if skel(P) contains only inputs.
Thus, let us consider P = νk̃.(outho(c, u).R1 | R2). Note that by Corollary 4 and since P ∈ D(p), we
know that Q = νk̃′.(outho(c, v).S1 | S2) with νk̃.(R1 | R2 | {u/z}) ≈p

	 νk̃′.(S1 | S2 | {v/z}).
Therefore, let us define the relation R such that P ′ R Q′ iff either P ′ ≈p

	 Q′ or the following properties
hold:

• skel(P ′) = skel(Q′),
• P ′ = νk̃.(outho(c, u).R1 | R′

2), Q = νk̃′.(outho(c, v).S1 | S ′
2) for some R′

2, S ′
2, and

• νk̃.(R1 | R′
2 | {u/z}) ≈p

	 νk̃′.(S1 | S ′
2 | {v/z}).

Note that P R Q. We show that R ⊆ ≈p
	. Consider P ′ R Q′. By definition of R, if P ′ ≈p

	 Q′ then
the result trivially holds. Therefore, we consider the other part of the definition of R and we prove the
P ′, Q′ satisfies the definition of ≈p

	

• We know that νk̃.(R1 | R′
2 | {u/z}) ≈p

	 νk̃′.(S1 | S ′
2 | {v/z}). Hence we deduce that φ(P ′) ∼ φ(Q′).

• Assume P ′ νz.out(c,z)−−−−−→ P ′′. Since P ′ is strongly action determinate, we deduce that P ′′ = νk̃.(R1 |
R′

2 | {u/z}). We also have Q′ νz.out(c,z)−−−−−→ Q′′ = νk̃′.(S1 | S ′
2 | {v/z}) and we also have P ′′ ≈p

	 Q′′.
Hence P ′′ R Q′′.

• Assume P ′ a−→ P ′′ with a different from νz.out(c, z). In such a case, P ′′ = νk̃.(outho(c, u).R1 | R′′
2)

for some R′′
2 . Note that P ′ νz.out(c,z).a−−−−−−→p P ′′′ = νk̃.(R1 | R′′

2 | {u/z}). Since νk̃.(R1 | R′
2 | {u/z}) ≈p

	

νk̃′.(S1 | S ′
2 | {v/z}) and skel(P ′) = skel(Q′), we deduce that Q′ νz.out(c,z).a======⇒p Q′′′ = νk̃′.(S1 |

S ′′
2 | {v/z}) for some S ′′

2 and P ′′′ ≈p
	 Q′′′. However, note that we also have Q′ a.νz.out(c,z)======⇒p Q′′′ with

Q′ a=⇒p νk̃′.(outho(c, v).S1 | S ′′
2) = Q′′. As skel(P ′) = skel(Q′) and P ′′′ ≈p

	 Q′′′, we deduce that
skel(S ′′

2) = skel(R′′
2) and so skel(P ′′) = skel(Q′′). We conclude that P ′′ R Q′′. �

Theorem 10. When restricted to SAD, we have ≈c
	 ⊆ ≈p

	.

Proof. Consider P, Q ∈ SAD such that P ≈c
	 Q. We prove this property by induction on |P | + |Q|.

The base case (|P | + |Q| = 0) being trivial, we focus on the inductive step.
Assume P

τ−→p P ′. Since P ∈ D(p), we know that P ≈p
	 P ′. By Lemma 13, P ≈p

	 P ′ implies
P ≈c

	 P ′. Hence P ′ ≈c
	 Q. Since |P ′| + |Q| < |P | + |Q|, we can apply our inductive hypothesis which

gives us P ′ ≈p
	 Q. As P ≈p

	 P ′, we conclude P ≈p
	 Q. By symmetry, the same proof holds when

Q
τ−→p Q′.

Therefore, assume that P 	 τ−→p and Q 	 τ−→p. Thanks to Lemma 19, we deduce that skel(P) = skel(Q).
We conclude by applying Lemma 20. �

Appendix K. Proof of Theorem 11

Theorem 11. When restricted to I/O-unambiguous processes, we have that ≈p
r=≈e

r but ≈e
r�≈c

r for
r ∈ {	, t}.

Proof. From Theorems 5, 6 and 4, we already know that ≈e
r ⊆ ≈p

r ∩ ≈e
r for r ∈ {lbl, m, t}. Hence, for

r ∈ {lbl, m, t}, we only need to prove that ≈p
r ⊆ ≈e

r and ≈e
r ⊆ ≈c

r to obtain the result.

126 K. Babel et al. / On the semantics of communications when verifying equivalence properties

Proof of ≈p
t ⊆ ≈e

t : Let A and B to honest I/O-unambiguous processes such that A ≈p
t B. Let A

tr=⇒e A′.
By definition, we know that there exist 	1, . . . , 	n and extended processes A0, . . . , An such that:

• tr is 	1 . . . 	n where the τ are removed
• A0 = A, An = A′

• A0
	1−→e A1

	2−→e . . .
	n−→e An.

Note that since A is honest, the rules C-ENV, C-OPEN, C-EAV, C-OEAV are never applied in the
derivation. The idea is to

≈s1
r =≈s2

r for r ∈ {	, o, m, t} and s1, s2 ∈ {c, p, e}
We first focus on the proof of ≈s1

r =≈s2
r for r ∈ {	, o, m, t} and s1, s2 ∈ {c, p, e}. �

References

[1] M. Abadi and C. Fournet, Mobile values, new names, and secure communication, in: 28th Symposium on Principles of
Programming Languages (POPL’01), H.R. Nielson, ed., ACM, London, UK, 2001, pp. 104–115.

[2] M. Abadi and C. Fournet, Private authentication, Theor. Comput. Sci. 322(3) (2004), 427–476. doi:10.1016/j.tcs.2003.12.
023.

[3] M. Abadi and A.D. Gordon, A calculus for cryptographic protocols: The spi calculus, Inf. Comput. 148(1) (1999), 1–70.
doi:10.1006/inco.1998.2740.

[4] B. Adida, Helios: Web-based open-audit voting, in: 17th Conference on Security Symposium (SS’08), USENIX Associa-
tion, 2008, pp. 335–348, http://dl.acm.org/citation.cfm?id=1496711.1496734.

[5] M. Arapinis, V. Cheval and S. Delaune, Verifying privacy-type properties in a modular way, in: Proceedings of the 25th
IEEE Computer Security Foundations Symposium (CSF’12), V. Cortier and S. Zdancewic, eds, IEEE Computer Society
Press, Cambridge Massachusetts, USA, 2012, pp. 95–109.

[6] M. Arapinis, T. Chothia, E. Ritter and M. Ryan, Analysing unlinkability and anonymity using the applied pi calculus, in:
Proc. 23rd Computer Security Foundations Symposium (CSF’10), IEEE Computer Society Press, 2010, pp. 107–121.

[7] M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon and R. Borgaonkar, New privacy issues in mobile
telephony: Fix and verification, in: 19th Conference on Computer and Communications Security (CCS’12), ACM Press,
2012, pp. 205–216.

[8] A. Armando, D.A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P.H. Drielsma, P.-C. Héam, O. Kouchnarenko,
J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò and L. Vigneron, The
AVISPA tool for the automated validation of Internet security protocols and applications, in: Proc. 17th International
Conference on Computer Aided Verification (CAV’05), Lecture Notes in Computer Science, Springer, 2005, pp. 281–285.

[9] K. Babel, V. Cheval and S. Kremer, On communication models when verifying equivalence properties, in: 6th Inter-
national Conference on Principles of Security and Trust (POST’17), Lecture Notes in Computer Science, Vol. 10204,
Springer, Uppsala, Sweden, 2017, pp. 141–163. doi:10.1007/978-3-662-54455-6.

[10] D. Baelde, S. Delaune and L. Hirschi, Partial order reduction for security protocols, in: Proceedings of the 26th Interna-
tional Conference on Concurrency Theory (CONCUR’15), L. Aceto and D. de Frutos-Escrig, eds, Leibniz International
Proceedings in Informatics, Vol. 42, Leibniz-Zentrum für Informatik, Madrid, Spain, 2015, pp. 497–510, http://www.lsv.
ens-cachan.fr/Publis/PAPERS/PDF/BDH-concur15.pdf. doi:10.4230/LIPIcs.CONCUR.2015.497.

[11] B. Blanchet, Automatic verification of correspondences for security protocols, Journal of Computer Security 17(4) (2009),
363–434. doi:10.3233/JCS-2009-0339.

[12] B. Blanchet, M. Abadi and C. Fournet, Automated verification of selected equivalences for security protocols, Journal of
Logic and Algebraic Programming 75(1) (2008), 3–51. doi:10.1016/j.jlap.2007.06.002.

[13] R. Chadha, V. Cheval, Ş. Ciobâcă and S. Kremer, Automated verification of equivalence properties of cryptographic
protocol, ACM Transactions on Computational Logic 17(4) (2016), 1–32. doi:10.1145/2926715.

[14] V. Cheval, H. Comon-Lundh and S. Delaune, Trace equivalence decision: Negative tests and non-determinism, in: Proc.
18th ACM Conference on Computer and Communications Security (CCS’11), ACM, 2011.

[15] V. Cheval, V. Cortier and S. Delaune, Deciding equivalence-based properties using constraint solving, Theoretical Com-
puter Science 492 (2013), 1–39. doi:10.1016/j.tcs.2013.04.016.

[16] V. Cheval, S. Kremer and I. Rakotonirina, DEEPSEC: Deciding equivalence properties in security protocols – theory and
practice, in: Proceedings of the 39th IEEE Symposium on Security and Privacy (S&P’18), IEEE Computer Society Press,
San Francisco, CA, USA, 2018, pp. 525–542. doi:10.1109/SP.2018.00033.

https://doi.org/10.1016/j.tcs.2003.12.023
https://doi.org/10.1016/j.tcs.2003.12.023
https://doi.org/10.1006/inco.1998.2740
http://dl.acm.org/citation.cfm?id=1496711.1496734
https://doi.org/10.1007/978-3-662-54455-6
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BDH-concur15.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BDH-concur15.pdf
https://doi.org/10.4230/LIPIcs.CONCUR.2015.497
https://doi.org/10.3233/JCS-2009-0339
https://doi.org/10.1016/j.jlap.2007.06.002
https://doi.org/10.1145/2926715
https://doi.org/10.1016/j.tcs.2013.04.016
https://doi.org/10.1109/SP.2018.00033

K. Babel et al. / On the semantics of communications when verifying equivalence properties 127

[17] V. Cheval, S. Kremer and I. Rakotonirina, DeepSec 1.1, 2019, https://github.com/DeepSec-prover/deepsec/tree/
ae7a64e9023df242370b011dfa82a7586ac7a772.

[18] V. Cortier, S. Delaune and A. Dallon, SAT-Equiv: An efficient tool for equivalence properties, in: Proceedings of the 30th
IEEE Computer Security Foundations Symposium (CSF’17), IEEE Computer Society Press, 2017, pp. 481–494. doi:10.
1109/CSF.2017.15.

[19] V. Cortier, D. Galindo and M. Turuani, A formal analysis of the Neuchâtel e-voting protocol, in: IEEE European Sympo-
sium on Security and Privacy (EuroS&P), 2018.

[20] C.J.F. Cremers, The Scyther Tool: Verification, falsification, and analysis of security protocols, in: Proc. 20th International
Conference on Computer Aided Verification (CAV’08), Lecture Notes in Computer Science, Vol. 5123, Springer, 2008,
pp. 414–418. doi:10.1007/978-3-540-70545-1_38.

[21] S. Delaune, S. Kremer and M.D. Ryan, Verifying privacy-type properties of electronic voting protocols, Journal of Com-
puter Security 17(4) (2009), 435–487. doi:10.3233/JCS-2009-0340.

[22] N. Dong, H. Jonker and J. Pang, Analysis of a receipt-free auction protocol in the applied pi calculus, in: Proc. Interna-
tional Workshop on Formal Aspects in Security and Trust (FAST’10), S. Etalle and J. Guttman, eds, Pisa, Italy, 2010, To
appear.

[23] P.T. Force, PKI for machine readable travel documents offering ICC read-only access, Technical Report, International
Civil Aviation Organization, 2004.

[24] J.K. Millen and V. Shmatikov, Constraint solving for bounded-process cryptographic protocol analysis, in: Proc. 8th
Conference on Computer and Communications Security, ACM Press, 2001, pp. 166–175.

[25] L.C. Paulson, The inductive approach to verifying cryptographic protocols, Journal of Computer Security 6(1/2) (1998),
85–128. doi:10.3233/JCS-1998-61-205.

[26] P.Y.A. Ryan, S.A. Schneider, M. Goldsmith, G. Lowe and A.W. Roscoe, Modelling and Analysis of Security Protocols,
Addison Wesley, 2000.

[27] B. Schmidt, S. Meier, C. Cremers and D. Basin, The TAMARIN prover for the symbolic analysis of security protocols,
in: Proc. 25th International Conference on Computer Aided Verification (CAV’13), Lecture Notes in Computer Science,
Vol. 8044, Springer, 2013, pp. 696–701.

[28] F.J. Thayer Fabrega, J.C. Herzog and J.D. Guttman, Strand spaces: Proving security protocols correct, Journal of Com-
puter Security 7(2/3) (1999), 191–230. doi:10.3233/JCS-1999-72-304.

[29] A. Tiu and J.E. Dawson, Automating open bisimulation checking for the spi calculus, in: Proc. 23rd Computer Security
Foundations Symp. (CSF’10), IEEE Comp. Soc., 2010, pp. 307–321.

https://github.com/DeepSec-prover/deepsec/tree/ae7a64e9023df242370b011dfa82a7586ac7a772
https://github.com/DeepSec-prover/deepsec/tree/ae7a64e9023df242370b011dfa82a7586ac7a772
https://doi.org/10.1109/CSF.2017.15
https://doi.org/10.1109/CSF.2017.15
https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.3233/JCS-2009-0340
https://doi.org/10.3233/JCS-1998-61-205
https://doi.org/10.3233/JCS-1999-72-304

	Introduction
	Model
	Syntax
	Operational semantics
	Reachability and behavioural equivalences
	Labelled semantics

	Comparing the different semantics
	Subclasses of processes for which (some of) the semantics coincide
	Determinate processes
	Defining classes of determinate processes and their relations
	Relations between semantics for determinate processes

	Determinacy for bounded processes
	Bounded determinate processes

	I/O-unambiguous processes

	Different semantics in practice
	Conclusion
	Acknowledgments
	Appendix A. Refining Theorem 3
	Appendix B. Proof of Proposition 2
	Appendix C. Proof of Theorem 1
	Appendix D. Proof of Theorem 6
	Appendix E. Proof of Theorem 2
	Appendix F. Proof of Theorem 7
	Appendix G. Proof of Theorem 8
	Appendix H. Proof of Lemma 7
	Appendix I. Proof of Theorem 9
	Appendix J. Proof of Theorem 10
	Appendix K. Proof of Theorem 11
	References

