
Charlote: Reformulating Blockchains into a Web of Composable

Atested Data Structures for Cross-Domain Applications

ISAAC SHEFF, Heliax, USA
XINWEN WANG, Cornell University, USA
KUSHAL BABEL, Cornell Tech, USA
HAOBIN NI, Cornell University, USA
ROBBERT VAN RENESSE, Cornell University, USA
ANDREW C. MYERS, Cornell University, USA

Cross-domain applications are rapidly adopting blockchain techniques for immutability, availability, integrity, and interoper-

ability. However, for most applications, global consensus is unnecessary and may not even provide suicient guarantees.

We propose a new distributed data structure: Attested Data Structures (ADS), which generalize not only blockchains, but also

many other structures used by distributed applications. As in blockchains, data in ADSs is immutable and self-authenticating.

ADSs go further by supporting application-deined proofs (attestations). Attestations enable applications to plug in their own

mechanisms to ensure availability and integrity.

We present Charlotte, a framework for composable ADSs. Charlotte deconstructs conventional blockchains into more

primitive mechanisms. Charlotte can be used to construct blockchains, but does not impose the usual global-ordering overhead.

Charlotte ofers a lexible foundation for interacting applications that deine their own policies for availability and integrity.

Unlike traditional distributed systems, Charlotte supports heterogeneous trust: diferent observers have their own beliefs

about who might fail, and how. Nevertheless, each observer has a consistent, available view of data.

Charlotte’s data structures are interoperable and composable: applications and data structures can operate fully indepen-

dently, or can share data when desired. Charlotte deines a language-independent format for data blocks and a network API

for servers.

To demonstrate Charlotte’s lexibility, we implement several integrity mechanisms, including consensus and proof of work.

We explore the power of disentangling availability and integrity mechanisms in prototype applications. The results suggest

that Charlotte can be used to build lexible, fast, composable applications with strong guarantees.

CCS Concepts: ·Computer systems organization→ Peer-to-peer architectures;Distributed architectures;Availability;

Redundancy; · Information systems → Data structures; Distributed storage; Distributed database transactions; Electronic

commerce; Remote replication; Web data description languages; · Software and its engineering → Organizing principles

for web applications; · Security and privacy→ Distributed systems security; Trust frameworks.

Authors’ addresses: Isaac Shef, Heliax, 905 Elmwood Ave., Bufalo, NY, 14222, USA, isaac@heliax.dev; Xinwen Wang, Cornell University,

Gates Hall, Ithaca, NY, 14853, USA, xinwen@cs.cornell.edu; Kushal Babel, Cornell Tech, Bloomberg Center, New York, NY, 10044, USA,

babel@cs.cornell.edu; Haobin Ni, Cornell University, Gates Hall, Ithaca, NY, 14853, USA, haobin@cs.cornell.edu; Robbert van Renesse, Cornell

University, Gates Hall, Ithaca, NY, 14853, USA, rvr@cs.cornell.edu; Andrew C. Myers, Cornell University, Gates Hall, Ithaca, NY, 14853, USA,

andru@cs.cornell.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0734-2071/2023/7-ART $15.00

https://doi.org/10.1145/3607534

ACM Trans. Comput. Syst.

https://doi.org/10.1145/3607534
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607534&domain=pdf&date_stamp=2023-07-22

2 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

1 INTRODUCTION

Blockchains are not only a way to manage cryptocurrencies [26, 58, 69] but also a more general mechanism
for storing data with strong guarantees of integrity, availability, and durability. These properties are already
commercially valuable for applications such as supply-chain tracking [42], but they have many other poten-
tial applications, such as long-term archival of the scientiic record [1, 47, 61, 76] and managing real estate
transactions [43].
The appeal of blockchain guarantees has led to a proliferation of blockchain systems with a variety of

tradeofs between performance and security. Unfortunately, there does not seem to be any one-size-its-all design.
Traditional blockchain designs such as Bitcoin [69] are slow, expensive, ineicient [20], and even considered
unsafe by some [48, 68]. Traditional blockchains use a massive, expensive, global consensus to totally order
everyone’s transactions. The global consensus is intended to be so trustworthy that all services can trust the
chain for availability and integrity. For many services, such as Ethereum’s cryptokitties [90], blockchains are
overkill, while for others, they are not enough. For example, some major banks do not trust the Bitcoin blockchain
to ensure payments aren’t rolled back [48].

We introduce Charlotte, a principled system that ofers a framework for construction and interaction of a variety
of blockchain-like systems, as applications within Charlotte. Charlotte is not a blockchain; instead, it deconstructs
blockchains into a lower-level system in which one can build blockchains as Charlotte applications, including
eicient versions of proof-of-work blockchains like Nakamoto [69] and Prism [6], permissioned blockchains like
HyperLedger [12], as well as more specialized decentralized data structures. Charlotte is not a library; like the
Web, it is a system that can be extended incrementally in a decentralized way with new applications. Blockchain
applications implemented on Charlotte can refer to each other’s blocks, and their transactions can even be made
part of multiple blockchains. Crucially, Charlotte ofers clear semantic guarantees when diferent blockchain
applications interact.

Charlotte enables developers to build systems beyond the conventional, linear, totally ordered ledger that the
term “blockchainž suggests. We view a blockchain as an instance of a more general construction, a distributed
data structure in which data blocks reference each other with cryptographic hashes. While a blockchain is such a
structure, so too are distributed hash tables as in CFS [21], the core data structures of distributed version-control
services like Git [91], ile distribution services like BitTorrent [18], and Public Key Infrastructure services [40].
Similarly, the Charlotte data structure is connected by hashes, but in addition, the Charlotte data structure
includes attestations of application-speciic integrity and availability properties. We refer to such a data structure
as an Attested Data Structure (ADS). Together, all Charlotte ADSs form the blockweb, an attested directed acyclic
graph (DAG) [60] of all Charlotte data, divided into blocks that reference each other by hash.

Charlotte applications can achieve high levels of integrity without traditional drawbacks by using the lexibility
of attestations to achieve entanglement of diferent block histories. Traditional blockchains work because entangle-
ment of diferent transactions means that no application’s actions can be undone without rolling back others. Our
insight is that global consensus mechanisms are an unnecessary and expensive way to achieve high entanglement.
Charlotte makes it possible to instead build applications that exploit opportunistic entanglement, a lighter-weight
way to bolster each application’s integrity. Charlotte applications can follow the least ordering principle: only that
which must be ordered, should be ordered. As the database community has known for decades [11], unnecessary
ordering is expensive.
The appeal of blockchains is that they ofer assurance of integrity and availability even in the presence of

strong adversaries, who can cause failures such as crashing or corrupting host nodes, or adding contradictory
blocks. Charlotte can ofer similar assurances despite similarly strong adversaries. In Charlotte, any observer

can specify their own threat model: the failures they believe the system should securely tolerate. Each user is
an observer, but observers can include any system or entity that observes states of ADSs. Observers’ failure

ACM Trans. Comput. Syst.

Charlote • 3

speciications can encompass a wide variety of threat models, such as those used in proof-of-work systems or
those of more traditional, trusted quorum systems, or even mixtures of the two.

Charlotte enables new kinds of services that share multiple ADSs across multiple trust domains. New services
can even be created by composingmultiple existing services. To illustrate the power of interacting services, we built
several independently useful example services, including version control, authenticated storage, timestamping,
and a permissioned blockchain. We then composed these services to produce DarXiv, a secure disaggregated
version of arXiv [29], which can take advantage of the integrity and availability properties of its component
services (section 8.5).

We believe Charlotte takes a irst step toward a new ecosystem of interoperable services that fulill the promises
of blockchains, while avoiding their drawbacks. Charlotte itself occupies a low layer of the application stack: even
lower than existing blockchains, since it can be used to build them. As a new abstraction layer, Charlotte speciies
rules for formatting blocks, referencing blocks, and transmitting blocks across the network, and it also ofers a
formal model for reasoning about data integrity and availability. Each service can choose its own data structures
and its own mechanisms for ensuring integrity and availability; Charlotte makes it easy for services to share
these mechanisms while ofering a common understanding of the resulting integrity and availability guarantees.
A prototype implementation of Charlotte is publicly available at https://github.com/ishef/charlotte-public [80].

1.1 Roadmap and Contributions

• We expand on this motivation in section 2 and give an overview of Charlotte’s design in section 3.
• Charlotte provides an extensible type system for blocks, and a standard API for communicating them (sec-
tion 4).

• We present a general mathematical model for ADSs (section 5) with diverse properties expressed in terms
of observers, a novel characterization of diferent failure tolerance for each participant. Our model features
a general way to compose ADSs and their properties.

• To demonstrate its usefulness, expressiveness, and ability to compose services, we describe how various
interesting services can be built using Charlotte (section 6).

• Further, we show that Charlotte generalizes blockchains while allowing separation of availability and
integrity duties, and also generalizes linearizable transactions over distributed objects (section 7).

• We have implemented a prototype of Charlotte along with proof-of-concept implementations of ADSs for
various services (section 8).

• Our evaluation shows Charlotte’s performance overheads are reasonable (section 9).

2 MOTIVATION

Modern applications rely on a variety of services that can be viewed as ADSs. A single modern application might
use timestamping services, version tracking, public key infrastructure, distributed storage, and blockchains or
other ordering services. There is unfortunately no uniform framework for addressing data from all such services
or sharing data between them. As a result, applications often unnecessarily duplicate data in their own formats,
rather than contributing to an interoperable web of data that anyone can use.

Most distributed applications rely on data structuresmaintaining a variety of guarantees. Availability guarantees
describe which data is safely stored and can be retrieved. Integrity guarantees can specify invariants over the
possible states of an ADS. Until now, there has not been a formal, composable model for expressing the integrity
or availability guarantees of ADSs. With Charlotte, applications can express guarantees for their ADSs in terms
of which possible states can be constructed. Users can express their assumptions about server behavior (including
possible failures), thereby deining which ADS guarantees they expect to hold and which they do not.

ACM Trans. Comput. Syst.

https://github.com/isheff/charlotte-public

4 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

Furthermore, when applications share data, it is possible for one application to boost the availability and
integrity of another’s ADS. For instance, suppose Alice publishes a document on her server, and Bob wants to
make the document available even if Alice’s server fails. With Charlotte, he can duplicate it onto his own server,
and clients transparently understand that these are the same document, now made strictly more available. This is
a unique feature of the blockweb. With more traditional web infrastructure, data identity is tied to data location
(often speciied as a URL). Conlating data identity with location unnecessarily limits its availability and integrity.

2.1 Contrasting with Blockchains

A key novelty of Charlotte is its generality; it is not service-speciic. Unlike other systems that build Directed
Acyclic Graphs (DAGs) of blocks, Charlotte does not implement a cryptocurrency [55, 72, 75, 84, 85], require a
universal “smart contractž language for all services [36, 45, 92], have any distinguished “main chainž [71, 95], or
enforce the same integrity requirements across all ADSs in the system [14, 23, 51, 59, 96].
Indeed, since popular blockchains limit the integrity of any application to that of the global consensus, they

actually limit the integrity of all data structures stored on them. For example, an attacker with 51% of the Ethereum
stake could revert any transaction on any Ethereum smart contract, even if the service using the smart contract
has other integrity mechanisms it trusts. This is why JPMorgan runs their cryptocurrency in-house: they trust
their own integrity service more than they trust Ethereum’s [48].
Instead, Charlotte distills ADSs down to their essentials, allowing Charlotte to serve as a more general ADS

framework, in which each service can construct an ADS based on its own trust assumptions and guaranteesÐyet
all of these heterogeneous ADSs are part of the same blockweb. We show that Charlotte is lexible enough to
simultaneously support a variety of services, including Git-like distributed version control, timestamping, a
disaggregated arXiv, and blockchains based variously on agreement, consensus, and proof-of-work.

Charlotte services can create an ordering on blocks, but blocks are by default only partially ordered. Charlotte
ADSs can intersect, or share blocks. Not only can services beneit from each other’s storage, but importantly,
they can atomically commit information to multiple ADSs simultaneously. By contrast, services on traditional
blockchains, such as Ethereum’s smart contracts, obtain composable data structures and atomic commits only by
storing all data on one big chain that by requiring a global consensus is inherently more expensive, even with the
recent move toward Proof of Stake.

2.1.1 Concurrency in Banking. Although Charlotte is not limited to totally ordered blockchains, the more general
DAG data structures it supports have advantages even for conventional blockchain applications. In particular, a
partially ordered DAG structure can be updated in parallel, improving throughput. To see the potential beneit,
consider the Bitcoin payment network. Bitcoin keeps track of money in terms of Unspent Transaction Outputs,
or UTXOs. Each Bitcoin transaction consumes a set of input UTXOs and generates new output UTXOs. Thus,
Bitcoin transactions form a graph, with transactions as vertices and UTXOs as directed edges [69]. Note that
transactions that do not depend on each other can happen in parallel. This is one of the reasons that research
in side-chains is so popular: they increase parallelism. However, whereas side-chains tend to ask “what is the
least parallelism we can get away with?ž we prefer to ask “what is the least ordering we actually need?ž With
minimal ordering, even if each transaction required a consensus mechanism exactly as slow as the one Bitcoin
uses, all the transactions of the irst 200,000 blocks could be conirmed 63× faster in a Charlotte-based ADS
without unnecessary ordering (table 1).

A Bitcoin “account,ž where a user owns one UTXO at a time, is simply a path in the Bitcoin transaction graph.
In Bitcoin, it improves anonymity and performance to combine many small transfers of money into big ones,
with many inputs and many outputs. In the real inancial system of the USA, however, all monetary transfers are
from one account to another. They are all exactly two-chain transactions. We describe how to construct such a

ACM Trans. Comput. Syst.

Charlote • 5

Unaltered 2 Accounts

linearized
longest chain 6,953,512 24,129,215

time 3.72 years 12.91 years

parallelized
longest chain 110,787 244,163

time 21.63 days 47.68 days

Table 1. Theoretical advantages of Charlote-style parallelization in the Bitcoin payment network for the first 200,000 blocks.

Fig. 1. Composing data structures. Blocks are represented

as rectangles, and references from one block to another are

shown as circles. The pale blue blocks form a tree, whereas

the darker red blocks form a chain. The rightmost red block

references a blue block, so together the union of the red

and blue blocks forms a larger tree. The black block also

references a red block.

banking system in Charlotte in section 7.4.1. For Bitcoin data, we can simulate this limitation by refactoring each
transaction as a butterly network of transactions with logarithmic depth (appendix A).
Even in a inancial system limited to pairwise transactions (as we describe in section 7.4.1), Charlotte could

still achieve a 28 speedup by exploiting the power of parallelism (table 1).

2.2 Composability

Charlotte provides a common framework for data structures from separate services to reference each other.
For example, a timestamping service can stamp data from any other ADS, using a common reference format.
A blockchain might “endorsež speciic commits from a version-control repository as representing an “oicial
release.ž This is exactly how our DarXiv example application (section 8.5) is structured: a permissioned blockchain
represents editors designating oicial releases of a document.
Charlotte data structures are naturally composable: the union of two data structures is itself a data structure.

For example, the red and blue blocks in ig. 1 are separate data structures whose union forms a data structure.
More concretely, a Git-style version-control repository is a union of many “branchž data structures. Sharded
database or blockchain designs form one big database as the union of many “shardž databases. Timestamps
created by a timestamping service create a “timestamped dataž ADS consisting of all ancestors of the timestamp
in the blockweb, potentially incorporating any number of other ADSs.
The intersection of data structures is also meaningful. Intuitively, the intersection of two data structures

comprises the data that is part of both structures. We can think of cross-shard transactions appended to a sharded
blockchain ADS as data in the intersection of multiple shard ADSs.
With Charlotte, we want to be able to naturally express both union and intersection ADSs, and to reason

about their properties in terms of the properties of the component ADSs. For instance, in our DarXiv example
application (section 8.5), documents gain availability by being in the union of many authenticated storage data
structures, and integrity through being in the intersection of version control, timestamping, and permissioned
blockchain data structures. The DarXiv as a whole is the union of many individual document data structures.

2.3 Availability and Integrity Properties

AnADS does not automatically possess all properties a servicemight need. AnADSmight fail to ensure availability,
because a reference to data does not guarantee it can be retrieved. It might even fail to ensure integrity, because

ACM Trans. Comput. Syst.

6 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

an ADS might be extended in inconsistent, contradictory waysÐfor example, multiple new blocks could claim to
be the 7th in some blockchain.

Therefore, an ADS commonly incorporates additional mechanisms to ensure availability and integrity in the
presence of malicious adversaries. Some systems rely on gossip and incentive schemes to ensure availability, and
consensus or proof-of-work schemes to ensure integrity.
Presently, only observers that believe in a set of service-speciic failure assumptions can use each service.

Historically, this has been a core reason ADS services haven’t been composable. Blockchains like Bitcoin [69] and
Ethereum [26] lose integrity if the adversary controls a majority of the hash power, while Chord loses availability
if an adversary controls enough consecutive nodes [89].

Charlotte provides a theoretical framework for formalizing the availability and integrity properties of extremely
diverse ADSs. Charlotte characterizes availability in terms of the conditions under which data might not be
available, but since the system is decentralized, diferent observers might have diferent opinions about these
conditions. Integrity is similar: each observer characterizes each ADS in terms of which states it believes are
possible.

These properties can be composed just as the ADSs can: For example, the intersection of two ADSs (section 5.7.2)
has, in a strong sense, the integrity of both. If two diferent timestamping services both claim a block existed
before a certain time, that proof stands so long as at least one timestamping service is honest.

3 DESIGN OVERVIEW

3.1 Blocks

In Charlotte, blocks are the smallest unit of data. Traditional blockchain systems are motivated to increase block
size to increase throughput. Because Charlotte does not mandate a global ordering, it has no such design tension,
so Charlotte clients do not fetch “block headers,ž or other partial blocks, as in some other systems [26]. Therefore,
Charlotte services ideally use small blocks. For instance, to build something like Ethereum in Charlotte, it would
be sensible to represent the Merkle tree [64] structure found within each Ethereum block using many small
Charlotte blocks. Using small blocks makes it easier to divide up storage duties and to fetch and reference speciic
data. Since blocks are small, Charlotte’s server protocol allows for streaming arbitrary collections of blocks.
Eicient applications may want to disseminate groups of related blocks. We discuss some useful ways of grouping
blocks in section 4.4.

3.2 Observers

To capture the formal guarantees ofered by Charlotte, we characterize an observer in a distributed system as an
entity with a set of assumptions concerning the possible ways that the system can fail. For example, an observer
can represent a user: they expect a data structure to retain certain properties, so long as certain assumptions
about the relevant servers remain true. In Lamport’s Paxos terminology, learners are examples of observers:
they observe data, and demand agreement properties on their observations [54]. Charlotte explicitly considers
active adversaries who are trying to corrupt ADSs; observers can characterize their assumptions regarding these
adversaries in terms of crashed and/or Byzantine servers. We call an observer accurate if its failure assumptions
are correct.

Given a set of assumptions about who can fail and how, and the desired integrity properties of each ADS, each
observer may choose to ignore any portions of the blockweb that lack adequate attestations (section 3.3). What
remains is the observer’s view of the ADS: the set of blocks it believes are available and part of the state of the
ADS.

Each observer’s view of an ADS is guaranteed to remain available and to uphold any integrity properties the
observer has chosen so long as the observer is accurate (i.e., its failure assumptions hold). Further, portions of the

ACM Trans. Comput. Syst.

Charlote • 7

blockweb that feature attestations satisfying two observers are guaranteed to remain in both observers’ views,
once both have observed all the relevant blocks.

Of course, in practice, servers take time to download relevant blocks, and in an asynchronous system there is
no bound on the time this may take.

3.3 Atestations

Some blocks are attestations: they prove that an ADS satisies properties beyond those inherent to a DAG of
immutable blocks. References to blocks are accompanied by a set of references to attestations describing the
properties of that block, specifying where the block can be found and what data structure it is part of.
For instance, if a server signs an attestation stating that it will store and make available a speciic block, it

means the block will be available as long as that server functions correctly. Such an attestation functions as a
kind of proof premised on the trustworthiness of the signing server. In other words, if the property guaranteed
by the attestation fails to hold, the signing server must not be trustworthy. Servers should sign attestations only
when they can be sure that the property is enforced.

3.3.1 Specifying Atestations. Charlotte deliberately does not prescribe a language or syntax of attestations: that
would limit what developers could do with Charlotte. Instead, applications provide their own interpretation of the
meaning of their attestations: how an attestation is interpreted is up to observers, since how much an observer
believes any speciic attestation is up to that observer. We provide a lexible semantic framework in section 5.8
that applications can use to precisely specify the guarantees ofered by attestations. It allows observers to reason
about these guarantees either in isolation or when composed with other attestations, possibly made by other
applications. When applications deine the semantics of their attestations within that framework (as we do for all
examples in this paper), application guarantees naturally compose: all properties of all attestations hold when all
conditions are met (section 5.7).
Attestation types are pluggable: Charlotte servers can deine their own subtypes, which prove nothing to

observers who do not understand them. Although there is no ixed language for expressing attestations, each
type is speciied with a unique hash, so observers cannot accidentally parse the same attestation in diferent ways.
Service-deined attestation types can represent diferent consensus mechanisms (including Paxos and Nakamoto),
diferent ADS types, and diferent availability strategies.

Applications that require guarantees which our semantic framework cannot express can still build on Charlotte’s
libraries and servers: they simply do not get the guarantees from our semantic model. Future work could introduce
concrete syntaxes for attestations, and implement such attestations atop Charlotte. Such a syntax is at a higher
level of abstraction than Charlotte: because the Charlotte system does not need to implement it, and it can be
built above Charlotte, Charlotte does not implement it.
Although attestations can express a wide variety of properties about an ADS, we classify them as either

availability attestations or integrity attestations.

3.3.2 Availability Atestations. Availability attestations prove that blocks will be available under certain conditions
by specifying how to obtain those blocks. One example of an availability attestation would be a signed statement
from a server promising that a given block will be available as long as the signing server is functioning correctly.
Attestations may make more complex promises. For example, proofs of retrievability [13] might be used as
availability attestations. Availability attestations are not limited to promises to store forever: they might specify
any conditions, including time limits or other conditions under which the block is no longer needed. Availability
attestations generalize and can model features found in many existing distributed data systems:

• In existing blockchains, clients wait for responses from many full nodes, to be sure their transaction is
“available.ž

ACM Trans. Comput. Syst.

8 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

Fig. 2. A Bitcoin-style blockchain ADS with

branches of length < 3. All of the blocks are

present in the blockweb. The red doted oval

and the blue solid oval represent two possible

alternative states of the ADS.

• In BitTorrent, a seeder tells a tracker that it can provide certain iles to leechers.
• Many databases inform clients that their transaction has been recorded by a speciied set of replicas.

In general, a reference to a block includes references to associated availability attestations that describe how to
ind the block. However, there are no availability attestations for availability attestation references, because that
would be useless.

3.3.3 Integrity Atestations. An ADS often requires some kind of permission to add a block to its state. For
example, a blockchain typically requires some set of servers (“minersž) to decide that a particular block uniquely
occupies a given height in the chain. Integrity attestations determine which blocks belong in which ADSs. For
instance, servers maintaining a blockchain might issue an integrity attestation stating that a given block belongs
on the chain at a speciic height; the server promises not to issue any integrity attestation indicating that a
diferent block belongs on the chain at that height. Timestamps are another integrity attestation type: they deine
an ADS consisting of all blocks a speciic server claims existed before a speciic time.

We call servers that issue availability attestations Wilbur servers1 and servers that issue integrity attestations
Fern servers.2 Fern servers generalize ordering or consensus services. In blockchain terminology [69], they
correspond to “miners,ž which select the blocks belonging on the chain. Figure 2 illustrates possible states of
a Bitcoin-style blockchain Attested Data Structures. Under the assumption that the length of the branches is
less than 3, correct Fern servers would not give integrity attestations to both block s and c simultaneously and
thus prevent the system state from diverging. A single process can be both a Wilbur and a Fern server: it simply
provides both types of interfaces for clients (section 4).

3.3.4 Incentives. Each observer may want a diferent subset of servers to generate diferent kinds of attestations.
Charlotte does not have a universal framework for incentivizing servers to issue attestations. We imagine that
for many applications, observers will pay servers for these availability and integrity services, with attestations
serving as formal receipts. Since Charlotte can be used to implement various diferent blockchains, suitable
on-chain currencies can be used to compensate servers. Presumably, services that are more diicult to implement,
such as a high degree of storage replication or a strong integrity guarantee, would command higher fees. This is
not so very diferent from the way light client proofs are used in Ethereum: you get no money back if the chain
maintainers are dishonest and the chain forks, but the maintainers are incentivized to stay honest so that they
can continue ofering their service for a fee.

4 CHARLOTTE API

1after the Charlotte’s Web character whose objective is to stay alive.
2after the Charlotte’s Web character who decides which piglets belong.

ACM Trans. Comput. Syst.

Charlote • 9

1 message AnyWithReference {

2 google.protobuf.Any any;

3 Reference typeBlock;

4 }

5 message Hash {

6 oneof hashalgorithm_oneof {

7 AnyWithReference any;

8 bytes sha3; // technically unnecessary

9 }

10 }

11 message Reference {

12 Hash hash;

13 repeated Hash availabilityAttestations;

14 repeated Reference integrityAttestations;

15 }

16 message Block {

17 oneof blocktype_oneof {

18 AnyWithReference any;

19 string protobuf;

20 }

21 }

Fig. 3. Core Types of Charlote: this (slightly simplified) proto3 code describes how blocks, references to blocks, and generic

data are safely marshaled and unmarshaled in Charlote.

Charlotte deines protocols through which clients and servers interact, speciied as an open-source API [80]. The
API is deined using gRPC [33], a popular network service speciication language based on Protocol Bufers [73].
A language-independent description of the API is desirable, so we use simpliied Protocol Bufers (protobuf)
syntax to describe the Charlotte protocols.3

Figure 3 presents the core types used by Charlotte protocols, in protobuf syntax. Charlotte is built around four
core types:

• Block: can contain any protobuf [73] data type, or the block itself can be a protobuf type deinition.
Attestation is a subtype of Block.

• Hash: represents the hash of a block. For convenience, we support SHA-3 by default, but arbitrary other
hash subtypes can be added.

• Reference: is used by one block to reference another; it contains the Hash of the referenced block, along
with zero or more references to attestations (section 3.3). These attestation references allow an observer to
learn about the availability and integrity (ADS membership) of the referenced block, even before they fetch
it.

• AnyWithReference: Anyone can add their own subtypes of Block, Hash, or Attestation, which any
server can safely marshal and unmarshal. It contains a reference to the block where the type description
can be found (as proto3 [73] source code), and marshaled data.4

We provide some useful example subtypes of Hash (e.g., sha3) and Block (e.g., Attestation).

3For simplicity, our speciications omit the indices of the various ields. The actual source code is also slightly more complicated, for

extensibility [80].
4The proto3 Any type itself features a URL string meant to reference the type deinition, but Charlotte uses a block reference because it is

self-verifying.

ACM Trans. Comput. Syst.

10 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

1 message SendBlocksResponse {

2 string errorMessage;

3 }

4 service CharlotteNode {

5 rpc SendBlocks(stream Block) returns (stream SendBlocksResponse) {}

6 }

Fig. 4. All Charlote servers implement the CharloteNode service.

1 message AvailabilityPolicy {

2 AnyWithReference any;

3 }

4 message RequestAttestationResponse {

5 oneof requestattestationresponse_oneof {

6 string errorMessage;

7 Reference reference;

8 }

9 }

10 service Wilbur {

11 rpc RequestAvailabilityAttestation(AvailabilityPolicy)

12 returns (RequestAttestationResponse) {}

13 }

Fig. 5. Wilbur Service Specification.

In our API, all Charlotte servers must implement the SendBlocks RPC (ig. 4), which takes in a stream of
blocks and can return a stream of responses that may contain error messages. We deine subtypes of attestation
for Availability and Integrity, and show how to construct and observer who trusts speciic types, or even quorums
of types (sections 5.8.1 and 5.8.2).

4.1 Wilbur

Charlotte servers which issue availability attestations are called Wilbur servers. Wilbur servers host blocks,
providing availability. In blockchain terminology [69], Wilbur servers correspond to “full nodes,ž which store
blocks on the chain. In more traditional data store terminology, Wilbur servers are keyśvalue stores for immutable
data. The Charlotte framework is intended to be used for building both kinds of systems.

In our API,Wilbur servers are Charlotte servers that include the RequestAvailabilityAttestationRPC (ig. 5),
which accepts a description of the desired attestation, and returns either an error message, or a reference to a
relevant availability attestation. For most applications, we imagine that an availability attestation does not itself
require attestations, so this returned Reference will simply be a hash.

4.2 Fern

Charlotte servers which issue integrity attestations are called Fern servers. Integrity attestations deine the
set of blocks in a given ADS. Among other things, integrity attestations can be proofs of work, or records
demonstrating some kind of consensus has been reached. One simple type of integrity attestation, found in our
prototype, is a signed pledge not to attest to any other block as belonging in a speciic slot in an ADS. Fern
servers generalize ordering or consensus services. In blockchain terminology [69], Fern servers correspond to
“miners,ž which select the blocks belonging on the chain.

ACM Trans. Comput. Syst.

Charlote • 11

1 message IntegrityPolicy {

2 AnyWithReference any;

3 }

4 service Fern {

5 rpc RequestIntegrityAttestation(IntegrityPolicy)

6 returns (RequestAttestationResponse) {}

7 }

Fig. 6. Fern Service Specification.

New

Block

1. client constructs new block and sends to Wilburs

2. Wilburs return Availability Attestations

3. client sends
Availability Attestations
in request to Ferns

4. Ferns return Integrity Attestations

5. Client completes reference to new block

Fig. 7. Life of a block. A client mints a new block, and wants to add it to an ADS. The block, as drawn, includes two references

to other blocks. The client acquires availability atestations from Wilbur servers, and integrity atestations from Fern servers.

Then it can create a reference (drawn as a circle) to the block, so anyone observing the reference knows the block is in the

ADS.

In our API, Fern servers are Charlotte servers that include the RequestIntegrityAttestation RPC (ig. 6),
which accepts a description of the desired attestation, and returns either an error message or a reference to a
relevant integrity attestation. A Fern server might also request attestations for the new integrity attestation itself.
For instance, it might store the integrity attestation on a Wilbur server (possibly itself, if the Fern server is also a
Wilbur server), and get an availability attestation stating that the integrity attestation itself is available. When
the Fern server returns a Reference, it can include attestation references, so that, for example, anyone seeking
to look up the integrity attestation would know where it is stored.

4.3 Life of a Block

Figure 7 illustrates the API calls used during the life of a block. A client irst starts a CharlotteNode service to
communicate with the servers. The client then mints a block, including data and references to other blocks. To en-
sure the block remains available, the client sends it to Wilbur servers via the RequestAvailabilityAttestation
API. The Wilbur servers store the block and return availability attestations, demonstrating the availability of the
block.
The client then uses the API call RequestIntegrityAttestation to submit a reference to the block to a

collection of Fern servers, which maintain the integrity of a speciic ADS. Since Fern servers may not want to
permanently add a block to their ADS if that block is going to become unavailable, the client may also send

ACM Trans. Comput. Syst.

12 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

Fig. 8. Generic illustration of a block �, and the types

of references it can include. Block � references block

�, and that reference carries atestations. Block � also

references a type description block, for unmarshaling

data in �. In general, when sending block � to a server

or client, the sender should be sure the recipient has

received all the blocks in the dashed purple rectangle,

so the recipient can fully understand block � and the

properties of its references.

earlier obtained availability attestations. If the block does not violate the integrity of the ADS, Fern servers return
signed integrity attestations that prove the block is part of the ADS.
The client includes all of these attestations in references to the block, so that whenever an observer sees a

reference to the block, they know how available it is, and what ADSs it belongs to. Over time, more attestations
may be issued, so a block can become more available or increase in integrity, perhaps joining more ADSs.
Charlotte is lexible: blocks do not have to follow this precise life cycle. For example, a service might reduce

the burden on a client for adding a block to a speciic ADS by co-locating its Fern and Wilbur servers, and
preemptively issuing integrity attestations and availability attestations as soon as it receives a relevant block
from a client.

4.4 Practices for Additional Properties

In order to understand a Reference object within a block (how available the referenced block is, and data
structures it is in), an observer reads attestations referenced within the reference object.5 For example, without
the content of the availability attestations, it is not clear where to look to retrieve the referenced block. As a
rule of thumb, before one server sends a block to another, it should ensure the recipient has any attestations or
type blocks (section 4) referenced within that block. This ensures the recipient can, in a sense, fully understand
the blocks they receive. In ig. 8, for instance, when sending block �, the sender should be sure the recipient
has received everything in the dashed rectangle. Our example applications follow this practice. It is possible,
however, that for some applications, servers may be certain the recipient doesn’t care about some attestations or
type blocks, and therefore might leave those out.

When servers follow this practice, it is useful for availability attestations to attest to groups of blocks likely to
be requested together. In ig. 8, for instance, an availability attestation that attests to everything in the dashed
rectangle would be more useful than just attesting to block �. Our example applications’ availability attestations
are generally designed this way.
Availability failures can cause available states of ADSs to become disconnected subgraphs (if the blocks that

connect them are forgotten). For most data structures, this isn’t a particularly interesting concern. However,
there are simple rules for building an ADS that will always remain connected:

• Availability attestations that attest to a block should also attest to the availability attestations referenced
within that block.

5We considered making references contain full copies of attestations, but this made blocks large, and since many blocks may reference the

same block (and attestations), blocks were full of redundant information.

ACM Trans. Comput. Syst.

Charlote • 13

Fig. 9. Two conflicting states in a permissioned

blockchain�, in which each chain block� (other

than the genesis block) has an integrity atesta-

tion �� and an availability atestation �� . Note

that integrity atestations can themselves ref-

erence availability atestations, if, for example,

the Fern server wants to show it did not atest

to something unavailable (section 4.2). The red

doted oval and the blue solid oval represent

two possible alternative states of the ADS. Since

block � and block � have the same height, a

correct Fern server would never create both ��
and �� . So long as the Fern server is correct,

only one of these states can ever be part of the

blockweb.

• Whenever a block � references a block �, and block � references block �, if � isn’t at least as available as �,
then � should reference � as well.

Here, “� is at least as available as �ž means that the availability attestations in references to � guarantee that �
will be available in every circumstance under which the availability attestations in references to � guarantee
that � will be available. In general, references need not explain where to ind availability attestations, so a best
practice is to store and transmit any attestations referenced (especially availability attestations) along with each
block that references them (see ig. 8).

5 FORMALISM

We now turn to the theoretical model that deines guarantees for ADSs built using the Charlotte framework, and
the assumptions of its observers. We irst formalize the key concepts Ð ADSs, observers, observers’ beliefs and the
universe induced by these beliefs. We then show how observers reine their beliefs and calculate incontrovertible
states of an ADS in light of new blocks being observed. We then formally deine the notion of composability of
ADS and show that Charlotte enables intuitive composition of ADSs and their guarantees. Finally, we formally
deine how integrity and availability attestations inluence observer calculations about ADSs.

5.1 Formalizing ADSs and States

A state is a set of blocks, and an ADS is a set of valid states. For instance, consider the Bitcoin blockchain as an
ADS. Every block (except the genesis) in every state features both a proof of work and a reference to a parent
block. A Bitcoin state is a tree with an arbitrarily long main chain, and shorter branches. The Bitcoin ADS consists
of all such possible states. We illustrate two possible states of such a blockchain in ig. 2.

As another example, consider a simple ADS � representing a permissioned blockchain managed by one Fern
server. It has one genesis block, and each successive block must be stored on a Wilbur server and approved by the
Fern server. Each state of � features a linear, unbranching chain of blocks, each referencing the previous, back to
the genesis block. In each state, each block � in the chain is accompanied by an integrity attestation �� , from the
Fern server, and at least one availability attestation �� . We illustrate two possible states of such a chain in ig. 9.

ACM Trans. Comput. Syst.

14 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

Fig. 10. An observer holds a belief, which is a set of universes, depicted here as hexagons. In each universe� , some blocks in

exist (�) are shown, with the blocks in avail(�) filled in. Note that no block has an availability atestation (drawn as orange

squares labeled �) unless it is filled in (meaning it is available): this observer trusts these availability atestations. Here we

can imagine block � as part of a chain (such as block 1 or 2 in fig. 9), and blocks � and � as alternative possibilities for �’s

successor.

5.2 Observers and Adversaries

Observers represent principals who use the system. An observer receives blocks from servers and in so doing
learns about the current and future states of ADSs in the system. Observers may correspond (but are not limited)
to servers, clients, or even people. Formally, an observer is an agent that observes an ordered sequence of blocks
from the blockweb. On an asynchronous network, diferent observers may see diferent blocks in diferent orders.

Observers deine their own failure assumptions, such as who they believe might crash or lie (section 5.3). These
assumptions, combined with evidence, in the form of blocks they have observed so far, induce an observer’s
belief : what they think is true about the blockweb now and what is (still) possible in the future.

The failure-tolerance properties of any distributed system are relative to assumptions about possible failures,
including possible actions taken by adversaries. Charlotte makes these assumptions explicit for each observer.
An observer who makes inaccurate assumptions may not observe the properties they expect of some ADSs. For
instance, if more servers are Byzantine than the observer thought possible, data they believed would remain
available might not. Alternatively, data structures might lose integrity, such as when two diferent blocks both
appear to occupy the same height on a chain.

5.3 Observers’ Beliefs

We characterize a belief � as a set of possible universes. This set bounds the believed powers of the adversary: the
observer assumes this set includes all possible universes that might occur under the inluence of the adversary.
Figure 10 illustrates an observer holding a belief, and some universes in that belief.

Each observer has an initial belief : the belief it holds before it observes any blocks. For example, an observer
who trusts one Fern server to maintain the permissioned blockchain � does not have any universes in its initial
belief in which that server has issued two integrity attestations for diferent blocks at the same height. This belief
encodes the observer’s assumption that the server’s failure is not tolerable. The observer in ig. 10 has such a

ACM Trans. Comput. Syst.

Charlote • 15

belief: no universe features two integrity attestations for equal height blocks in � (shown as green squares labeled
�� or ��).

In a traditional failure-tolerant system, an observer usually assumes that no more than � participants will fail
in some speciic way (e.g., crash failures or Byzantine failures). We model such an observer’s initial belief as the
set of all universes in which no more than � participants exhibit failure behaviors (in the form of blocks issued).
As an observer observes more blocks, it can eliminate universes it no longer believes possible. For instance,

observing any block rules out any universes in which that block doesn’t exist. If an observer believes in certain
attestations, they might rule out some universes after they observe those attestations. In our permissioned
blockchain example �, our observer rules out any universes featuring �� once it has observed �� , since it does not
believe the Fern server would issue integrity attestations for diferent blocks of the same height on the chain.

5.4 Formalizing Universes

We propose a general model for universes, which ofers a great deal of expressive power for representing the
beliefs of observers, and is suicient for all examples in the paper. A universe� has the following components:

(1) A set of blocks that can exist, written exist (�). These are the blocks that either have already been
observed or ever can be observed by any observer.

(2) A strict partial order �⊏ on exist (�). Every observer is assumed to observe blocks in an order consistent
with the universal partial order �⊏ .

(3) The set of blocks that are available, written avail(�). These are the blocks that can be retrieved from
some server. Any available block must also exist: avail(�) ⊆ exist (�).

The set exist (�) constrains the blocks any observer will observe. It does not model time: an observer’s initial
belief contains universes representing all possible futures, with all blocks that are possible in each.

Since we are modeling asynchronous systems, the model does not explicitly include the time when blocks are
observed, but the ordering �⊏ constrains the times at which diferent observers can observe blocks, implicitly
capturing a temporal ordering on blocks. This ordering is useful for blockchains like Bitcoin, where observers
traditionally do not believe in any universe� unless there is a main chain in which each block � is ordered (by
�⊏) before any equal-height block with which � does not share an ancestor fewer than security parameter �
(usually 6) blocks away. Further, the main chain must forever outpace any other branch. In ig. 2, this belief (with
� = 3) implies that if a Bitcoin observer believes in a universe� in which both blocks s and c exist, they must be
ordered by �⊏ . If Bitcoin’s security assumptions are accurate, any two observers must see s and c in the same
order.
We make the simplifying assumption in each of our example services that the only availability of interest is

permanent: asserting blocks will forever be available. We leave more nuanced availability policies to future work.

5.5 Updating Beliefs

An observer starts with some starting belief. Recall that if an observer’s failure assumptions are correct, we say
that the observer is accurate: the real universe (the set of blocks that can ever exist, paired with the set that will
be available) is in the observer’s starting belief. As an observer observes blocks created by Charlotte services, it
updates its belief by whittling down the set of universes it considers possible. It can only eliminate universes
inconsistent with its observations: those in which blocks it has observed do not exist, or the order in which it has
observed the blocks is impossible. For instance, if an observer with belief � observes a block �, clearly � can exist,
so the observer reines its belief. It creates a new belief � ′, iltering out universes in which � is impossible:

� ′
=
{
� � ∈ exist (�) ∧ � ∈ �

}
ACM Trans. Comput. Syst.

16 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

If the observer in ig. 10 were to observe �� , it would update its belief, retaining only universes � with �� ∈ � . Of
the universes shown, only the leftmost three would remain.

An observer also reines its belief by observation order: If an observer with belief � observes blocks � in total
order <� , its new belief becomes

Possible(�, �, <�) ≜

�

∀� ∈ � . ∀�′ �⊏ � . �′ ∈ � ∧ �′ <� �

∧ � ⊆ exist (�)
∧� ∈ �

An observer making no assumptions believes in all possible universes. Most interesting observers have other
assumptions. For example, the observer in ig. 10 trusts that only one integrity attestation for ADS � will be
issued for each chain height, so if it observes �� and removes all universes � without �� ∈ exist (�), then no
universes with �� will remain.

5.6 Observer Calculations

An observer with belief � knows a set of blocks � are available if they are made available in all possible universes:

∀� ∈ �. � ⊆ avail(�)

For example, the observer in ig. 10 trusts availability attestations �� and �� (orange squares): it believes in no
universe where such attestations reference an unavailable block.

Likewise, an observer with belief � knows a state � of an ADS � is incontrovertible if no conlicting state � ′ can
exist in any possible universe. Recall that a state of an ADS is a set of blocks (section 5.1). Two states conlict if
they cannot be merged to form a valid state: observing one precludes ever observing the other. So a state � of an
ADS � is incontrovertible if:

∀� ∈ �, � ′ ∈ �. (� ∪ � ′ ∈ �) ∨ (� ′ ⊈ exist (�))

For example, the observer in ig. 10 trusts that only one integrity attestation for ADS � will be issued for each
chain height. It does not believe in any universes with both �� and �� (shown as green squares). Therefore, if
it observes �� , it knows the state with � has the highest block (shown in blue in ig. 9) is incontrovertible: no
conlicting state (such as any including block �) exists in any universe in its belief.

The state of ADS � that an observer with belief � sees as available and incontrovertible is therefore:

View(�, �) ≜
⋃

�

∀� ∈ �, � ′ ∈ �. (� ′ ∪ � ∈ �) ∨ (� ′ ⊈ exist (�))
∧ ∀� ∈ �. � ⊆ avail(�)
∧ � ∈ �

We call this the observer’s view of the ADS: Charlotte’s natural notion of the “current state.ž So long as an
observer’s assumptions are accurate, new observations can only cause its view to grow. For example, if the
observer in ig. 10 observes both �� and �� , then it believes the blue state from ig. 9 is available and incontrovertible.
Its view of the permissioned blockchain ADS � features � occupying height 3, and so long as its assumptions are
accurate, this will never change.

As another example, suppose a blockchain uses a simple agreement algorithm: a quorum of servers must attest
to a block being at a speciic height. States consist of a chain of blocks, each with integrity attestations from a
quorum. An observer’s view will not include any blocks lacking suicient attestations. The observer assumes
that no two blocks with the same height both get a quorum of attestations, so the chain it has viewed must be a
preix of the chain in any future view.

One observer can calculate what another observer’s view of an ADS would be, given a set of observations, and
communicate by sharing blocks they’ve observed. Because new observations can only cause a view to grow, one
observer can know (at least part of) another communicating observer’s view. This what we mean when we say

ACM Trans. Comput. Syst.

Charlote • 17

views in Charlotte are consistent: two observers can know the other’s view of the same data structure, and so the
state of a data structure can be, in a sense, global.

5.7 Composability

Recall that a state is a set of blocks, and an ADS is a set of states (section 5.1). ADSs in Charlotte have two natural
notions of composition: union (⊎) and intersection (

⊎
). For illustrating composability, we use a running example:

an atomic swap of two cryptocurrencies, maintained by two respective blockchains � and � ′.

5.7.1 Union. Intuitively, the union of two ADSs � and � ′ is all the data in either ADS. As states are sets of blocks
(section 5.1), their union is simply the traditional union of sets. Thus, the union ADS is composed of unions of
states:

� ⊎ � ′
≜
{
� ∪ � ′ � ∈ � ∧ � ′ ∈ � ′

}
As a result, given an observer’s failure assumptions, its view of the union of two ADS is simply the union of its
views of the ADSs:

Theorem 1.

∀�, �.View(�, � ⊎ � ′) = View(�, �) ∪ View(�, � ′)

Proof. Follows from the deinitions of View and ⊎. □

In our atomic swap example, all pairs of valid states from each blockchain � and � ′ are valid states of the new
ADS � ⊎ � ′. For an observer, the incontrovertible state of ADS � ⊎ � ′ is the union of the incontrovertible state
of each blockchain, as discussed in section 5.6.

5.7.2 Intersection. Intuitively, what we call the intersection of two ADSs � and � ′ is more trustworthy than
either component ADS: observers need only trust that there won’t be conlicts in at least one component data
structure. As a result, an observer who believes conlicting states for each component might exist (they do not
trust the integrity mechanism of either ADS) might still believe that no conlicting states exist in the intersection.
While our notion of intersection may not match some readers’ intuitions, these intersections are useful because
they allow us to build trust from less trustworthy sub-structures.
Each state of the intersection data structure includes exactly one state from one component ADS, and may

include multiple states from the other component ADS. Intuitively, this means that the intersection data structure
includes states where one component ADS has failed its integrity guarantees, and has multiple contradictory
states. The integrity properties intersection structures ofer are weaker statements, more strongly enforced: two
states of the intersection conlict only when they contain conlicting states from both component ADSs.
In our blockchain example, this means that the intersection of two blockchains � and � ′, written �

⊎
� ′,

includes states where either � has forked, or � ′ has forked, but not both. The weaker property (that at least one
chain has not forked) is enforced more strongly than the forking properties of � or � ′: so long as either �’s or
� ′’s remains unforked, �

⊎
� ′ keeps its integrity.

In general, for ADSs � and � ′:

�
⊎
� ′
≜
{
� ∪

⋃
� (� ∈ � ∧� ∈ P(� ′)) ∨ (� ∈ � ′ ∧�∈ P(�))

}
where P(�) is the powerset of � .

As a result, given an observer’s failure assumptions, its view of the intersection of two ADS will always contain
its view of each component ADS.

Theorem 2.

View(�, �) ∪ View(�, � ′) ⊆ View(�, �
⊎
� ′)

ACM Trans. Comput. Syst.

18 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

Proof. Follows from the deinitions of View and
⊎
. □

Within each state � ∈ �
⊎
� ′, a (belief independent) sub-set of the blocks each make up a state of � and a

state of � ′. The intersection of these can be thought of as in both ADSs:

I����ℎ(�, �, � ′) ≜
{
� � ∈� ∈ � ∧ � ∈� ′ ∈ � ′ ∧� ∪� ′ ⊆ �

}
The other blocks in � serve, in a sense, to prove which blocks belong in I����ℎ.

For our running example, the blocks that are part of both chains (I����ℎ) represent transactions atomically
committed to both ledgers. These are the natural place to put cross-chain transactions: trades involving atomic
swap of the two crypto-currencies. Thus, the intersection of the two blockchains is the sequence of cross-chain
transactions.

The blocks in I����ℎ(�, �, � ′) share the properties of the intersected ADSs. In particular, if an observer trusts
both data structures, the blocks it views in I����ℎ will be precisely the blocks it views in both structures.

Theorem 3. If a belief � contains no universes with conlicting states of � or � ′, then:

I����ℎ(View(�, �
⊎
� ′), �, � ′) = View(�, �) ∩ View(�, � ′)

Proof. We defer the proof to appendix C. □

In our blockchain example, cross-chain blocks remain totally ordered by the blockweb so long as either
component blockchain remains totally ordered by the blockweb (a traditional integrity property of blockchains).
Furthermore, cross-chain blocks remain available if the blocks of either component blockchain remain available,
as discussed in section 5.6.

5.8 Atestation Semantics

Observers use attestations to determine which states of the ADSs they care about are available and incontrovertible.
To formally describe the guarantees ofered by an attestation � , we give it an interpretation J�K that is a belief : a
set of universes in which � ’s guarantees are inviolate (section 5.2). Any attestation with a corresponding belief
its into our semantic model, making it extremely lexible. However, this lexibility comes with some cost: since
we have no formal syntax for attestations to encode their semantics, it is up to observers to know what the
attestations they care about mean. Future work could introduce types of attestations with a formal syntax, and
plug them directly into the existing framework. Ultimately, however, attestations are about trust: merely encoding
certain semantics doesn’t guarantee anyone will believe in them.
We divide attestations into two subtypes: availability attestations, which help observers to determine which

blocks are suiciently available (section 3.3.2), and integrity attestations, which help observers to determine
which blocks belong in a data structure (section 3.3.3). In principle, and attestation can be in both subtypes, but
none of our examples are.

5.8.1 Availability Atestations. Availability attestations are issued by Wilbur servers (section 4.1), and guarantee
some blocks are available in some universes. For instance, consider the availability attestation subtype �AliceProvides .
Attestations of this type are blocks of the form aliceProvides(�) (where � is another block). Intuitively, each value
states that Alice (a Wilbur server) promises to make the speciied block � available forever. Thus, all universes�
in which ������������� (�) exists also have � available:

J������������� (�)K ≜
{
� ������������� (�) ∈ exist (�) ⇒ � ∈ avail(�)

}
ACM Trans. Comput. Syst.

Charlote • 19

5.8.2 Integrity Atestations. Integrity attestations (section 3.3.3) are issued by Fern servers (section 4.2), and
represent proofs guaranteeing commitments to speciic states. Fundamentally, this means committing exclu-
sively: integrity attestations guarantee the non-existence of speciic other integrity attestations, under certain
circumstances. While this deinition may seem counter-intuitive, it generalizes the notion of conlict or exclusivity
in ADSs. For example, in our permissioned blockchain ADS �, all the integrity attestations for blocks at the
same height in any state of � are mutually exclusive. The existence of a state including one integrity attestation
disproves all conlicting states, which puts the attestation, and the block it references, in the view of any observer
with an appropriate belief.

An integrity attestation guarantees some other blocks cannot exist in some universes. For example, consider
�BobCommits , a subtype of integrity attestation with values that are blocks of the form bobCommits(�), which
intuitively indicates that Bob (a Fern server) promises never to commit to any block other than �. (�BobCommits is
speciic to some slot in some ADS, such as a speciic height of a speciic blockchain.)

Thus, all universes� in which bobCommits(�) ∈ exist (�) don’t feature bobCommits(�) for any � ≠ �:

JbobCommits(�)K ≜
{
� ∀� ≠ �. bobCommits(�) ∉ exist (�)

}
5.8.3 Composition. Deining attestations this way makes it easy to deine observers’ beliefs based on which
attestations, attestation types, or even participants they trust. For instance, if an observer trusts all attestations
with type � , we deine that observer’s belief:

� =

⋂
� :�

J�K

This provides a straightforward deinition for what it means to believe in a type; it means trusting all attestations
of that type.

J�K ≜
⋂
� :�

J�K

We can also deine beliefs that trust only combinations of attestations. For example, if an observer believes a
block will be available only if it has observed appropriate attestations of both type � and type � , we deine that
belief � as � = J�K∪ J�K. Similarly, an observer who believes � is committed only after receiving an attestation of
type � and an attestation of type � would believe � = J�K ∪ J�K. Likewise, a more trusting observer who believes
� is committed after receiving an attestation of either type � or � would believe � = J�K ∩ J�K. In this way, we
can even build up quorums of attestations or attestation types (e.g., (J�1K ∪ J�2K) ∩ (J�2K ∪ J�3K) ∩ (J�1K ∪ J�3K)).
It is also possible to combine integrity and availability attestation types to deine a belief. An observer who

trusts attestations of type � to commit blocks, and attestations of type � to ensure their availability would believe:
� = J�K ∩ J�K. In this way, we can even deine quorums of trusted types.

5.9 Monotonicity

The semantics of attestations are somewhat restricted in that they must be monotonic: adding attestations never
weakens what statements can be proved: Any belief � must satisfy this monotonicity condition concerning
availability attestations:

∀� ,� ∈ �. exist (�) ⊆ exist (�) ⇒ avail(�) ⊆ avail(�)

Since integrity attestation semantics are about what cannot exist, the deinition of Possible(J�K, �, <�) (from
section 5.2) guarantees integrity attestations are monotonic: adding more attestations never proves weaker
statements:

� ⊆ � ⇒ Possible(�, �, <�) ⊆ Possible(�,�, <�)

ACM Trans. Comput. Syst.

20 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

1 message WilburQueryInput {

2 oneof wilburquery_oneof {

3 Reference reference;

4 Block fillInTheBlank;

5 }

6 }

7 message WilburQueryResponse {

8 oneof wilburqueryresponse_oneof {

9 string errorMessage;

10 repeated Block block;

11 }

12 }

13 service WilburQuery {

14 rpc WilburQuery(WilburQueryInput) returns (WilburQueryResponse) {}

15 }

Fig. 11. Wilburuery Specification.

6 USE CASES

Charlotte is well-suited to a wide variety of services. Using the semantics from section 5, each service can ofer
robust and composable guarantees. In addition to various examples discussed earlier, we outline some particularly
suitable uses of the Charlotte framework.

6.1 Verifiable Storage

Our Wilbur speciication provides a common framework for veriiable storage. Because ADS references include
hashes, it is always possible to check that data retrieved was the data referenced. Diferent Wilbur servers might
ofer diferent levels of durability (e.g. RAM, Hard Drive), or diferent locations while providing exactly the same
API. Furthermore, availability attestations are a natural framework for proofs of retrievability [13].

Wilbur servers can even be layered: one server might ofer a service wherein it erasure-codes blocks and stores
shares on speciic other servers, and then combines each of their availability attestations into one attestation for
the block, proving that it remains available so long as a quorum of the shares remain available. Such layering
does not require the share-storing servers to be aware of the erasure coding.

6.1.1 ueries. In addition to SendBlocks and RequestAvailabilityAttestation, Wilbur servers may ofer
other interfaces. Service designers may wish to implement query systems for retrieving relevant blocks. We
created one such example interface, the WilburQuery RPC (ig. 11). Given a Hash as input, WilburQuery returns
the block with that hash. If the server does not know of such a block, our example implementation waits until
one arrives.

WilburQuery also provides a kind of ill-in-the-blankmatch: if sent a blockwith some ieldsmissing, WilburQuery
returns all stored blocks that match the input block in the provided ields. For example, we might query for all
blocks with a ield marking them as a member of a certain ADS.

6.2 Timestamping

Timestamps are a subtype of integrity attestation. We implemented a Signed Timestamp type, wherein the signer
promises that they have seen speciic hashes before a speciic time. Our timestamping Fern servers can use
batching: they wait for a speciic (conigurable) number of new requests to arrive before issuing a timestamp
block referencing all of them. In fact, since hash-based references represent a happens-before relationship [53],

ACM Trans. Comput. Syst.

Charlote • 21

timestamps are transitive: if timestamp � references timestamp �, and � references � , then � efectively timestamps
� as well.

We recommend that batch timestamp blocks themselves should be submitted to other Timestamping Fern
servers. This allows the tangled web of timestamp blocks to very quickly stamp any block with timestamps from
exponentially many servers, making them very high-integrity.

6.3 Conflict-Free Replicated Data Types

Charlotte, and ADSs in general, work well with CRDTs, especially Operation-Based Commutative Replicated
Data Types (CmRDTs) [78]. CmRDTs are replicated objects maintained by a group of servers. Whenever a new
operation originates at any server, all known operations on that object on that server are said to happen before it.
Then the operation asynchronously propagates to all other servers. Thus, the set of operations known to any
particular server are only partially ordered. The state of a CmRDT object is a deterministic function of a set of
known operations (and their partial order). For example, a CmRDT implementation of an insert-only Set might
feature the insert operation, and its state would be the set of all arguments to known insert operations.
In Charlotte, CmRDT operations can naturally be expressed as blocks, with happens-before relationships

expressed as references. Since references are by hash, it is impossible for an adversary to insert a cycle into the
graph of operations. The states of a CmRDT can be formally expressed as all possible sets of operations with all
possible partial orderings.

Aside fromwhatever credentials one needs to authorize an operation, CmRDTs do not need integrity attestations.
Availability attestations are still useful.

The blockweb as a whole is a CmRDT: Its state is the DAG of all blocks, and every block is an operation adding
itself to the state. Other than the blockweb itself, however, we have not implemented any interesting CRDTs yet.

6.4 Composition

Charlotte makes ADSs easy to compose (section 5.7). Representing references as hashes means blocks in one
ADS can reference blocks in another. Charlotte’s hash-based references become the new URLs. For instance, a
Timestamping server might maintain a chain of timestamp blocks, which reference other blocks people want
timestamped (Git commits, payments, documents, etc.). A Git-style repository might (like Git submodules [17])
reference earlier commits in another repository. (either because one is a fork of the other, or one has merged in
code from another) without having to copy all of the data onto both servers. A blockchain could reference a Git
commit as a smart contract, instead of hosting a separate copy of the code [26]. A single block of data, stored on
some highly available servers, could be referenced without duplication from Torrent-style ilesharing services,
Git-style repositories, and blockchains.
Attestations allow building high-integrity ADSs out of lower-integrity ones (section 5.7). For instance, the

blocks appended to two chains will themselves form a linear order that can only fork if both component chains
fork. Users may want to put especially important blocks on many diferent chains, the way they want many
diferent witnesses for important legal transactions.
Likewise, we can build low-integrity ADSs out of higher integrity ones (section 5.7). If a set of blockchains

each manage independent tokens, and sometimes share blocks (for atomic trades of tokens), then together all the
chains form a DAG. If any chain in the DAG is corrupted, then the supply of that token may not be conserved:
the DAG as a whole is lower integrity than any one chain. The “integrity of the marketplacež is distinct from the
integrity of any one token.

ACM Trans. Comput. Syst.

22 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

6.5 Entanglement

Some attestations, such as timestamps (section 6.2), and proofs of work (section 7.2.1), implicitly lend integrity to
everything in a block’s ancestry. When many ADSs reference each other’s blocks, these recursive attestations
can make some forms of fraud very diicult. For example, if many services regularly reference past timestamps,
and many services request timestamps from a variety of servers, it quickly becomes infeasible to falsely claim a
block did not happen before a given time, since that would require corrupting many services. Charlotte promotes
this useful entanglement.

7 BLOCKCHAINS AS ADSS

Charlotte is an ideal framework for building new blockchains and related services. In the simplest sense, a
blockchain is any path through the blockweb. However, most existing blockchain-based services are much more
complex.

Like all ADSs, a blockchain needs integrity and availability. Here, integrity means that an observer’s view (sec-
tion 5.2) always features a main chain, in which no two blocks ever have the same height. Availability means that
once an observer observes a main-chain block at a height, that block remains available for download indeinitely.
Existing blockchain systems already efectively provide integrity and availability attestations, phrased as proofs
of work, proofs of stake, etc. Charlotte makes these proofs more explicit, without limiting the attestation types a
service can use.

7.1 Separating Availability and Integrity

With few exceptions [63], existing blockchain systems require all integrity servers (e.g., miners, and consensus
nodes) to store all blockchain data. This total replication is fundamentally ineicient. For example, traditional
Byzantine consensus tolerating � failures needs 3� +1 participants, while a storage system tolerating � failures
needs only � +1 participants. If blockchain systems separated storage and consensus duties, they could store
about 3 times as much, with the same failure assumptions.
Charlotte makes it easy to separate availability from integrity. Servers issuing availability attestations must

store the data, but those issuing integrity attestations need not.
For example, if one were to build something like Ethereum in Charlotte, what Ethereum calls block headers

would themselves be integrity attestations, and the Merkle root in each would instead be a reference (or collection
of references) to blocks stored on Wilbur servers. This makes it natural to search and retrieve block headers and
portions of state, without splitting apart blocks or downloading the whole chain.

7.2 Integrity Mechanisms

Diferent blockchains have used a variety of mechanisms to maintain the integrity of the chain [15, 58, 62, 69].
To demonstrate the lexibility of Charlotte, we have implemented a few example mechanisms in small-scale
experiments.

7.2.1 Nakamoto (Proof of Work). We can represent a Bitcoin/Ethereum-style blockchain as an ADS � whose
states are trees of proof-of-work blocks. Observers assume that a main chain will forever outpace other forks:
that is, become longer, faster (see section 5.4).

7.2.2 Agreement. Some blockchain-based services only require agreement: they lose liveness if two potentially

valid blocks are proposed for the same height [55, 75, 84]. For instance, if a chain represents a single bank account,
and potentially valid blocks represent transactions signed by the account holder, then honest account holders
should never sign two transactions unordered by the blockweb.

ACM Trans. Comput. Syst.

Charlote • 23

Agreement Fern servers are simple to implement. When a server attests to a block, it promises never to attest
to any conlicting block. The semantics of each agreement attestation do not feature any universes where two
conlicting blocks both have an attestation from the issuing server. Observers can construct quorums of trusted
servers, as in section 5.8.2. A block appears in an observer’s view when the observer has observed enough
attestations: committing a conlicting block would require too many parties to break their promises.

7.2.3 Heterogeneous Paxos. Heterogeneous Paxos (HetPax) is our own consensus algorithm [81] generalizing
Leslie Lamport’s Byzantine Paxos [54]. HetPax allows each pair of observers (learners [54]) to specify the set of
universes (section 5.2) in which they must agree. They deine these universes in terms of which Fern servers
(acceptors [54]) are safe (not Byzantine) and live (not crashed) in each. In this way, we support heterogeneous
servers, heterogeneous (or “mixedž [77]) failure models, and heterogeneous observers. In the symmetric case,
when all observers have the same failure tolerance, HetPax reduces to regular Byzantine Paxos [81].

For each observer, HetPax forms quorums of participants whose attestations are necessary to put a block in
the observer’s view. Generally speaking, two observers will agree so long as all their quorums intersect on a safe
participant.

7.3 Blocks on Multiple Chains

In general, nothing prevents a single block from being part of multiple chains. It simply requires the integrity
attestations for each chain. For example, if one blockchain represents records of events that have happened to a
speciic vehicle (crashes, repairs, . . .), and another represents repairs a speciic vendor has performed, it makes
sense to append the record of a speciic repair to both chains. The record (a block) could reference the previous
blocks on each chain, and the next blocks on each would in turn reference it. Each chain’s integrity mechanism
would have to attest to the block, and references to the block could carry both sets of attestations to let readers
know it is in both ADSs.

7.3.1 Atomicity. Sometimes, such block appends need atomicity. For example, suppose one blockchain represents
the cryptocurrency RedCoin, and another represents the cryptocurrency BlueCoin. Alice wants to give Bob one
RedCoin in exchange for one BlueCoin. This represents two transactions: one on each chain. It is crucial that
either both happen, or neither do. Otherwise, Alice might give Bob a RedCoin and get nothing in return. We
want to commit both transactions together, atomically.

Formally, we say that an attestation �� commits a block � to an ADS � for an observer with starting belief � ,
who has observed blocks � in order <� , if the observer sees � in its view of � after observing �� , but not before:

������� (�� , �, �, �, <�) ≜ � ∉View(Possible(�, �, <�), �) ∧ � ∈View(Possible(�, �∪{��}, <� :��), �)

Where <� :�� is the total order <� extended with �� as the last element.

7.3.2 Mutual Subtypes of Atestations. To atomically commit one block to multiple ADSs, an observer requires a
single integrity attestation which represents a simultaneous commitment of all of them: before observing the
attestation, the block is not in the observer’s view of any of the ADSs, but after observing the attestation, the
block is in the observer’s view of all of the ADSs involved. We often think of the set of attestations that can
commit a speciic block to a speciic data structure as types. Viewed this way, an attestation that can commit to
multiple data structures is a mutual subtype.

For instance, suppose committing a block to data structure � requires an attestation signed by every member
of some quorum of servers � . Committing the same block to data structure � ′ requires an attestation signed
by every member of some quorum of servers � ′. It would then be reasonable for an attestation signed by every
member of � ∪� ′ to be suicient to commit � to both � and � ′.

ACM Trans. Comput. Syst.

24 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

Not all pairs of ADSs have integrity attestations that can atomically commit to both. However, we created
mutual subtypes for our HetPax blockchains. The quorum necessary for an attestation with mutual subtype is
the union of one quorum from each component type. In other words, to make an attestation suicient for an
observer decide to commit to both chains, you need all the participants it would take to make an attestation for
each of the chains. With this construction, we can atomically commit a single block onto multiple HetPax chains.

7.4 Linearizable Transactions on Objects

It can be useful to model state as a collection of stateful objects, each of which has some availability and integrity
constraints [74]. We can model objects as a chain of blocks, deined by availability and integrity attestations
upholding these constraints. For instance, if an object must be consistent and available so long as 3 of a speciic 4
servers are correct, each block should have “store foreverž availability attestations from 2 servers, and integrity
attestations from 3 stating that they’ll never attest to any other block in that slot.

Each block represents a state change for each of the objects represented by chains of which the block is a part.
In other words, the blocks are atomic (or ACID) transactions in the database sense [34]. A collection transactions
is guaranteed to have a consistent, serial order so long as the chains maintained for each of the objects they
touch are consistent. For a given observer, the transactions involving objects which that observer assumes to be
linearizable have a serial order so long as that observer’s assumptions are accurate. Furthermore, two accurate
observers can never see two transactions oppositely ordered.

This gives programmers a natural model for atomic transactions across object-chains with diferent integrity and
availability mechanisms, which would be useful for services from banking to supply chain tracking. Transactions
can involve any set of objects, so long as their integrity mechanisms have a mutual subtype for their attestations
(section 7.3).

7.4.1 Banking. We can imagine bank accounts as linearizable objects, with state changes being deposits and
withdrawals to and from other bank accounts, signed by appropriate parties. We can model such accounts in
Charlotte. Each bank maintains some integrity mechanism (Fern servers) to ensure accounts’ state changes are
totally ordered, which prevents double-spending. Likewise, each bank maintains some Availability mechanism
(Wilbur servers), ensuring transactions relevant to their customers’ accounts aren’t forgotten. Each transaction is
thus a block shared by two chains, and must be committed atomically onto both chains.
When considering how “trustworthyž the money in an account is, what matters is the integrity of the ADS

featuring the full ancestry of all transactions in the account. To ensure the trustworthiness of their accounts,
banks may issue their own integrity attestations for all transactions in the causal past of transactions involving
that bank. This requires checking that ancestry for any inconsistencies with anything to which the bank has
already attested. This ensures any observers trusting the bank’s attestations have consistent view (section 5.2),
but cannot guarantee that observers trusting diferent banks have the same view.

An “attest to the complete historyž approach is analogous to auditing the full inances of everyone with whom
you do business for every transaction. In reality, much of the time, banks efectively trust each other’s attestations.
This allows much faster transaction times, with weaker guarantees.

7.4.2 Supply Chain Tracking. Much like bank accounts, we can imagine each good in a supply chain as a
linearizable object. Transactions may involve decreasing or destroying some goods to increase or create others.
For example, a transaction might feature destroying 10 kg from a case of grapes to add 9 kg to a vat of juice, and
1 kg to a bin of compost. As with banking, each good is only as “trustworthyž as the ADS featuring its complete
ancestry, and audits attesting to past transactions can increase this trustworthiness.

ACM Trans. Comput. Syst.

Charlote • 25

1 message PublicKey {

2 message EllipticCurveP256 {

3 bytes byteString;

4 }

5 oneof keyalgorithm_oneof {

6 AnyWithReference any;

7 EllipticCurveP256 ellipticCurveP256;

8 }

9 }

10 message CryptoId {

11 oneof idtype_oneof {

12 AnyWithReference any;

13 PublicKey publicKey;

14 Hash hash;

15 }

16 }

17 message Signature {

18 message SHA256WithECDSA {

19 bytes byteString;

20 }

21 CryptoId cryptoId;

22 oneof signaturealgorithm_oneof {

23 AnyWithReference any;

24 SHA256WithECDSA sha256WithEcdsa;

25 }

26 }

Fig. 12. Signature Specification. We include Any types for extensibility, as well as default built-in types, like Sha256WithECDSA.

Note that the message keyword defines a type in the local scope.

8 IMPLEMENTATION

Our full open-source Charlotte spec, with all example types and APIs, is 298 lines of gRPC (mainly protobuf) [33].
We implemented proof-of-concept servers in 3833 lines of Java [32] (excluding comments and import statements),
with a further 2282 lines of unit tests and experiments.

Our code is on Github [80].

8.1 Wilbur Servers

By default, our example Wilbur servers store all blocks received in RAM forever. They are not meant to be optimal,
but they are usable for proof-of-concept services. The only type of availability attestation we have implemented
is one in which the Wilbur servers promise to store the block indeinitely. This attestation proves that the block
is available as long as the Wilbur server is functioning correctly. Any observer can choose which crash failures
they believe possible, and consider only those blocks which will survive on at least one server “available.ž For
instance, if an observer believes that at least one server of {�, �,�} will survive, and it sees attestations from
each of �, �, and � for block �, then it believes block � is available. This is how our experiments use multiple
Wilbur servers for increased availability.

Our Wilbur servers can be conigured with a list of known peers, to whom they will relay any blocks they
receive and any attestations they create. This is easy to override: servers can be made to relay blocks to any
collection of peers.

ACM Trans. Comput. Syst.

26 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

Each of our Wilbur servers implement the WilburQuery service (section 6.1.1), which allows clients to request
and download blocks. Our Wilbur servers can do ill-in-the-blank pattern matching on all implemented block
types. When not under load, the WilburQuery service imposes no overhead on other services.

8.2 Version Control

We implemented a simple simulation of Git [91]. Our servers are not fully functional version-control software,
as they do not implement ile-difs and associated checks, which are irrelevant for our purpose.

The types for our version-control ADS are described in ig. 13.We created a block subtype, SignedGitSimCommit,
representing a speciic state of the iles tracked. Each block features a signature, comment, and hash of the state.
It can be an initial commit, in which case it has no parents, but does include bytes representing the full contents
of the iles being tracked. Alternatively, it can have some number of parent commits, each with a reference and a
ile dif.
A Version Control Fern server tracks the current commit it associates with each branch (strings), and issues

integrity attestations that declare which commits are on which branches. A correct Fern server should never
issue two such attestations for the same branch, unless the commits they reference are ordered by the blockweb.
In other words, each new commit on a branch should follow from the earlier commit on that branch; it cannot be
an arbitrary jump to some other iles. Formally, in all states � of a branch ADS �, all commit blocks are totally
ordered by the blockweb. Our example servers enforce this invariant [80].
Furthermore, version control SignedGitSimBranch integrity attestations prove that a given server, and by

extension whomever controls it, approves of a given commit. Formally, we can deine a data structure� consisting
of only commits with attestations from appropriate authors. For instance, every state in the Harry Potter branch
might include an integrity attestation signed by J. K. Rowling for every commit. An observer’s view of the data
structure would exclude any possibly spurious commits featuring, say, additional chapters of text, until they
observed an appropriate attestation signed by Rowling.

Fern servers can have other reasons to reject a request to put a commit on a branch. Perhaps they accept only
commits signed by certain keys. When a client issues a request, they can include attestation references. A Fern
server can demand that clients prove a commit is, for instance, stored on certain Wilbur servers before it agrees
to put it on a branch. The Wilbur servers need not even be aware of the Git data types.

Our version control implementation can use the same Wilbur servers as any other service. In fact, separating
out the storage duties of Wilbur from the branch-maintaining duties of Fern allows our Charlotte-Git system to
divide up storage duties for large repositories, much like git-lfs [30].

8.3 Timestamping

Timestamps are a subtype of integrity attestation. Each timestamp includes a collection of references to earlier
blocks, the current clock time [44], and a cryptographic signature.
Our Timestamping Fern servers timestamp any references requested, using the native OS clock. By default,

they issue a timestamp immediately for any request, and do not need to actually receive the blocks referenced.
Because references contain hashes, the request itself guarantees the block’s existence before that time.
Our Timestamping Fern servers also implement batching. Every 100 (conigurable at startup) timestamps,

the Fern server issues a new timestamp, referencing the blocks it has timestamped since the last batch. Each
server then submits its batch timestamp to other Fern servers (conigurable at startup) for timestamping. Since
timestamps are transitive (if � timestamps �, and � references � , then � also timestamps �), blocks are very quickly
timestamped by large numbers of Fern servers. This allows services to quickly gather very strong timestamp
integrity.

ACM Trans. Comput. Syst.

Charlote • 27

1 message SignedGitSimCommit {

2 message GitSimCommit {

3 message GitSimParents {

4 message GitSimParent {

5 Reference parentCommit;

6 bytes diff;

7 }

8 repeated GitSimParent parent;

9 }

10 string comment;

11 Hash hash;

12 oneof commit_oneof {

13 bytes initialCommit;

14 GitSimParents parents;

15 }

16 }

17 GitSimCommit commit;

18 Signature signature;

19 }

20

21 message Block {

22 oneof blocktype_oneof {

23 AnyWithReference any;

24 string protobuf;

25 SignedGitSimCommit signedGitSimCommit;

26 }

27 }

28

29 message IntegrityAttestation {

30 message GitSimBranch {

31 google.protobuf.Timestamp timestamp;

32 string branchName;

33 Reference commit;

34 }

35 message SignedGitSimBranch {

36 GitSimBranch gitSimBranch;

37 Signature signature;

38 }

39 oneof integrityattestationtype_oneof {

40 AnyWithReference any;

41 SignedGitSimBranch signedGitSimBranch;

42 }

43 }

Fig. 13. Git Simulation integrity atestation Specification. We include Any types for extensibility, and provide types like

SignedGitSimBranch as options. Note that the message keyword defines a type in the local scope, and that the Signature

type is defined in the full Charlote spec [80].

Formally, an observer with initial belief � can deine a data structure �� consisting of blocks with timestamps
they trust. For example, if an observer believes that at least one timestamping server of �, � and � is honest,
then any trio of timestamps (one signed by �, one signed by �, and one signed by �) coupled with their mutual

ACM Trans. Comput. Syst.

28 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

1 message IntegrityAttestation {

2 message TimestampedReferences {

3 google.protobuf.Timestamp timestamp;

4 repeated Reference block;

5 }

6 message SignedTimestampedReferences {

7 TimestampedReferences timestampedReferences;

8 Signature signature;

9 }

10 oneof integrityattestationtype_oneof {

11 AnyWithReference any;

12 SignedTimestampedReferences sigTimeRefs;

13 }

14 }

Fig. 14. Timestamping integrity atestation Specification. We include Any types for extensibility, and provide

SignedTimestampedReferences as an option. Note that the message keyword defines a type in the local scope, and

that the Signature type is defined in the full Charlote spec [80].

ancestors in the blockweb form a valid state of the observer’s time-stamped data structure. The observer believes
that all the (non-timestamp) blocks in that state happened before the latest timestamp.

8.4 Blockchains

In principle, any path through the blockweb is a blockchain (section 7). Blockchain attestations prove that blocks
in the chain are totally ordered, so long as some integrity mechanism is correct. Formally, each blockchain is a
data structure � with each state being a totally ordered sequence of blocks, and a set of integrity attestations
serving as evidence for that ordering. An observer with initial belief �� that trusts in the integrity mechanism
used does not believe in any universes in which two blocks are committed to the same height. Therefore, once
such an observer has observed all the blocks from some state in � , it doesn’t believe in any universes where
conlicting states (featuring diferent blocks committed to the same height) exist.

We implemented Fern blockchain servers using three very diferent integrity mechanisms (section 7.2). We used
some of these servers to demonstrate the advantages of separating integrity and availability mechanisms (sec-
tion 7.1), and blockchain composition: we put blocks on multiple chains (section 7.3).

8.4.1 Agreement. Our Agreement Fern servers keep track of each blockchain as a root block, and a set of slots.
Each slot has a number representing distance from the root of the chain.
Our Agreement Fern servers use the SignedChainSlot subtype of integrity attestation (ig. 15) to indicate

that they have committed a block. The attestation features a cryptographic signature, and references to a chain’s
root, a slot number, and the block in that slot. This serves as a format for both requests and attestations. Each
request is simply an IntegrityAttestation with some ields (like the cryptographic signature) missing. While
it is possible to encode this request format in the IntegrityPolicy’s any ield, we provide the fillInTheBlank
option as a convenience.
The Agreement Fern servers are conigured with parameters describing which requests they can accept, in

terms of requirements on the reference to the proposed block and its parent. Once a correct Agreement Fern
server has attested that a block is in a slot, it will never attest that a diferent block is in that slot. For instance, to
conigure a blockchain using quorums of 3 Agreement Fern to approve each block, we require that each request’s
parent Reference include 3 appropriate integrity attestations.

ACM Trans. Comput. Syst.

Charlote • 29

1 message IntegrityAttestation {

2 message ChainSlot {

3 Reference block;

4 Reference root;

5 uint64 slot;

6 Reference parent;

7 }

8 message SignedChainSlot {

9 ChainSlot chainSlot;

10 Signature signature;

11 }

12 oneof integrityattestationtype_oneof {

13 AnyWithReference any;

14 SignedChainSlot signedChainSlot;

15 }

16 }

17 message IntegrityPolicy {

18 oneof integritypolicytype_oneof {

19 AnyWithReference any;

20 IntegrityAttestation fillInTheBlank;

21 }

22 }

Fig. 15. Agreement integrity atestation Specification. We include Any types for extensibility, and provide SignedChainSlot

as an option. Note that the message keyword defines a type in the local scope, and that the Signature type is defined in the

full Charlote spec [80].

1 message IntegrityAttestation {

2 message NakamotoIntegrityInfo {

3 Reference block;

4 Reference parent;

5 }

6 message NakamotoIntegrity {

7 NakamotoIntegrityInfo info;

8 uint64 nonce;

9 }

10 oneof integrityattestationtype_oneof {

11 AnyWithReference any;

12 NakamotoIntegrity nakamotoIntegrity;

13 }

14 }

Fig. 16. Nakamoto integrity atestation Specification. We include Any types for extensibility, and provide NakamotoIntegrity

as an option. Note that the message keyword defines a type in the local scope. [80].

Our Agreement Fern servers make it easy to separate integrity and availability duties (section 7.1). To ensure
that a block is available before committing it to the chain, we require a block Reference to include speciic
availability attestations from Wilbur servers. The number of Wilbur servers used must be more than the number
of failures tolerated.

ACM Trans. Comput. Syst.

30 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

8.4.2 Nakamoto. Nakamoto, or Proof-of-Work Consensus is the integrity mechanism securing Bitcoin [69]
(modeled formally in section 5.4). In Bitcoin, miners create proofs of work, which are stored by full nodes. With
the Simpliied Payment Veriication protocol, clients submit a transaction, and retrieve the block headers (proofs
of work and Merkle roots) of each block in the chain from full nodes [69]. Each client can use these to verify that
its transaction is in the chain (has integrity).
We implement miners as Fern servers, which produce integrity attestations bearing proofs of work, taking

the place of block headers. Wilbur servers take the place of full nodes, and store blocks, including integrity
attestations. For simplicity, our implementation assumes one transaction per block, so clients generate blocks,
and request attestations. When a client receives an integrity attestation (ig. 16), it can retrieve the full chain
from Wilbur servers.

With Simpliied Payment Veriication (SPV) [69], clients traditionally try to collect block headers until they see
their transactions buried “suiciently deepž in the chain. For simplicity, our Fern servers delay responding to the
client at all until the client’s block has reached a speciied (conigurable) depth. Regardless, clients can collect
integrity attestations from Wilbur servers until they are satisied with the ofered integrity.
Our implementation of Nakamoto consensus ofers a more precise availability guarantee than Bitcoin does.

Nakamoto Fern servers demand availability attestations with any blocks submitted, ensuring that before a block
is added to the chain, it meets a (conigurable) availability requirement.
Formally, the states of a Nakamoto style blockchain � are trees of proof-of-work integrity attestations, each

with a root at a speciic origin block.
The height of a block ℎ���ℎ� (�) is simply its graph distance from the origin block. To encode an observer’s

belief � that a Nakamoto style blockchain � will not fork by more than � blocks, we require that in every universe
� in � , there is some “main chainž�(�) of blocks which will always be observed before any other blocks of
equal height, unless they share an ancestor within � blocks. These blocks store (and totally order) the transactions
representing the state of the chain. �(�) must be totally ordered to prevent, for instance, double-spending
cryptocurrency. Speciically, the main chain has a block at each height in any state that exists:

(� ∈ � ∧ � ∈ � ∈ � ∧ � ⊆ exist (�)) ⇒ ∃� ∈�(�) ∩ �. ℎ���ℎ� (�) = ℎ���ℎ� (�)

The main chain has exactly one block at each height:

�, �′ ∈�(�) ∧ � ≠ �′ ⇒ ℎ���ℎ� (�) ≠ ℎ���ℎ� (�′)

With the exception of the origin (height 0) block, each block � in the main chain speciies a unique predecessor
�′. We write this � ≺ �′. The main chain is all connected via this relationship:

� ∈�(�) ∧ �′ ∈�(�) ∧ ℎ���ℎ� (�) = ℎ���ℎ� (�′) + 1 ⇒ � ≺ �′

To specify that �′ is an ancestor of � (via the predecessor relationship), within a maximum distance of � , we
write � ≺≤� �′. Every block either within � blocks of the main chain, or observed after a main-chain block of
equal height:

(� ∈ � ∧ � ∈ � ∈ � ∧ � ⊆ exist (�)) ⇒ ∃� ∈�(�).� ≺≤� � ∨ ℎ���ℎ� (�) = ℎ���ℎ� (�) ∧ � �⊏ �

Within any � that meets these constraints, no universe exists in which a fork of more than � blocks ever
out-paces the main chain. Two correct observers with starting belief � will always agree on the main chain in
their views (although one may have more recent information, and thus be a superset of the other). This precisely
models the assumptions Bitcoin uses to prevent double-spending the same cryptocurrency.

8.4.3 Prism. The Prism [6] blockchain protocol uses Nakamoto-style longest-chain consensus as a building
block. It achieves near physical-limit performance for throughput and latency while maintaining security in
presence of Byzantine actors. The central idea is the observation that a Bitcoin block serves two purposes: First,

ACM Trans. Comput. Syst.

Charlote • 31

1 message NakamotoIntegrityInfo {

2 Reference block;

3 Reference parent;

4 VoteInfo voteInfo;

5 }

6 message VoteInfo {

7 int32 chain = 1;

8 repeated Hash endorsedProposals = 2;

9 }

Fig. 17. Prism integrity atestation Specification. [80].

it proposes a set of transactions and second, it adds integrity to its ancestors. Prism makes these roles explicit
by having � + 1 proof-of-work chainsÐone proposal chain for mining blocks that propose transactions and �
voter chains for mining blocks that endorse proposal blocks. The ledger is constructed by taking into account the
proposal blocks with maximum votes at each level in the proposal chain.

In Charlotte, attestations and beliefs (representing policies for issuing attestations) allow for a natural encoding
of Prism. We implement Prism by building on top of our Nakamoto implementation (section 8.4.2). The integrity
attestation generated by Fern servers for the proposal chain is similar to the Nakamoto implementation. Like
before, the Fern servers demand (conigurable) availability attestations before issuing these integrity attestations.
For mining on the voter chains, the Fern servers issue integrity attestations with additional information about
the endorsed proposals (ig. 17). Here, the candidate blocks for receiving endorsements are only the proposal
blocks for which an integrity attestation has been issued previously.

The states of a Prism data structure � feature a state for each of the � voter chains � = {�1, . . . ,��}:

� ∈ � ⇒ ∀1 ≤ � ≤ � . ∃�� ∈ �� . �� ⊆ �

Furthermore, each state � features a state from a “proposerž tree � :

� ∈ � ⇒ ∃� ′ ∈ � . � ′ ⊆ �

� is a tree, so other than the root block, each block � speciies a unique parent �′ in the tree, written as � ≺ �′.
Some other properties of � being a tree include:

� ∈ � ∈ � ∧ � ≺ �′ ⇒ �′ ∈ �

�, � ′ ∈ � ⇒ (� ∪ � ′) ∈ �

Leaves of � are the plurality vote winners of the voter chains for each height of the proposer tree. We can
formalize whether a block � wins a plurality vote, and thus is part of the main PRISM chain�(�) as:

©«

� ∈ �

∧ � ⊆ [1, . . . , �]
∧ ∀� ∈ � . �� (�) votes for �

∧ ��′ ≠ �;�′, �′′ ⊆ [1, . . . , �] .
©«

ℎ���ℎ� (�′) = ℎ���ℎ� (�)
∧ |�′ ∪ �′′ | ≥ |� |
∧ ∀� ∈ �′ .�� (�) votes for �
∧ ∀� ∈ �′′ .�� (�) does not vote at ℎ���ℎ� (�)

ª®®®¬

ª®®®®®®®®®¬

⇔ � ∈�(�)

(where�� (�) represents the main chain for voter chain � in state � , and a chain “votes forž a value if a vote for
that value appears prior to any other vote for any other value of the same height.)

ACM Trans. Comput. Syst.

32 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

For an observer with belief � to believe their view of a Prism data structure � is incontrovertible, they must
deine which election outcomes they believe are still possible based on their observations. Furthermore, we must
ensure that two observers who believe subsets of � will agree on the ordering of any proposal blocks in their
view. These involve a complex notion of which blocks they believe will be observed before which others.

To begin with, we use �� (��) to refer to a belief that voter chain �� will not fork by more than � blocks (as
discussed in section 8.4.2). An observer likely believes that no voter chain will ever fork by more than some large
bound �Ω blocks, so we can limit our beliefs to:

� ⊆
⋂
�� ∈�

��Ω (��)

This is suicient for an observer who is content to wait for every vote to be fully determined before deciding
which proposer blocks win an election. However, part of Prism’s speed comes from the ability to do better than
that: it is possible to call the winner of an election when enough votes are known.

Let �
�

�
(��) be the belief that voter chain �� will not fork by more than � blocks at height � (building on our

deinition in section 8.4.2). That is, if a branch diverges from the main chain at height � , then the main-chain
blocks of height � + � and higher must always be observed before their branch counterparts of equivalent height.

Let � (�) be the probability our observer assigns to belief � being true. Note that in general, we have � ′ > � ⇒

�
(
�
�

� ′ (��)
)
> �

(
�
�

�
(��)

)
.

Suppose an observer has observed blocks � in order <� , including the main chain of each �� up to height
ℎ���ℎ� (�, �). Consider an election outcome in which each � (�, ℎ, �) is the height within each voter chain �� that it
casts its vote concerning which proposal block should have height ℎ in the proposer chain. The observer believes
the probability of this election outcome among voter chains � ⊆ � (no votes overturned) is:

� (ℎ, �, <�, �) ≜
∏
�� ∈�

�
(
�
� (�,ℎ,�)
ℎ���ℎ� (�,�)− � (�,ℎ,�)

)

However, the only thing that matters for Prism is which block wins each election, not a speciic outcome. For the
same observer, we can deine a probability that the observed winner will not be overturned. Let� (ℎ, �) be the
plurality winner at height ℎ of main voter chains in blocks �, with the second-place candidate winning � (ℎ, �)
votes.

���� (ℎ, �, <�) ≜
︁
�⊆�

(if ≤ (� (ℎ, �) + |� | − |� |) chains in � vote for� (ℎ, �) then 0 else � (ℎ, �, <�, �))

The key requirement for a Prism observer’s belief, then, is that for some probability threshold � , no possible
universe should allow for an observation in which a proposal wins with probability ≥ � , but loses in the light of
further observations.

©«

� ∈ �

∧ � ∈ �

∧ � ⊆ � ⊆ exist (�)
∧ <� consistent with �⊏
∧ ���� (ℎ, �, <�) ≥ �

ª®®®®®¬
⇒ � (ℎ, �) ∈ �

This constraint on � is suicient to prove the ordering properties of Prism. So long as such a belief � is not
violated, committed proposal blocks � permanently become part of an observer’s view, and no conlicting proposal
blocks are committed. Furthermore, two observers believing in � will not arrive at conlicting views:
Prism Ordering Property So long as � is accurate (the real universe is in �), if an observer with starting belief
� satisfying these constraints observes � at height ℎ in its view of the proposer chain, then for all observers with
any starting belief � ′ satisfying the same constraints, no block other than � has height ℎ.

ACM Trans. Comput. Syst.

Charlote • 33

Proof Sketch: Assume belief � is accurate: the “real universež �� is indeed in � . Suppose an observer � with
starting belief � observes blocks � ⊆ exist (��) (where � ∈ �), in order <� consistent with ��⊏ , and so now its belief
is � , where�� ∈ � ⊆ � . Consider any proposal block � , with height ℎ, in the view of observer �: � ∈ View(�, �).
Furthermore, consider another observer �′, with starting belief � . Suppose �′ observes blocks � ′ ⊆ exist (��)

(where � ′ ∈ �) in order <� ′ consistent with ��⊏ , and so now its belief is � ′, where �� ∈ � ′ ⊆ � . Consider any
proposal block �′, with height ℎ (the same height as �), in the view of observer �′: �′ ∈ View(� ′, �).
To ensure that accurate observers observe the same order of proposal blocks, it suices to show that � = �′.

Given our deinitions above, � = � (ℎ, �), and �′ = � (ℎ, � ′).
By the deinition of the states of the Prism data structure � , there must exist some state � ′′ ∈ � which includes

all the blocks in all the voter chains of both views, and in which some block has won the plurality election for
height ℎ:

∀�, � . � ∈ �� ∧ (� ⊆ � ∨ � ⊆ � ′) ⇒ � ⊆ � ′′

An observer who observes the blocks �∪� ′∪� ′′ must observe a winner �′′ = � (ℎ, � ∪ � ′ ∪ � ′′). By the constraints
on � , any winners that can be determined (by ����) by observing a subset of � ∪ � ′ ∪ � ′′ (in an order consistent
with ��⊏) must also be in � ′′, and since only one winner exists for each height in each state, we have � = �′ = �′′.

As a result of this ordering property, correct observers with a starting belief � will always have consistent
views: two observers can never disagree on the proposal at each height. When, in an observer’s view, the proposal
chain is illed up to some height (there is a block at every lesser height), the transactions referenced in the
proposal blocks are fully committed and totally ordered. These constraints on � model the assumptions under
which correct observers will never disagree on transaction ordering.

This formulation says little about the actual probabilities of voter chains diverging. However, it provides an
abstraction barrier separating the statistical analysis from proofs about chain properties, which we believe is
useful. For instance, the complex proofs from the original Prism paper [6] could be broken in two: statistical
support for the deinitions of � (�), and proofs that the belief � sustains the necessary chain properties.

8.4.4 Heterogeneous Paxos. We implemented a prototype of HetPax (section 7.2.3) as a Fern service. We use
Charlotte blocks asmessages in the consensus protocol itself, so attestations can referencemessages demonstrating
that consensus was achieved.

HetPax inherits Byzantine Paxos’ minimum latency of 3 message delays. In our implementation, clients do not
participate in the consensus: they merely request an integrity attestation from a Fern server. Including receiving
a request from and sending an attestation to the client, the process has a minimum latency of 5 messages (ig. 18).
In our implementation, quorums representing trust conigurations are encoded as blocks. Each HetPax

blockchain includes a reference to such a block in its root, ensuring everyone agrees on the coniguration.
To append a block to the chain, a client requests an integrity attestation for some observer, specifying proposed
block and height. To propose one block be appended to multiple chains, a client can request an integrity attestation
that is the mutual subtype (section 7.3) of the integrity attestations needed for both chains. The Fern servers then
run a round of consensus in which each quorum includes one quorum of the consensus necessary for each chain.

For the purposes of demonstrating the Charlotte framework, our experiments with HetPax are symmetric: all
observers want to agree under the same conditions. For instance, observers might trust 4 Fern servers to maintain
a chain, expecting no more than one of them to be Byzantine.

8.5 DarXiv (Disaggregated arXiv)

To show the composability of Charlotte, we build DarXiv, the disaggregated version of arXiv [29], a document
hosting service. DarXiv is built on a composition of services: Wilbur, Version Control, Timestamping, and a
blockchain service. While the existing arXiv has a single point of failure [5], DarXiv can tolerate as many faults

ACM Trans. Comput. Syst.

34 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

Client Participants/Observers All Participants/Observers

Proposal

1A

1B

2B

Integrity Attestation

Fig. 18. Heterogeneous Paxos Message Latency

as the services it is composed of. We implemented DarXiv in 420 LoC based on the Charlotte framework and
existing services.

8.5.1 Goals of DarXiv. Like the original arXiv, DarXiv’s goal is to publicly and permanently host academic LATEX
and PDF documents with high-integrity timestamps and versioning. Formally, for an observer with initial belief
� , DarXiv provides:

• Availability: Within each DarXiv ADS all commits � must be available:

� ∈ � ∈ � ∧ � ⊆ exist (�) ∧� ∈ � ⇒ � ∈ avail(�)

• Timestamping: For a DarXiv ADS � , all commits � must be adequately timestamped in all the valid states.

� ∈ � ∈ � ⇒ ∃� ′ ∈ �� .� ∈ � ′ ⊆ �

(Where �� is the ADS representing adequately timestamped blocks under belief � .)
• Versioning: The documents in DarXiv can have diferent versions. These versions must be ordered. Each
version is supposed to update the previous version. For a DarXiv ADS � , there must not exist universes
where two states � and � ′ have diferent commits at the same version number.

�, � ′ ∈ � ∧ �, � ′ ∈ exist (�) ∧� ∈ � ⇒ (� ∪ � ′) ∈ �

8.5.2 Implementation. To explain the composition, we consider DarXiv as a client that interacts with existing
services: a Version Control service (section 8.2), a blockchain service (section 8.4.1) that provides a total order,
one or more Wilbur services that provide availability, and one or more timestamping services (section 8.3).

To publish a new version of a document, DarXiv roughly follows these steps:

• Bolster availability. DarXiv interacts with the Wilbur services to establish availability of the new version
by obtaining the corresponding availability attestations (peach blocks in ig. 19). The DarXiv blockchain
Fern servers can be conigured to check for any kind of availability threshold before committing, ensuring
that any documents in DarXiv meet a global minimum availability.

• Acquire timestamps. DarXiv then requests timestamps from timestamp services by collecting integrity
attestations.

ACM Trans. Comput. Syst.

Charlote • 35

Old

Version
New

Version

Availability

Attestations

Availability

Attestations

Timestamp

Attestations

Timestamp

Attestations

 Git

Attestation

 Git

Attestation

Blockchain

Attestation
Blockchain

Attestation

DarXiv

Reference

DarXiv

Reference

Fig. 19. Two versions (red and blue) of a document in DarXiv. Each has a collection of availability atestations (peach), as

well as integrity atestations (green) from timestamping, git, and a blockchain service. Document references including these

atestations provide availability, timestamps, and versions.

• Decide version. DarXiv interacts with both the Version Control service and the blockchain service to
ensure this new version is a proper “updatež to the previous version and to resolve the conlict with any
other simultaneous additions to the same document.

• Commit to Blockchain. If DarXiv successfully commits to the version-control repository, it then seeks to
establish that version as the canonical next entry on the blockchain for that document. The blockchain is
in essence like a multi-party Version Control Fern server: it is less likely to fail and fork the repository,
because it uses agreement between many parties.

• Generate reference If DarXiv succeeds in collecting integrity attestations in the previous step, it generates
a reference containing all the attestations for this version of document.

8.5.3 Compositional Properties. By composing the existing services, each DarXiv ADS has the lexibility to use
diferent, unrelated Wilbur, Timestamping, or Git services. DarXiv takes advantage of the composition of the
component services’ properties to create the properties of arXiv as a whole. In our DarXiv implementation, each
document is represented as a series of commits from some Version Control repository, signed by appropriate
authors, made suiciently available and timestamped, and totally ordered by a blockchain.
Formally, for an observer with belief � , we can express a DarXiv ADS as an intersection of ADSs: �

⊎
�
⊎

��
⊎
�� . Here, � is an ADS restricted to blocks signed by the document’s authors, � a version-control branch,

�� a (belief-speciic) ADS representing timestamped blocks, and �� a (belief-speciic) blockchain using HetPax.
In fact, the commit blocks representing DarXiv versions will be precisely I����ℎ(View(�,DarXiv), �,� ,�� ,��)
(section 5.7.2). Observers need not agree on availability thresholds or trustworthiness of timestamp servers.
However, attestations are monotonic (section 5.8.1), so adding more attestations never weakens what can be
proven. Once an accurate observer views a document in DarXiv, it will remain forever available.
Following directly from the deinitions of � and � in section 8.2, �� in section 8.3, and �� in section 8.4, a

DarXiv ADS meets the formal properties laid out in section 8.5.1.

9 EVALUATION

To evaluate the performance of Charlotte, we ran instances of each example service. Except as speciied, ex-
periments were run on a local cluster using virtual machines with Intel E5-2690 2.9 GHz CPUs, conigured as
follows:

• Clients: 4 physical cores, 16 GB RAM
• Wilbur servers: 1 physical core, 8 GB RAM
• Fern servers: 1 physical core, 4 GB RAM

To emulate wide-area communication, we introduced an artiicial 100 ms communication latency between VMs.
Each Wilbur server stores blocks in RAM forever; to estimate latency for servers using more durable storage, one

ACM Trans. Comput. Syst.

36 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

Fig. 20. Mean block delay of Nakamoto on Charlote, with bars showing standard error. Dificulty is represented in ���2 of

the number of hashes expected to mine a new block.

could add the marginal latency increase for the chosen storage type. However, this storage latency is typically
low compared to network communication.

9.1 Blockchains

Since blockchains are an obvious application of Charlotte, we evaluate the performance, scalability, and compos-
ability of various blockchain implementations.

9.1.1 Nakamoto. To compare performance of our Nakamoto implementation to Bitcoin’s, we use multiple
(� = 10, 20, 30, 40) Charlotte nodes and measure the mean delay (across 100 consecutive blocks) until a client
received an integrity attestation for a block with ixed security parameter � = 1. All clients and servers have one
physical core, and 4 GB RAM. Figure 20 shows the results of our tests with various diiculty values (expected
number of hashes to mine a block).

When diiculty is low, the delay for an integrity attestation is dominated by the communication overhead (200
ms). When, more realistically, the diiculty is high, delay is dominated by the cost of mining. Figure 20 shows
that latency increases with diiculty and decreases with the inverse of the number of Charlotte servers (total
computational power). Charlotte indeed scales suitably for blockchain implementations.
In fact, Bitcoin has about 2 × 1011 times the hash power [24], and 1014 times the diiculty that we had in our

experiment, and it achieves an average block latency of 10 min. Our experiments indicate that with compute
power scaled appropriately, our implementation would achieve comparable performance: about 5 minutes per
block.

9.1.2 Agreement. To evaluate the bandwidth advantages of separating integrity and availability services, we built
Agreement Chains (section 8.4.1) tolerating up to 5 Byzantine failures, both with and without Wilbur servers. To
tolerate � Byzantine failures, a chain needs 3� + 1 Fern servers, and, if it relies on Wilbur servers for availability,
� + 1 Wilbur servers. We tested the latency and bandwidth of our chains, with some experiments using 10 byte
blocks, and some using 1 MB blocks. In each experiment, a single client appends 1000 blocks to a chain, with the
irst 500 excluded from measurements to avoid warm-up efects. Each experiment ran three times.

ACM Trans. Comput. Syst.

Charlote • 37

m
il
li
se
co
n
d
s

1 2 3 4 5
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700

10 byte blocks
Wilbur servers

middle 98%
middle 90%
middle 50%
median

10 byte blocks
no Wilbur servers

middle 98%
middle 90%
middle 50%
median

megabyte blocks
Wilbur servers

middle 98%
middle 90%
middle 50%
median

megabyte blocks
no Wilbur servers

median

megabyte blocks
no Wilbur servers

median

Byzantine Failures Tolerated

Fig. 21. Time to commit blocks in Agreement chains with various numbers of servers. The shaded zones cover the middle

percentile of blocks, so the top of the lightest zone represents the 99th (slowest) percentile, and the botom represents the 1st

(fastest) percentile. The distribution for the megabyte-block, no-wilbur-server experiment is in fig. 22.

In the simple case, without Wilbur servers, all Fern servers receive all blocks, similarly to the traditional
blockchain strategy [69]. The theoretical minimum latency is 2 round trips from the client to the Fern servers, or
200 ms.

We also built chains that separate the Fern servers’ integrity duties from Wilbur servers’ availability duties. In
these chains, Fern servers would not attest to any reference unless it included � + 1 diferent Wilbur servers’
availability attestations. For these chains, the client sends blocks to Wilbur servers, waits to receive availability
attestations, and then sends references to Fern servers. These two consecutive round trips incur a minimum
latency of 400 ms.

Latency. Figure 21 and ig. 22 show the median latency to commit a block for each of our Agreement chain
experiments (section 9.1.2). Theoretical minimum latency is 4 message sends (round trip from the client to the
Wilbur servers, and then from the client to the Fern servers), or 400 ms. For chains with small blocks, latency
remains close to the 200 ms and 400 ms minimums. For chains with 1 megabyte blocks, experimental setup has
signiicant slowdowns, likely due to bandwidth limitations.

Bandwidth. Separating availability and integrity concerns (section 7.1) has clear beneits in terms of bandwidth.
Because it sends large blocks to just � + 1Wilbur servers instead of 3� + 1 Fern servers, our client uses much less
bandwidth in the large-block experiments with Wilbur servers than without them (ig. 23). In theory, committing
a block with Wilbur servers requires bandwidth for � + 1 blocks, and without Wilbur servers requires 3� + 1

blocks. The overhead inherent in the additional communication with Wilbur servers and the attestations issued
is small compared to the savings, but visible in ig. 23 for larger numbers of Byzantine failures tolerated.

ACM Trans. Comput. Syst.

38 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

m
il
li
se
co
n
d
s

1 2 3 4 5
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300

megabyte blocks
no Wilbur servers

middle 98%
middle 90%
middle 50%
median

megabyte blocks
no Wilbur servers

median

megabyte blocks
no Wilbur servers

median

megabyte blocks
no Wilbur servers

median

megabyte blocks
no Wilbur servers

median

Byzantine Failures Tolerated

Fig. 22. Time to commit blocks in Agreement chains with various numbers of servers. The distribution for the megabyte-block,

no-wilbur-server experiment is shown.

9.1.3 Heterogeneous Paxos. To evaluate the feasibility of consensus-based blockchains and multi-chain blocks in
Charlotte, we built several chains with HetPax (section 7.2.3), and ran 5 types of experiments. With our artiicial
network latency, the theoretical lower bound on consensus latency is 500 ms, and maximum throughput per
chain is 2 blocks/second. Each experiment recorded the latency clients experience in appending their own blocks
to the chain, as well as system-wide throughput. All HetPax experiments used single-core VMs with 8 GB RAM,
except as noted.

Single Chain. In these experiments, a client appends 2000 successive blocks to one chain. Mean latency is 527
ms for a chain with 4 Fern servers and 538 ms for 7 Fern servers. Since the best possible latency is 500 ms, these
results are promising. Overheads include cryptographic signatures, veriication, and garbage collection.

Parallel. As the darker green lines in ig. 24 show, independent HetPax chains have independent performance.
In these experiments, we simultaneously ran 1ś4 independent chains, each with 4 or 7 Fern servers. In each
experiment, a client appends 2000 successive blocks to one chain. There is no noticeable latency diference
between a single chain and many chains running together. Throughput scales with the number of chains (and
inversely to latency). This scalability is the fundamental advantage of a blockweb over forcing everything onto
one central blockchain.

ACM Trans. Comput. Syst.

Charlote • 39

g
ig
ab
y
te
s

1 2 3 4 5
0
2
4
6
8

10
12
14
16
18
20
22
24 MB blocks, no Wilburs

optimal, no Wilburs
MB blocks, Wilburs
optimal, Wilburs

10B, Wilburs
10B, no Wilburs
10B, Wilburs
10B, no Wilburs

Byzantine Failures Tolerated

Fig. 23. Total bandwidth used by a client appending 1500 blocks to Agreement-based chains. With 10 B blocks and higher

numbers of Byzantine failures tolerated, we can see the overhead inherent in the additional communication with a larger

number of servers when using separate Wilbur and Fern servers. For 1 MB blocks, this overhead is much smaller than the

bandwidth saved.

L
at
en
cy
(m

s)

1 2 3 4
500

600

700

800
Parallel 4 Ferns
Multi 4 Ferns
Parallel 7 Ferns
Multi 7 Ferns

Number of Chains

Fig. 24. HetPax Multichain and Parallel experiments. In Parallel experiments, each chain operates independently (and has its

own client). In Multichain experiments, one client tries to append all blocks to all chains. Optimal latency is 500 ms.

Multichain shared blocks. Shared (joint) blocks facilitate inter-chain interaction (section 7.3). In these experi-
ments, a single client appends 1000 shared blocks to 2ś4 chains, each with 4 or 7 Fern servers. As the yellow lines
in ig. 24 show, latency scales roughly linearly with the number of chains.

Contention. In these experiments, all clients simultaneously contend to append 2000 unique blocks to the same
chain. We measured the blocks that were actually accepted into slots 500ś1500 of the chain. We used 2ś36 clients,
and chains with 4 or 7 Fern servers, conigured with 2 GB RAM. Like Byzantized Paxos [54], HetPax can slow
under contention and occasionally requires a dynamic timeout to automatically trigger a new round. Chain
throughput is shown in ig. 25. Our chains, on average, achieved 1.88 blocks/sec throughput for 4 Fern servers
and 1.85 blocks/sec for 7, not far from the 2 blocks/sec optimum. Throughput does not decrease much with the
number of clients.

Mixed. These experiments attempt to simulate a more realistic scenario by including all 3 types of workload.
Each experiment has 2ś5 clients, and either 2 or 7 chains, each with 4 Fern servers. On each block, a client tries

ACM Trans. Comput. Syst.

40 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

T
h
ro
u
g
h
p
u
t(
b
lo
ck
s/
se
c)

2 8 14 20 26 32 36

1.82

1.84

1.86

1.88

1.90

4 Ferns
7 Ferns

Number of Clients

Fig. 25. Throughput of HetPax under contention. 2ś36 clients try to append 2000 blocks to just one chain. Optimal throughput

is 2 blocks/sec.

T
h
ro
u
g
h
p
u
t(
b
lo
ck
s/
se
c)

2 3 4 5
1

2

3

4
2 Chains
7 Chains

Number of Clients

Fig. 26. Throughput of HetPax mixed-workload experiment (4 Fern servers).

to append a shared block to two random chains with probability 10% and otherwise tries appending to a random
single chain. The results are in ig. 26. Throughput can be over 2.0 blocks/sec because multiple clients can append
blocks to diferent chains in parallel. Mean throughput is 1.8 blocks/sec and 2.7 blocks/sec for 2 and 7 chains
respectively, which is expected because the 2-chain coniguration has more contention.

HetPax scales well horizontally with multiple chains running in parallel. Furthermore, throughput does not
decrease much with more clients involved. This gives us ability to make progress even with lots of clients
connecting to the same chain concurrently.
However, the number of Fern servers does play a major role in determining latency. With a small group of

Fern servers, HetPax can almost reach 500 ms, which is optimal for our network. Although latency increases
linearly with the number of Fern servers, for some services, it is possible to break down big shared blocks into a
set of small shared blocks, each of which may require fewer servers to commit. For example, in section 2.1.1, we
discuss how to break a �-chain transaction into a log�-depth graph whose nodes are small two-chain transactions.
By following the same strategy, the latency would be reduced to � × log� , where � is the average latency for
completing a 2-chain block. Since our HetPax implementation is just a prototype, we believe that with further
optimization efort, average latency performance will improve.

ACM Trans. Comput. Syst.

Charlote • 41

m
il
li
se
co
n
d
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

100
200
300
400
500
600
700
800
900

1000
1100

with 4 total Fern servers
with 8 total Fern servers
with 12 total Fern servers
with 16 total Fern servers

Fern servers

Fig. 27. Mean time for a block to be timestamped by � Fern servers, in experiments featuring 4, 8, 12, and 16 total Fern

servers.

m
il
li
se
co
n
d
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700 median

mean

middle 98%
middle 90%
middle 50%

Fern servers

Fig. 28. Time for a block to be timestamped by � Fern servers, in an experiment featuring a total of 16 Fern servers. Shaded

zones cover the middle percentile of blocks, so the top of the lightest zone represents the 99th (slowest) percentile, and the

botom represents the 1st (fastest) percentile. Also shown are mean and median block times (very similar).

9.2 Timestamping

To evaluate performance, composability, and entanglement (section 6.5) with a non-blockchain service, we ran
experiments with varying numbers of Timestamping Fern servers (section 8.3). All client and server VMs had 4
GB RAM. For each experiment, a single client requested timestamps for a total of 100,000 blocks. For each block,
it requested a timestamp from one server, rotating through the Fern servers.
For each 100 timestamps a Fern server issued, it would create a new block referencing those 100 timestamps,

and request that all other Fern servers timestamp this block. Since timestamps are transitive (if � is a timestamp
referencing �, and � references �, then � also timestamps �), every block was soon timestamped by all Fern
servers.

ACM Trans. Comput. Syst.

42 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

Our results, in ig. 27 and ig. 28, show that blocks are timestamped by one server at nearly network speed, and
then (after a delay while a batch is produced) extremely quickly timestamped by many other timestamping Fern
servers.
We also calculated the time it took blocks to accrue diferent Fern servers’ timestamps. As ig. 27 shows, the

Fern servers quickly timestamp each request. Blocks get 1 timestamp very close to the 100 ms network latency
minimum. There is a delay between 1 and 2 timestamps because it takes a little while for the Fern servers to collect
100 timestamps and to create their own block. After that, blocks accrue timestamps very quickly, since each Fern
Server requests timestamps from all other Fern servers. These experiments suggest that entanglement (section 6.5)
can be a fast, eicient, and compositional way to lend integrity to large ADSs.

Not all blocks took exactly the same amount of time to accrue the same number of timestamps. ig. 28 shows
the distribution of times for blocks in the experiment with 16 Fern servers. The scale is the same as in ig. 27.
In general, each data point (time for blocks to accrue � timestamps in an experiment with � Fern servers) was
approximately Poisson distributed.

9.3 Composition

9.3.1 Timestamping and Blockchains. To explore Charlotte’s composability, we also composed our (1- or 2-failure-
tolerant) Agreement chains with our Timestamping Fern servers. We saw no statistically signiicant change in
chain performance: the overhead of timestamping was unmeasurably small. Each block was timestamped quickly
by directly requested Timestamping servers, but entanglement (section 9.2) was limited by the chain rate.

9.3.2 DarXiv. DarXiv (section 8.5) illustrates the easy composition of Charlotte services, since only 420 lines
of code needed to be written above the reused services. For evaluating its performance, the DarXiv Blockchain
service accepts commits from a Version Control service carrying at least one attestation from Wilbur and
Timestamping services each. DarXiv document creation takes an average of 32 ms per document, and update and
fetch operations take 40 ms on average. This performance is easily suicient to handle the load on the actual
arXiv system, which currently handles about 640 new submissions, 700 update requests, and a million downloads
per day [4, 35].

DarXiv Fern servers check for a global minimum availability threshold before committing a document. They
could be conigured to require, for example, attestations from arbitrary quorums of Wilbur servers using arbitrary
availability mechanisms. Submitting the document concurrently to multiple redundant Wilbur servers does
signiicantly increase latency, although it does of course require more total bandwidth.

10 RELATED WORK

10.1 Addressing by Hash

Many other distributed systems reference content by hash and form ADSs. Authenticated data structures [66, 70]
such as Merkle Trees [64] often reference data by hash without any additional attestations, just to ensure the
client can check that data fetched is correct. Most hash-based reference systems, however, only work within a
speciic service. For instance, Git uses hashes to reference and request commits stored on a server [91]. Git-lfs can
track and request large iles on separate servers with hash-based identiiers [30]. Similarly, PKI systems reference
keys and certiicates by hash, and maintain groups of availability servers [16, 37, 37, 39, 40, 52, 79]. Distributed
Hash Tables, such as CFS [21] ultimately maintain Availability servers, and ensure integrity by referencing data
via Hash.

HTML pages can reference resources using the integrity ield [94] to specify a hash, and the src ield to
specify a server, like an availability attestation without formal guarantees. Likewise, BitTorrent’s Torrent iles [18]
and Magnet URIs [19] reference a ile by hashes of various kinds, and can specify “acceptable sourcesž from
which to download the ile. Charlotte’s references aim to be extensible in terms of the hash algorithms used,

ACM Trans. Comput. Syst.

Charlote • 43

and generic over all types of data. Uniquely, Charlotte bundles references to data with references to attestations,
which can ofer precise formal guarantees.

In concurrent work, Protocol Labs’ IPLD [46] is a multi-protocol format for addressing arbitrary content by hash.
Like Charlotte’s AnyWithReference (section 4), Multiformats [67] ofers an extensible format for self-describing
data including protobufs [73]. Both IPLD and Multiformats are developed closely with IPFS [10], a peer-to-peer ile
distribution system. Future work might fruitfully combine these technologies with Charlotte-style attestations.

10.2 BlockDAGs

Other projects have explored DAGs of blocks in a blockchain context. Many, such as Iota [72], Nano (also known
as RaiBlocks) [55], Avalanche [75], Spectre [84], Phantom, and Ghostdag [85] are tailored to cryptocurrency.
Wang, Yu, Chen, and Xiang surveyed a variety of such projects in 2023 [93]. Each deines its own currency, and
they do not compose.
Some projects, such as ñternity [36], alephium [92], Qubic [45], and Plasma [71] enable general-purpose

computation on a BlockDAG by way of smart contracts. However, they ultimately rely on a single global
consensus mechanism for the integrity of every service. Concurrent work has also explored using DAGs of blocks
as part of mempools and consensus protocols to more eiciently create serializable transaction orderings for
blockchains [7, 22, 50, 87]. These projects describe a single chain, rather than an open system of interconnected
structures.
Sharded blockchains, including Omniledger [51], Elastico [59], RapidChain [96], RSCoin [23], and Ethereum

2.0 [14] are a form of BlockDAG. Most still require that all services have essentially the same trust assumptions.
Other sharded blockchain projects, such as Aion [88], Cosmos [27], and Polkadot [95], envision heterogeneous

chains with inter-chain communication. Polkadot features a single Relay Chain trusted by all parachains (paral-
lelizable chains), although it does allow parachains to proxy for outside entities, including other blockchains.
Most similarly to our multi-chain transactions (section 7.3), Aion uses Bridges, consensus mechanisms trusted
by multiple chains, to commit a transaction to each. All of these blockchain projects operate at a higher level
of abstraction than Charlotte, but might beneit from implementing on top of Charlotte. For example, whereas
Cosmos’ Inter-Blockchain Communication [27] and Aion’s Transwarp Conduits [38] require chains to read and
validate each other’s commits, we ofer a uniied framework for such protocols: integrity attestations.

10.3 Availability atestations

Although storage services are widely available [2, 31, 65], availability attestations make Wilbur servers unique.
However, there is a great deal of work on reliable storage [25, 28] and proofs of retrievability [13, 49, 82] that
could be used to make useful availability attestations.

10.4 Integrity atestations

In some ways, attestations resemble the labels of distributed information low control systems [57, 98], and
implement a kind of endorsement [97] as additional attestations are minted for the same block. In other ways,
integrity attestations generalize ordering services for traditional distributed systems [41] or blockchains [86].
These services maintain a speciic property of a ADS (ordering), much like our blockchain integrity attestations.
However, integrity attestations generalize over many possible properties: timestamps, provenance, etc.

Future integrity attestation subtypes might take advantage of technologies like authentication-logic proofs or
other artifacts representing assurances of data provenance [3, 83].

ACM Trans. Comput. Syst.

44 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

10.5 Distributed Data Structures

Prior work such as Tango [9] successfully built distributed data structures based on a shared log abstraction [8].
The shared log records updates to the data structures and allows clients to build a view of the data structure
by playing back these operations. While this design has some similarities to Charlotte, Tango is not a fully
decentralized system; it does not consider data structure integrity, it relies on a centralized sequencer, and it
requires a totally ordered log.

The Fabric system [56] maintains persistent, distributed, decentralized data structures whose use is governed
by explicit integrity and conidentiality labels. These labels are used to mediate access to the data structures by
diferent clients, with both static and dynamic information low control used to prevent client code from violating
these policies. Fabric references are not hash-based, so they do not have the built-in integrity properties that
derive from that mechanism. Fabric does not explicitly enforce availability properties, and it does not provide a
semantic framework for interpreting labels.

11 CONCLUSION

Charlotte ofers a decentralized framework for composable Attested Data Structures with well-deined availability
and integrity properties. Together, these structures form the blockweb, a novel generalization of blockchains.
Charlotte addresses many of the shortcomings of existing blockchain systems by enabling parallelism and
composability. Charlotte is lexible enough to enable services patterned after existing ADS while ofering rigorous
guarantees through attestations that can be given precise semantics.
With Charlotte, heterogeneous observers can use heterogeneous services across heterogeneous participants

with well-deined failure tolerance. By embracing Least Ordering and heterogeneity, new services will save time
and resources, and serve broader audiences. Charlotte is available as open source [80].

Charlotte provides a basic abstraction layer for decentralized distributed computing, and future research could
explore building higher-level services on top of Charlotte. Charlotte makes new kinds of inoperable applications
feasible. For example, the DarXiv application could be expanded into a general service for tracking trustworthy
versioned documentsÐin the age of generative AI, we may need systems like DarXiv that track provenance of
content. We have explored building various forms of agreement and consensus on top of Charlotte, exploiting
entanglement, and Charlotte provides a framework in which an even greater variety of consensus mechanisms
can be explored. For generality, Charlotte does not prescribe any logic for expressing attestations, but it would be
useful to develop an explicit, reusable logical framework to aid developers in successfully composing services
that use it. We hope for a future of interoperable ADSs created with Charlotte.

ACKNOWLEDGMENTS

We thank Mae Milano for useful feedback on the paper, Joe Boyt for suggesting the DarXiv application, Mark
Moir for discussions about entanglement, and Joe Halpern and Paul Ginsparg for data on arXiv usage. We also
thank Ripple for its support and the National Science Foundation for support via grants 1717554 and 1704615.

REFERENCES

[1] [n. d.]. Artifacts: Researcher Recognition. Accelerated. https://artifacts.ai. Accessed September 2021.

[2] Amazon. [n. d.]. Cloud Storage with AWS. https://aws.amazon.com/products/storage. https://aws.amazon.com/products/storage

[3] AndrewW. Appel and Edward W. Felten. 1999. Proof-Carrying Authentication. In 6th ACM Conference on Computer and Communications

Security.

[4] arXiv. [n. d.]. Monthly Submission Rates. https://arxiv.org/stats/monthly_submissions. https://arxiv.org/stats/monthly_submissions

[5] arXiv. [n. d.]. Twitter: arXiv.org. https://twitter.com/arxiv/status/1192467597054361606. https://twitter.com/arxiv/status/

1192467597054361606

ACM Trans. Comput. Syst.

https://artifacts.ai
https://aws.amazon.com/products/storage
https://aws.amazon.com/products/storage
https://arxiv.org/stats/monthly_submissions
https://arxiv.org/stats/monthly_submissions
https://twitter.com/arxiv/status/1192467597054361606
https://twitter.com/arxiv/status/1192467597054361606
https://twitter.com/arxiv/status/1192467597054361606

Charlote • 45

[6] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. 2019. Prism: Deconstructing the Blockchain to

Approach Physical Limits. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (London, United

Kingdom) (CCS ’19). Association for Computing Machinery, New York, NY, USA, 585ś602. https://doi.org/10.1145/3319535.3363213

[7] Leemon Baird and Atul Luykx. 2020. The Hashgraph Protocol: Eicient Asynchronous BFT for High-Throughput Distributed Ledgers.

In 2020 International Conference on Omni-layer Intelligent Systems (COINS). 1ś7. https://doi.org/10.1109/COINS49042.2020.9191430

[8] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler, Michael Wei, and John D. Davis. 2012. CORFU: A Shared Log

Design for Flash Clusters. In 9th USENIX Symp. on Networked Systems Design and Implementation (NSDI 12). USENIX, San Jose, CA, 1ś14.

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/balakrishnan

[9] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou,

and Aviad Zuck. 2013. Tango: Distributed Data Structures over a Shared Log. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles (24th ACM Symp. on Operating System Principles (SOSP)). https://doi.org/10.1145/2517349.2522732

[10] Juan Benet. [n. d.]. IPFS ś Content Addressed, Versioned, P2P File System. https://ipfs.io. https://github.com/ipfs/papers/raw/master/ipfs-

cap2pfs/ipfs-p2p-ile-system.pdf

[11] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency Control and Recovery in Database Systems. Addison

Wesley.

[12] Tamas Blummer, Sean Bohan, Mic Bowman, Christian Cachin, Nick Gaski, Nathan George, Gordon Graham, Daniel Hardman, Ram

Jagadeesan, Travin Keith, Renat Khasanshyn, Murali Krishna, Tracy Kuhrt, Arnaud Le Hors, Jonathan Levi, Stanislav Liberman, Esther

Mendez, Dan Middleton, Hart Montgomery, Dan O’Prey, Drummond Reed, Stefan Teis, Dave Voell, Greg Wallace, and Baohua Yang.

2018. An Introduction to Hyperledger. Technical Report. Hyperledger. https://www.hyperledger.org/wp-content/uploads/2018/08/HL_

Whitepaper_IntroductiontoHyperledger.pdf

[13] Kevin D. Bowers, Ari Juels, and Alina Oprea. 2009. Proofs of Retrievability: Theory and Implementation. In Proceedings of the

2009 ACM Workshop on Cloud Computing Security (Chicago, Illinois, USA) (CCSW ’09). ACM, New York, NY, USA, 43ś54. https:

//doi.org/10.1145/1655008.1655015

[14] Vitalik Buterin, Danny Ryan, Hsiao-Wei Wang, Terence Tsao, and Chih Cheng Liang. [n. d.]. Ethereum 2.0 Phase 1 ś Shard Data Chains.

https://https://github.com/ethereum/eth2.0-specs/blob/master/specs/core/1_shard-data-chains.md. https://github.com/ethereum/eth2.0-

specs/blob/master/specs/core/1_shard-data-chains.md

[15] Christian Cachin and Marko Vukolić. 2017. Blockchain Consensus Protocols in the Wild. ArXiv e-prints (July 2017).

arXiv:1707.01873 [cs.DC] https://arxiv.org/abs/1707.01873

[16] Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw, and Rodney Thayer. 2007. OpenPGP Message Format. RFC 4880. RFC Editor.

http://www.rfc-editor.org/rfc/rfc4880.txt http://www.rfc-editor.org/rfc/rfc4880.txt.

[17] Scott Chacon and Ben Straub. 2014. 7.11 Git ToolsÐSubmodules. In Pro Git (2 ed.). Apress, 299Ð-318. https://git-scm.com/book/en/v2/Git-

Tools-Submodules

[18] Bram Cohen. 2017. The BitTorrent Protocol Speciication. http://bittorrent.org/beps/bep_0003.html. http://bittorrent.org/beps/bep_

0003.html

[19] Wikipedia contributors. 2019. Magnet URI scheme Ð Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=

Magnet%20URI%20scheme&oldid=888151611. http://en.wikipedia.org/w/index.php?title=Magnet%20URI%20scheme&oldid=888151611

[Online; accessed 2019-03-25].

[20] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi,

Emin Gün Sirer, Dawn Song, and Roger Wattenhofer. 2016. On Scaling Decentralized Blockchains. In Financial Cryptography and Data

Security, Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan, Dan Wallach, Michael Brenner, and Kurt Rohlof (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 106ś125. https://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf

[21] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. 2001. Wide-Area Cooperative Storage with CFS. In 18th

ACM Symp. on Operating System Principles (SOSP) (Banf, Alberta, Canada). 202ś215. http://doi.acm.org/10.1145/502034.502054

[22] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. 2022. Narwhal and Tusk: A DAG-Based Mempool

and Eicient BFT Consensus. In Proceedings of the Seventeenth European Conference on Computer Systems (Rennes, France) (EuroSys ’22).

Association for Computing Machinery, New York, NY, USA, 34ś50. https://doi.org/10.1145/3492321.3519594

[23] George Danezis and Sarah Meiklejohn. 2016. Centrally Banked Cryptocurrencies. In 23rd Annual Network and Distributed System

Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016. https://arxiv.org/pdf/1505.06895.pdf

[24] Alex de Vries. 2018. Bitcoin Energy Consumption Index. Technical Report. Digiconomist. https://digiconomist.net/bitcoin-energy-

consumption

[25] Alexandros G. Dimakis, Kannan Ramchandran, Yunnan Wu, and Changho Suh. 2011. A Survey on Network Codes for Distributed

Storage. Proc. IEEE 99 (2011), 476ś489. https://arxiv.org/pdf/1004.4438.pdf

[26] Ethereum Foundation. 2018. Ethereum White Paper. Technical Report. Ethereum Foundation. https://github.com/ethereum/wiki/wiki/

White-Paper

ACM Trans. Comput. Syst.

https://doi.org/10.1145/3319535.3363213
https://doi.org/10.1109/COINS49042.2020.9191430
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/balakrishnan
https://doi.org/10.1145/2517349.2522732
https://ipfs.io
https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/08/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://doi.org/10.1145/1655008.1655015
https://doi.org/10.1145/1655008.1655015
https://https://github.com/ethereum/eth2.0-specs/blob/master/specs/core/1_shard-data-chains.md
https://github.com/ethereum/eth2.0-specs/blob/master/specs/core/1_shard-data-chains.md
https://github.com/ethereum/eth2.0-specs/blob/master/specs/core/1_shard-data-chains.md
https://arxiv.org/abs/1707.01873
https://arxiv.org/abs/1707.01873
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
http://bittorrent.org/beps/bep_0003.html
http://bittorrent.org/beps/bep_0003.html
http://bittorrent.org/beps/bep_0003.html
http://en.wikipedia.org/w/index.php?title=Magnet%20URI%20scheme&oldid=888151611
http://en.wikipedia.org/w/index.php?title=Magnet%20URI%20scheme&oldid=888151611
http://en.wikipedia.org/w/index.php?title=Magnet%20URI%20scheme&oldid=888151611
https://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf
http://doi.acm.org/10.1145/502034.502054
https://doi.org/10.1145/3492321.3519594
https://arxiv.org/pdf/1505.06895.pdf
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
https://arxiv.org/pdf/1004.4438.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

46 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

[27] Ethan Frey and Christopher Goes. 2018. Cosmos Inter-Blockchain Communication (IBC) Protocol. https://cosmos.network. https:

//github.com/cosmos/cosmos-sdk/blob/master/docs/spec/ibc/README.md

[28] Juan Garay, Rosario Gennaro, Charanjit Jutla, and Tai Rabin. 1997. Secure Distributed Storage and Retrieval. In 11th Workshop on

Distributed Algorithms (WDAG). Saarbrücken, Germany.

[29] Paul Ginsparg, Oya Y. Rieger, Steinn Sigurdsson, Martin Lessmeister, Erick Peirson, Jim Entwood, and Janelle Morano. [n. d.]. ArXiv.

https://arxiv.org Accessed: 2019-11-13.

[30] gitlfs 2018. Git Large File Storage. https://git-lfs.github.com. https://git-lfs.github.com

[31] Google. [n. d.]. Google Cloud Storage. https://cloud.google.com/storage. https://cloud.google.com/storage

[32] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, and Daniel Smith. 2018. The Java Language Speciication (se 11 ed.).

Oracle America. https://docs.oracle.com/javase/specs/jls/se11/jls11.pdf

[33] GRPC 2018. gRPC: A High Performance, Open-Source Universal RPC Framework. https://grpc.io. https://grpc.io

[34] Theo Haerder and Andreas Reuter. 1983. Principles of Transaction-oriented Database Recovery. ACM Comput. Surv. 15, 4 (Dec. 1983),

287ś317. https://doi.org/10.1145/289.291

[35] Joe Halpern and Paul Ginsparg. [n. d.]. Personal Correspondence.

[36] Sascha Hanse, Luca Favetella, Hans Svensson, Emin Mahrt, Tobias Lindahl, and Erik Stenman. 2019. ñternity Protocol. https:

//aeternity.com. https://github.com/aeternity/protocol/blob/master/README.md

[37] Andre Heinecke. 2017. How to Setup an OpenLDAP-based PGP Keyserver. https://wiki.gnupg.org/LDAPKeyserver. https://wiki.gnupg.

org/LDAPKeyserver

[38] Shidokht Hejazi-Sepehr, Ross Kitsis, and Ali Sharif. 2019. Transwarp-Conduit: Interoperable Blockchain Application Framework.

https://aion.network/developers. https://aion.network/media/TWC_Paper_Final.pdf

[39] Marc Horowitz. 1996. A PGP Public Key Server. Technical Report. MIT. https://stuf.mit.edu/afs/net.mit.edu/project/pks/thesis/paper/

thesis.html

[40] Russell Housley, Tim Polk, Warwick Ford, and David Solo. 2002. Internet X.509 Public Key Infrastructure Certiicate and Certiicate

Revocation List (CRL) Proile. Internet RFC-3280. http://www.ietf.org/rfc/rfc3280.txt

[41] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010. ZooKeeper: Wait-Free Coordination for Internet-Scale

Systems. In USENIX ATC (Boston, MA). https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf

[42] IBM. 2018. Blockchain for supply chain. https://www.ibm.com/blockchain/supply-chain/.

[43] IBREA 2021. International Blockchain Real Estate Association (IBREA). https://ibrea.info. https://ibrea.info

[44] IEEE. 2018. The Open Group Base Speciications Issue 7 (2018 ed.). IEEE and The Open Group.

[45] IOTA. [n. d.]. Qubic: Quorum Based Computations Powered by IOTA. https://qubic.iota.org. https://qubic.iota.org

[46] ipld [n. d.]. IPLD. https://ipld.io. https://ipld.io

[47] Krzysztof Janowicz, Blake Regalia, Pascal Hitzler, Gengchen Mai, Stephanie Delbecque, Maarten Fröhlich, Patrick Martinent, and Trevor

Lazarus. 2018. On the prospects of blockchain and distributed ledger technologies for open science and academic publishing. Semantic

Web 9, 5 (Jan. 2018), 545ś555.

[48] JPMorgan. [n. d.]. J.P. Morgan Creates Digital Coin for Payments. https://www.jpmorgan.com/global/news/digital-coin-payments

https://www.jpmorgan.com/global/news/digital-coin-payments. Accessed: 2019-11-13.

[49] Ari Juels and Burton S. Kaliski Jr. 2007. PORs: Proofs of Retrievability for Large Files. In Proceedings of the 14th ACM Conference on

Computer and Communications Security (Alexandria, Virginia, USA) (CCS ’07). ACM, New York, NY, USA, 584ś597. https://doi.org/10.

1145/1315245.1315317

[50] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. 2021. All You Need is DAG. In Proceedings of the 2021

ACM Symposium on Principles of Distributed Computing (Virtual Event, Italy) (PODC’21). Association for Computing Machinery, New

York, NY, USA, 165ś175. https://doi.org/10.1145/3465084.3467905

[51] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. 2018. OmniLedger: A Secure,

Scale-Out, Decentralized Ledger via Sharding. 2018 IEEE Symposium on Security and Privacy (Oakland) (2018), 583ś598. https:

//doi.org/10.1109/SP.2018.000-5

[52] Bogdan Kulynych, Wouter Lueks, Marios Isaakidis, George Danezis, and Carmela Troncoso. 2018. ClaimChain: Improving the Security

and Privacy of In-band Key Distribution for Messaging. In Proceedings of the 2018 Workshop on Privacy in the Electronic Society (Toronto,

Canada) (WPES’18). ACM, New York, NY, USA, 86ś103. https://doi.org/10.1145/3267323.3268947

[53] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Comm. of the ACM 21, 7 (July 1978), 558ś565.

[54] Leslie Lamport. 2011. Byzantizing Paxos by Reinement. In 25th Int’l Conf. on Distributed Computing (DISC) (Rome, Italy). Springer-Verlag,

Berlin, Heidelberg, 211ś224. https://lamport.azurewebsites.net/tla/byzsimple.pdf

[55] Colin LeMahieu. 2018. Nano: A Feeless Distributed Cryptocurrency Network. Technical Report. Nano. https://nano.org/en/whitepaper

[56] Jed Liu, Owen Arden, Michael D. George, and Andrew C. Myers. 2017. Fabric: Building Open Distributed Systems Securely by

Construction. J. Computer Security 25, 4ś5 (May 2017), 319ś321. https://doi.org/10.3233/JCS-0559

ACM Trans. Comput. Syst.

https://cosmos.network
https://github.com/cosmos/cosmos-sdk/blob/master/docs/spec/ibc/README.md
https://github.com/cosmos/cosmos-sdk/blob/master/docs/spec/ibc/README.md
https://arxiv.org
https://git-lfs.github.com
https://git-lfs.github.com
https://cloud.google.com/storage
https://cloud.google.com/storage
https://docs.oracle.com/javase/specs/jls/se11/jls11.pdf
https://grpc.io
https://grpc.io
https://doi.org/10.1145/289.291
https://aeternity.com
https://aeternity.com
https://github.com/aeternity/protocol/blob/master/README.md
https://wiki.gnupg.org/LDAPKeyserver
https://wiki.gnupg.org/LDAPKeyserver
https://wiki.gnupg.org/LDAPKeyserver
https://aion.network/developers
https://aion.network/media/TWC_Paper_Final.pdf
https://stuff.mit.edu/afs/net.mit.edu/project/pks/thesis/paper/thesis.html
https://stuff.mit.edu/afs/net.mit.edu/project/pks/thesis/paper/thesis.html
http://www.ietf.org/rfc/rfc3280.txt
https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf
https://ibrea.info
https://qubic.iota.org
https://qubic.iota.org
https://ipld.io
https://ipld.io
https://www.jpmorgan.com/global/news/digital-coin-payments
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1145/3267323.3268947
https://lamport.azurewebsites.net/tla/byzsimple.pdf
https://nano.org/en/whitepaper
https://doi.org/10.3233/JCS-0559

Charlote • 47

[57] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers. 2009. Fabric: A Platform For Secure Distributed

Computation and Storage. In 22nd ACM Symp. on Operating System Principles (SOSP). 321ś334. http://www.cs.cornell.edu/andru/papers/

fabric-sosp09.html

[58] Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas P. E. Barry, Eli Gafni, Jonathan Jové, Rafał Malinowsky, and

J. Murphy McCaleb. 2019. Fast and secure global payments with Stellar. In 27th ACM Symp. on Operating System Principles (SOSP).

http://delivery.acm.org/10.1145/3360000/3359636/p80-lokhava.pdf

[59] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek Saxena. 2016. A Secure Sharding Protocol For

Open Blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Vienna, Austria) (CCS

’16). ACM, New York, NY, USA, 17ś30. https://doi.org/10.1145/2976749.2978389

[60] Chip Martel, Glen Nuckolls, Michael Gertz, Prem Devanbu, April Kwong, and Stuart G. Stubblebine. 2001. A General Model for Authentic

Data Publication. Technical Report CSE-2001-9. UC Davis Dept. of Computer Science.

[61] Manuel Martin, Antonio Romero, and Roberto Rabasco. 2019. Orvium: Accelerating Scientiic Publishing. https://docs.orvium.io/Orvium-

WP.pdf. Accessed September 2021.

[62] David Mazières. 2015. The Stellar Consensus Protocol: A Federated Model for Internet-Level Consensus. https://www.stellar.org.

https://www.stellar.org

[63] Trent McConaghy, Rodolphe Marques, and Andreas Müller. 2016. BigchainDB: a Scalable Blockchain Database. https://www.bigchaindb.

com/whitepaper. https://www.bigchaindb.com/whitepaper

[64] Ralph C. Merkle. 1980. Protocols for Public Key Cryptosystems. In IEEE Symp. on Security and Privacy. IEEE Computer Society, Los

Alamitos, CA, USA, 122. https://doi.org/10.1109/SP.1980.10006

[65] Microsoft. [n. d.]. Azure Storage. https://azure.microsoft.com/services/storage. https://azure.microsoft.com/services/storage

[66] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. 2014. Authenticated Data Structures, Generically. In Proceedings of the 41st

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’14). Association for

Computing Machinery, New York, NY, USA, 411ś423. https://doi.org/10.1145/2535838.2535851

[67] multiformats [n. d.]. Multiformats. https://multiformats.io. https://multiformats.io

[68] Byron Murphy. [n. d.]. The History of 51% Attacks and the Implications for Bitcoin. https://medium.com/hackernoon/the-history-of-

51-attacks-and-the-implications-for-bitcoin-ec1aa0f20b94 Accessed: 2019-11-13.

[69] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.

[70] Moni Naor and Kobbi Nissim. 1998. Certiicate Revocation and Certiicate Update. In 7th USENIX Security Symposium (USENIX Security

98). USENIX Association, San Antonio, TX. https://www.usenix.org/conference/7th-usenix-security-symposium/certiicate-revocation-

and-certiicate-update

[71] Joseph Poon and Vitalik Buterin. 2017. Plasma: Scalable Autonomous Smart Contracts. https://plasma.io. https://plasma.io/plasma.pdf

[72] Serguei Popov. 2018. The Tangle. Technical Report. Iota. https://iota.org/IOTA_Whitepaper.pdf

[73] Protobufs 2018. Protocol Bufers. https://developers.google.com/protocol-bufers/. https://developers.google.com/protocol-bufers/

[74] Yoav Raz. 1992. The Principle of Commitment Ordering, or Guaranteeing Serializability in a Heterogeneous Environment of Multiple

Autonomous Resource Managers Using Atomic Commitment. In 18th Very Large Data Bases Conference (VLDB) (Vancouver, Canada).

[75] Team Rocket. 2018. Snowlake to Avalanche: A Novel Metastable Consensus Protocol Family for Cryptocur-

rencies. https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV. https://ipfs.io/ipfs/

QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV

[76] Andreas Schaufelbühl, Sina Rafati Niya, Lucas Pelloni, Severin Wullschleger, Thomas Bocek, Lawrence Rajendran, and Burkhard Stiller.

2019. EUREKA ś A Minimal Operational Prototype of a Blockchain-based Rating and Publishing System. In 2019 IEEE International

Conference on Blockchain and Cryptocurrency (ICBC). 13ś14. https://doi.org/10.1109/BLOC.2019.8751445

[77] Fred B. Schneider. 1990. Implementing fault-tolerant services using the state machine approach: a tutorial. Comput. Surveys 22, 4 (Dec.

1990), 299ś319. https://doi.org/10.1145/98163.98167

[78] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Convergent and Commutative Replicated Data Types.

Bulletin of the EATCS 104 (2011), 67ś88.

[79] David Shaw. 2003. The OpenPGP HTTP Keyserver Protocol (HKP). Internet-Draft draft-shaw-openpgp-hkp-00.txt. IETF Secretariat.

https://tools.ietf.org/html/draft-shaw-openpgp-hkp-00

[80] Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers. 2021. Charlotte-Public. https:

//github.com/ishef/charlotte-public. software release.

[81] Isaac Shef, Xinwen Wang, Robbert van Renesse, and Andrew C. Myers. 2020. Heterogeneous Paxos. In OPODIS.

[82] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. 2013. Practical Dynamic Proofs of Retrievability. In Proceedings of the 2013

ACM SIGSAC Conference on Computer & Communications Security (Berlin, Germany) (CCS ’13). ACM, New York, NY, USA, 325ś336.

https://doi.org/10.1145/2508859.2516669

ACM Trans. Comput. Syst.

http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://delivery.acm.org/10.1145/3360000/3359636/p80-lokhava.pdf
https://doi.org/10.1145/2976749.2978389
https://docs.orvium.io/Orvium-WP.pdf
https://docs.orvium.io/Orvium-WP.pdf
https://www.stellar.org
https://www.stellar.org
https://www.bigchaindb.com/whitepaper
https://www.bigchaindb.com/whitepaper
https://www.bigchaindb.com/whitepaper
https://doi.org/10.1109/SP.1980.10006
https://azure.microsoft.com/services/storage
https://azure.microsoft.com/services/storage
https://doi.org/10.1145/2535838.2535851
https://multiformats.io
https://multiformats.io
https://medium.com/hackernoon/the-history-of-51-attacks-and-the-implications-for-bitcoin-ec1aa0f20b94
https://medium.com/hackernoon/the-history-of-51-attacks-and-the-implications-for-bitcoin-ec1aa0f20b94
https://www.usenix.org/conference/7th-usenix-security-symposium/certificate-revocation-and-certificate-update
https://www.usenix.org/conference/7th-usenix-security-symposium/certificate-revocation-and-certificate-update
https://plasma.io
https://plasma.io/plasma.pdf
https://iota.org/IOTA_Whitepaper.pdf
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://doi.org/10.1109/BLOC.2019.8751445
https://doi.org/10.1145/98163.98167
https://tools.ietf.org/html/draft-shaw-openpgp-hkp-00
https://github.com/isheff/charlotte-public
https://github.com/isheff/charlotte-public
https://doi.org/10.1145/2508859.2516669

48 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

[83] Emin Gün Sirer, Willem de Bruijn, Patrick Reynolds, Alan Shieh, Kevin Walsh, Dan Williams, and Fred B. Schneider. 2011. Logical

Attestation: An Authorization Architecture for Trustworthy Computing. In 11th ACM Symp. on Operating System Principles (SOSP).

[84] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. 2016. SPECTRE: A Fast and Scalable Cryptocurrency Protocol. Cryptology

ePrint Archive, Report 2016/1159. https://eprint.iacr.org/2016/1159

[85] Yonatan Sompolinsky and Aviv Zohar. 2018. PHANTOM: A Scalable BlockDAG Protocol. Cryptology ePrint Archive, Report 2018/104.

https://eprint.iacr.org/2018/104

[86] João Sousa, Alysson Bessani, andMarko Vukolic. 2018. A Byzantine Fault-Tolerant Ordering Service for theHyperledger Fabric Blockchain

Platform. In 48th Annual IEEE/IFIP Int’l Conf. on Dependable Systems and Networks (DSN). 51ś58. https://doi.org/10.1109/DSN.2018.00018

[87] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. 2022. Bullshark: DAG BFT Protocols Made

Practical. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (Los Angeles, CA, USA) (CCS

’22). Association for Computing Machinery, New York, NY, USA, 2705ś2718. https://doi.org/10.1145/3548606.3559361

[88] Matthew Spoke and Nuco Engineering Team. 2017. Aion: Enabling the Decentralized Internet. https://aion.network. https://aion.

network/media/en-aion-network-technical-introduction.pdf

[89] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. 2001. Chord: A Scalable Peer-to-peer Lookup

Service for Internet Applications. In ACM SIGCOMM. 149ś160.

[90] CryptoKitties Team. 2018. CryptoKitties: Collectible and Breedable Cats Empowered by Blockchain Technology: White Pa-purr, Version 2.0.

Technical Report. https://www.cryptokitties.co/

[91] L. Torvalds and J. Hamano. 2010. Git distributed version control system. https://git-scm.com.

[92] Cheng Wang. [n. d.]. Alephium: a scalable cryptocurrency system based on blocklow. https://alephium.org. https://raw.

githubusercontent.com/alephium/white-paper/master/white-paper.pdf

[93] Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang. 2023. SoK: DAG-Based Blockchain Systems. ACM Comput. Surv. 55, 12, Article

261 (mar 2023), 38 pages. https://doi.org/10.1145/3576899

[94] Joel Weinberger, Francois Marier, Devdatta Akhawe, and Frederik Braun. 2016. Subresource Integrity. W3C Recommendation. W3C.

http://www.w3.org/TR/2016/REC-SRI-20160623/ http://www.w3.org/TR/2016/REC-SRI-20160623/.

[95] Gavin Wood. [n. d.]. Polkadot: Vision for a Heterogeneous Multi-Chain Framework. https://polkadot.network. https://polkadot.

network/PolkaDotPaper.pdf

[96] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain: Scaling Blockchain via Full Sharding. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA,

931ś948. https://doi.org/10.1145/3243734.3243853

[97] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. 2002. Secure Program Partitioning. ACM Trans. on

Computer Systems 20, 3 (Aug. 2002), 283ś328. https://doi.org/10.1145/566340.566343

[98] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. 2008. Securing distributed systems with information low control. In 5th

USENIX Symp. on Networked Systems Design and Implementation (NSDI). 293ś308. http://dl.acm.org/citation.cfm?id=1387610

A BITCOIN TRANSACTIONS IN TWO ACCOUNTS OR FEWER

In Bitcoin, it is advantageous to combine many small transfers of money into big ones, with many inputs and
many outputs. This improves anonymity and performance. In the real inancial system of the USA, however, all
monetary transfers are from one account to another. They are all exactly two chain transactions.

We can simulate this limitation by refactoring each Bitcoin UTXO as 2 UTXOs, and each Bitcoin transaction as
a DAG of transactions with depth:⌈

log2 (max (number of inputs, number of outputs))
⌉

To do this, we create

� ≜ 2�

chains, each of which is

� ≜
⌈
log2 (max (number of inputs, number of outputs))

⌉
long. We call these chains�0 through�� . Original input UTXO � corresponds to both inputs to the irst transaction
of chain � . Original output UTXO � corresponds to one output of each of the last transactions from chains � and

ACM Trans. Comput. Syst.

https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2018/104
https://doi.org/10.1109/DSN.2018.00018
https://doi.org/10.1145/3548606.3559361
https://aion.network
https://aion.network/media/en-aion-network-technical-introduction.pdf
https://aion.network/media/en-aion-network-technical-introduction.pdf
https://www.cryptokitties.co/
https://git-scm.com
https://alephium.org
https://raw.githubusercontent.com/alephium/white-paper/master/white-paper.pdf
https://raw.githubusercontent.com/alephium/white-paper/master/white-paper.pdf
https://doi.org/10.1145/3576899
http://www.w3.org/TR/2016/REC-SRI-20160623/
http://www.w3.org/TR/2016/REC-SRI-20160623/
https://polkadot.network
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/566340.566343
http://dl.acm.org/citation.cfm?id=1387610

Charlote • 49

80 81 82 83

>0 >1 >2 >3
>0 >1 >2 >3

80 81 82 83

Fig. 29. Converting 4 inputs and 4 outputs to a graph of 2-account transactions.

(
� + 2�−1

)
mod �. For 0 ≤ � < (� − 1), the outputs of the ��ℎ transaction in chain � , called ��

�
, go to ��

�+1
, and:

�
(�+2�) mod �

�+1

The outputs of ��
�
go to the UTXOs corresponding with output � , and output

(
� + 2�−1

)
mod �. Each transaction

divides its output values proportionately to the sums of the inal output values reachable from each of the
transaction’s outputs. ig. 29 is an example transformation from a 4-input, 4-output transaction to a DAG of depth
2 using all 2-input, 2-output transactions.

B IMPLEMENTATION LIMITATIONS OF ATTESTATIONS

Since programmers can deine their own subtypes of integrity or availability attestations, nothing prevents
them from encoding availability guarantees in an integrity attestation, or violating the availability attestation
monotonicity requirement (section 5.8.1). Programmers who violate the system assumptions naturally lose
guarantees.
In our implementation, the only operational distinction between an availability attestation and an integrity

attestation is in the Reference object. When one block references another, it can also reference relevant integrity
and availability attestations. However, whereas an included reference to an integrity attestation is itself a
Reference object, an included reference to an availability attestation carries only a Hash. This is because an
integrity attestation might need an availability attestations to describe where to obtain the integrity attestation.
However, the same is not true of an availability attestation: it is pointless to send availability attestation � just to
describe where to fetch availability attestation �, since it is just as easy to send availability attestation � in the
irst place.

C PROOF FOR THEOREM 3

Proof. First, we introduce a helpful function:

� (�) ≜
{ ⋃

� � ∈ P(�)
}

Note that� ⊆ � (�). We can think of� (�) as an ADS whose states include all possible combinations of (possibly
conlicting) states of � . As a side note, we call � monotonic, meaning no pair of states conlict (they just form a
bigger state), precisely when � = � (�).

We can now re-state our deinition of intersection:

�
⊎
� ′

=

{
� ∪ � ′

� ∈ � ∧ � ′ ∈ � (� ′)

∨ � ∈ � (�) ∧ � ′ ∈ �

}

ACM Trans. Comput. Syst.

50 • Isaac Shef, Xinwen Wang, Kushal Babel, Haobin Ni, Robbert van Renesse, and Andrew C. Myers

By the deinition of view (section 5.6) and
⊎
:

View(�, �
⊎
� ′) =

⋃

� ∪ � ′

∀� ∈ �,� ∈ �,� ′ ∈ � (� ′) . � ∪ � ∪ � ′ ∪� ′ ∈ �
⊎
� ′ ∨ (� ∪� ′) ⊈ exist (�)

∧ ∀� ∈ �,� ∈ � (�),� ′ ∈ � ′ . � ∪ � ∪ � ′ ∪� ′ ∈ �
⊎
� ′ ∨ (� ∪� ′) ⊈ exist (�)

∧ ∀� ∈ � . � ⊆ avail(�)

∧ ∀� ∈ � . � ′ ⊆ avail(�)

∧ (� ∈ � ∧ � ′ ∈ � (� ′)) ∨ (� ∈ � (�) ∧ � ′ ∈ � ′)

For InBoth, we consider only full states � ∈ � and � ′ ∈ � ′:

I����ℎView(�, �
⊎
� ′)�� ′

=

⋃

� ∩ � ′

∀� ∈ �,� ∈ �,� ′ ∈ � (� ′) . � ∪ � ∪ � ′ ∪� ′ ∈ �
⊎
� ′ ∨ (� ∪� ′) ⊈ exist (�)

∧ ∀� ∈ �,� ∈ � (�),� ′ ∈ � ′ . � ∪ � ∪ � ′ ∪� ′ ∈ �
⊎
� ′ ∨ (� ∪� ′) ⊈ exist (�)

∧ ∀� ∈ � . � ⊆ avail(�)

∧ ∀� ∈ � . � ′ ⊆ avail(�)

∧ � ∈ �

∧ � ′ ∈ � ′

By the deinition of� , it is always the case that:

� ∈ � (�) ∧� ∈ � (�) ⇒ (� ∪�) ∈ � (�)

Recall that � ∈ � ⇒ � ∈ � (�). If follows that:

� ∈ � (�) ∧� ∈ � (�) ⇒ (� ∪�) ∈ � (�)

Therefore,
∀� ′ ∈ � ′,� ′ ∈ � (� ′) . (� ′ ∪� ′) ∈ � (� ′)

By the deinition of
⊎
,

I����ℎView(�, �
⊎
� ′)�� ′

=

⋃

� ∩ � ′

∀� ∈ �,� ∈ � .� ∪ � ∈ � ∨ � ⊈ exist (�)

∧ ∀� ∈ �,� ′ ∈ � ′ . � ′ ∪ � ′ ∈ � ′ ∨ � ′ ⊈ exist (�)

∧ ∀� ∈ � . � ⊆ avail(�)

∧ ∀� ∈ � . � ′ ⊆ avail(�)

∧ � ∈ �

∧ � ′ ∈ � ′

By the deinition of view,

I����ℎView(�, �
⊎
� ′)�� ′

=

⋃

� ∩ � ′

� ⊆ View(�, �)

∧ � ′ ⊆ View(�, � ′)

∧ � ∈ �

∧ � ′ ∈ � ′

Given that the belief � contains no universes with conlicting states of � or � ′, View(�, �) ∈ � , and
View(�, � ′) ∈ � ′, so:

I����ℎ(View(�, �
⊎
� ′), �, � ′) = View(�, �) ∩ View(�, � ′)

□

ACM Trans. Comput. Syst.

	Abstract
	1 Introduction
	1.1 Roadmap and Contributions

	2 Motivation
	2.1 Contrasting with Blockchains
	2.2 Composability
	2.3 Availability and Integrity Properties

	3 Design Overview
	3.1 Blocks
	3.2 Observers
	3.3 Attestations

	4 Charlotte API
	4.1 Wilbur
	4.2 Fern
	4.3 Life of a Block
	4.4 Practices for Additional Properties

	5 Formalism
	5.1 Formalizing ADSs and States
	5.2 Observers and Adversaries
	5.3 Observers' Beliefs
	5.4 Formalizing Universes
	5.5 Updating Beliefs
	5.6 Observer Calculations
	5.7 Composability
	5.8 Attestation Semantics
	5.9 Monotonicity

	6 Use Cases
	6.1 Verifiable Storage
	6.2 Timestamping
	6.3 Conflict-Free Replicated Data Types
	6.4 Composition
	6.5 Entanglement

	7 Blockchains as ADSs
	7.1 Separating Availability and Integrity
	7.2 Integrity Mechanisms
	7.3 Blocks on Multiple Chains
	7.4 Linearizable Transactions on Objects

	8 Implementation
	8.1 Wilbur Servers
	8.2 Version Control
	8.3 Timestamping
	8.4 Blockchains
	8.5 DarXiv (Disaggregated arXiv)

	9 Evaluation
	9.1 Blockchains
	9.2 Timestamping
	9.3 Composition

	10 Related Work
	10.1 Addressing by Hash
	10.2 BlockDAGs
	10.3 Availability attestations
	10.4 Integrity attestations
	10.5 Distributed Data Structures

	11 Conclusion
	References
	A Bitcoin Transactions in Two Accounts or Fewer
	B Implementation Limitations of Attestations
	C Proof for Theorem 3

