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Abstract

Over the years, Fault Tolerance has become the most sought-after require-
ment in high-availability or life-critical systems. Fault-tolerant electronic
sub-systems are becoming a standard requirement in the automotive indus-
trial sector as electronics becomes pervasive in present cars. The existing
fault-tolerance analysis approach can handle quality faults emanating from
loss of precision in signal values of automotive systems, in addition to logical
faults. This analysis can aid the designer to identify where and how preci-
sion losses occur in both software and hardware components. This analysis
is performed on operation-level (Simulink) models, and hence provides early
detection of weak spots in the system.

The existing approach uses two fault analysis methods in tandem: a fault-
injection and simulation method is used which evaluates the quality degra-
dation of output signals of the system, under specific testcases and fault-
scenarios; and a look-up table based approach, in which quality degradation
of the complete system is obtained by a series of table lookups, which store
the characterized quality degradation behavior of individual components. The
LUT based method performs a quick but approximate analysis and yields bet-
ter coverage with respect to quality behavior.

The exhaustive analysis of quality fault-tolerance is a computationally in-
tensive problem. So, we focus on improving the LUT based approach for per-
forming fault tolerant analysis. In this thesis, we present a novel technique
to perform characterization of components using multiple functional testcases
that are quite varied and hence capture most of the component behaviour in
various faulty scenarios. Improving the characterization methodology, leads
to improved quality LUTs for each component, using which dynamic analy-
sis produces much better results. We use our approach to characterize two
systems, namely a Fault Tolerant Fuel Controller and an Anti-lock Braking
System. Apart from this, we also suggest techniques for performing com-
paction of LUTs to satisfy time and storage requirements.
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Chapter 1

Introduction

Fault-tolerant electronic sub-systems are becoming a standard requirement
in the automotive industrial sector as electronics becomes pervasive in present
cars. Fault-tolerance or graceful degradation is the property that enables a
system (often computer-based) to continue operating properly in the event
of the failure of (or one or more faults within) some of its components. If its
operating quality decreases at all, the decrease is proportional to the severity
of the failure, as compared to a navely-designed system in which even a small
failure can cause total breakdown. Fault-tolerance is particularly sought-after
in high-availability or life-critical systems.

The basic characteristics of fault tolerance require the following:

1. No single point of repair

2. Fault isolation to the failing component

3. Fault containment to prevent propagation of the failure

4. Availability of reversion modes

In addition, fault tolerant systems are characterized in terms of both
planned service outages and unplanned service outages. These are usually
measured at the application level and not just at a hardware level. The
figure of merit is called availability and is expressed as a percentage. For
example, a five nines system would statistically provide 99.999% availability.
Fault-tolerant systems are typically based on the concept of redundancy.
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1.1 Motivation

With the large scale proliferation of electronics and software as building
blocks of automotive systems, fault- tolerance has emerged as a first class
design requirement. It is of paramount importance to develop systems which
preserve functionality in-spite of failures and errors in electronic, communi-
cation and processing components. This requirement stems from the fact
that unlike mechanical components, which have graceful degradation in case
of failures, failure of electronic components causes sharp changes in system
behavior. For example, a defective mechanical steering column may cause
some variations in the steering torque provided by it, but a stuck-at-fault
in a processor output providing signals to a steer-by-wire system may cause
dramatic increase or decrease in steering torque. Additionally, automotive
systems are safety-critical systems which must conform to stringent indus-
try safety norms for fault-tolerance. Hence, it is important to design systems
which are provably resilient to faults which may emanate from various sources
and causes.

Failure of electrical and electronic components due to defects and aging
is a well documented phenomenon [16]. Chips, sensors, power supplies, and
electromechanical actuators are known to fail either permanently, or for short
time durations (transient failures), or by losing precision (behavior of measur-
able quantities like output voltage varies from fault-free behavior). Addition-
ally, ’bugs’ in software and even in the design of the hardware multiprocessor
platform, may cause transient and permanent failures. These failures man-
ifest themselves as errors in the output of the control system, and then the
actuator. These errors follow a feedback loop to the sensors of the automo-
tive system by propagating across the mechanical components of the plant.
This may further deviate the behavior of the automotive system from the
fault-free case.

The analysis of precision loss of automotive signals (analog, digital and
data in software) is an important but insufficiently addressed issue in the
design-flow of automotive control systems. Several automotive system com-
ponents, like sensors, software and hardware blocks, introduce sporadic qual-
ity faults ranging from shift in signal trajectory (for example bias faults in
sensors), to erroneous outputs for a short time duration (missing data from a
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camera, or software bugs). These quality faults do not necessarily render the
affected signals useless, but cause a loss of precision. The precision loss intro-
duced by one component propagates across other fault-free as well as faulty
components resulting in aggregation of precision losses with each propaga-
tion, and with the elapse of time. In order to tackle these problems, several
fault-tolerance (FT) mechanisms are employed by designers. An analysis
framework, for systematically evaluating different fault-tolerant automotive
system design options, for quality faults is an important ingredient of any
automotive system design-flow. This research strives to address the quality
fault analysis problem for automotive systems.

1.2 Background

In order to design fault-tolerant systems, a gamut of techniques and design
artifacts are incorporated in various components of the system. These design
features enable the functioning of the system in the presence of environment
induced failures and aging failures. The most common technique employed
across software and hardware components of the automotive control system,
as well as in sensors and actuators (with multiple windings), is replication
[10]. A study of techniques for developing fault-tolerant processing-nodes
using replication in different ways is presented in [2]. Similarly, in some
cases software components are replicated on multiple processing-nodes to
ensure that some replica of the software component is operational even in
case of failure of a subset of processing-nodes [11]. Apart from replication,
another technique for providing fault-tolerance in the software layer is em-
bedding non-identical alternate ways for computing the value of a signal.
Often look-up tables and time delay neural networks (TDNNs) [9] are used
to approximate the value of certain signals. These allow the computation of
the same signal by multiple sets of software functions. Another technique
providing fault-tolerance to transient errors (like soft-errors [15] and state
dependent software and hardware bugs) is rescheduling, wherein a task is
re-executed if an error is detected [10].

Aside from fault-tolerant design techniques, two essential ingredients for
achieving fault-tolerance are a diagnosis component and a reconfiguration
or selection component. Diagnosis is required in order to detect the faulty
components of the system and inform the reconfiguration mechanism of the
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same. Most diagnosis methods operate by recording the values of certain
signals and checking values of these signals against pre-defined assertions or
goldenized models. Reconfiguration consists of changing the topology of the
software or hardware systems so as to overcome the failure of single or multi-
ple components. In the simplest form reconfiguration involves switching the
source of a particular signal from one component to another. More complex
reconfiguration methods which employ different algorithms in response to
the set of available resources (computing, sensory and actuators) [12] have
also been explored by researchers.

While designing a fault-tolerant automotive system, the designer may want
to perform a ’what if ?’ analysis for different fault-tolerance strategies. Ad-
ditionally, once a final design point is reached, the designer must analyze
the design to assure that certain fault-tolerance requirements are satisfied.
Clearly, a framework for analysis of fault-tolerance is an important require-
ment for fault-tolerant automotive system design.

Fault-tolerance analysis methods in the literature can be broadly classified
as per the fault-tolerance requirements which must be satisfied by the system:

1. Logical Analysis: The analysis of logical system failures [10], and re-
silience under specific fault-scenarios (a sequence of occurrence of faults).
Logical faults analyzed by these methods completely degrade the out-
put of components, such that these output values cannot be utilized. A
logical fault naturally arises due to hardware failures (failure of power
supply, stuck-at-faults, aging) and bugs in the software.

2. Quality Analysis: The analysis of loss of precision in various compo-
nents and the propagation of precision errors. There are several sources
of quality faults, for example bugs in the software which are invoked in
a few execution time-slots, resulting in erroneous outputs in only those
execution time-slots. Moreover, quality faults may arise in hardware
due to shift in supply voltage to sensors, noise in sensors and actua-
tor components, and missing output data from sensors (like cameras).
While analyzing quality faults, the propagation of quality degradation
across fault-free as well as faulty, software, hardware and mechanical
components must be studied. Additionally, it may be noted that in
some cases diagnostic mechanisms monitor the quality degradation of
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a subset of signals, and notify a warning when the tolerance limits are
breached. In such cases, it is often of interest to analyze the extent
of quality degradation of un-monitored signals when certain diagnostic
mechanisms do not issue a warning.

3. Reliability Analysis: The analysis of mean time to failure (MTTF) for
the system, given the MTTF of individual components [5]. This is
especially useful for analyzing aging faults.

Currently, various dynamic (simulation-based) and static analysis methods
are employed at various stages of the design-flow for fault-tolerance anal-
ysis. Simulation-based methods are employed on operation-level, as well
as implementation-level models for logical and quality analysis. Typical
operation-level models used are Simulink models [8], while C/C++ processor
simulators and emulation setups executing automotive software are employed
for implementation-level analysis. Model checking based methods may be
employed for logical analysis of designs, while graph-based algorithms are
employed to perform reliability analysis of automotive systems [5].

1.3 Objectives

The basic objective of the project is to:

Analyze the accuracy and coverage of quality-LUTs, and make
necessary improvements, with a view to developing an elegant
method for performing fault tolerant analysis of Automotive Sys-
tems.

The major part of the project focuses on developing a novel technique for
characterizing components of an automotive demonstration,“Fault Tolerant
Fuel Controller”, provided by Simulink. The existing characterization ap-
proach leads to incomplete and somewhat inaccurate Look-up tables(LUTs).
Ideally, we want our quality LUTs to be as accurate and as complete as pos-
sible so as to capture almost all faulty scenarios. Using the improved LUTs,
we aim at performing dynamic and static analysis in order to obtain the
counterexamples that violate the fault tolerance requirements. We also want
to perform compaction of the LUTs to reduce simulation time and storage
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space. The proposed methodology is also tested on another model called the
“Anti-lock Braking System“ so as to examine the advantages provided by
this method.

1.4 Summary of Work Done

We analyze an existing approach which uses lookup table-based and fault-
simulation-based methods in tandem to obtain good coverage, while main-
taining the accuracy of analysis. We try to rectify the shortcomings of the
exisiting approach to come up with a generic fault tolerant analysis approach.

We present a modified technique for improving the characterization of
components of Automotive Systems. This involves developing an alternate
representation to capture the behaviour of signals with minimal storage re-
quirements. Improving the characterization methodology, leads to improved
quality LUTs for each component, using which dynamic analysis produces
much better results. We elucidate the advantages of the new methodology, by
applying it to characterize two systems, provided by the Simulink automotive
demonstrations:

� A Fault Tolerant Fuel Controller

� An Anti-Lock Braking System

The varied behaviour of different components makes it a challenging prob-
lem to characterize all components accurately and completely. The suggested
method keeps the various fault scenarios that a component is susceptible to,
under consideration. The functional testcases chosen for characterizing com-
ponents have a wide variation in behaviour so as to capture as much faulty
behaviour as possible. Apart from this, we also suggest a technique for
performing compaction across the obtained LUTs so as to satisfy time and
storage constraints.

1.5 Organization of Thesis

The remainder of the thesis is organized into several chapters as follows:
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� Chapter 2 presents the exisiting approach for performing fault toler-
ant analysis, which involves using a lookup table-based and a fault-
simulation-based method in tandem. This chapter introduces the basic
concepts of an operation level model, the used technique for character-
ization of components and the advantages of the Look-Up table based
analysis method.

� Chapter 3 presents the modified approach to characterize components
of an automotive system, leading to generation of better quality LUTs.
It also explains the needs for modifying the existing approach. Apart
from this, we also present a technique for compaction of LUTs and the
approaches for performing static and dynamic analysis.

� Chapter 4 presents an account of all the work done, along with the ob-
servations accompanying the new characterization method. We present
the characterization of two components of the Fault Tolerant Fuel Con-
troller and one component of the Anti Lock Braking system to estab-
lish the efficacy of our method. We also present the improved dynamic
analysis results obtained using the modified quality LUTs.

� Chapter 5 outlines the conclusions of the project and prepares an action
plan to be followed in the near future.
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Chapter 2

Current Approach for Fault
Tolerant Analysis

2.1 Operation Level Models

Operation-level modeling languages, for example the Simulink modeling
language [8], provide a versatile framework for modeling various aspects and
abstractions of automotive systems. These models are capable of represent-
ing not only function-level models of the automotive system, but also some
details of the architectural platform on which the automotive system is exe-
cuting (mapping to same processor, buffers and buses etc).

An operation-level model(Mop) [17] consists of operations(Op) which have
a set of input(InOp) and output ports(OutOp), and signals(Sig) connecting
different ports of these operations. Each operation corresponds to a func-
tional component of the system, which may range from a software code-block
to an analog component, or even a sensor. A discrete-event semantics is con-
sidered in this work, which is more pertinent since several operations are
mapped to software components (operating on sampled signals in discrete
steps). Each signal denotes the value which is updated by the ’source’ opera-
tion in every time-slot. It may be noted that a signal is a virtual connection
between operations and may correspond to physical quantities, like output
voltage generated by a filter, or may correspond to a data value generated
by a software block.
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Figure 2.1: A Schematic Representation of an Operation-Level Model

The schematic of an operation-level model can be represented as a directed
graph with operations corresponding to nodes and signals corresponding to
edges (Sig ⊆ Op×Op). It broadly consists of five sets of operations, namely,
sensor operations, control operations, actuator operations, plant operations,
and environment operations (Figure 2.1). Additionally, we note that signals
connect sensors to the control, control to the actuators, actuators to the
plant,and plant to the sensors, in a cyclic manner. Environment operations,
for example, the ’time- trigger’ and the ’user-input’ in Figure 2.1, model
the behavior of the driver and the environment, and do not have incoming
signal edges. It is notable that removing signals between the plant and sen-
sors (or actuators and the plant) causes the underlying graph structure to
be a directed acyclic graph (DAG). We call this modified operation-level
model, the open operation-level model, and the DAG structure is repre-
sented as Mopen(Op, Sigopen), where Sigopen ⊂ Sig. Loops in the control
component may be logically treated as being connected to a virtual actua-
tor, an operation-free signal in the plant, and a virtual sensor (Figure 2.2).
In this case, when the signals between the plant and sensors are removed,
the graph structure of the operation-level model is a DAG.
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Figure 2.2: Handling loops in the automotive control as a virtual signal path
through the plant. (a) Original loop in the control, (b) Loop through a
virtual sensor, and virtual actuator.

An example schematic representation of an operation-level model, broadly
similar to schematic representations of several operation-level models of au-
tomotive systems, is presented in Figure 2.1. Each operation in this model
corresponds to either: a task of the control application, or a sensor opera-
tion (obtains value of certain parameters and user inputs), or an actuator,
or components of the plant (consisting of mechanical parts). Each operation
is represented by either a logical or arithmetic function, or a state-machine
like a FSM , or hybrid I/O automata [13]. In most automotive systems of
interest, the control system is almost entirely software based, thereby sen-
sor outputs are immediately converted to data items provided as inputs to
control software components. Moreover, many control (software) components
may be time triggered, such that they start/resume execution at specific time
instances. For example, the operation OP 4 executes only when 5 ms elapses
from the start of execution, even if inputs are available earlier. Edges be-
tween operations denote virtual functional connection between them, which
map the output trajectory of a source operation as the input trajectory for
the destination operation.

2.2 Modelling Errors at Operational Level

One of the most important requirements of an operation-level fault-simulation
framework is the modeling of various quality faults at operation-level ab-
straction. The origin of faults typically lie in circuit-level or assignment-level
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details of an implementation. For example, a soft error causes a transient
bit-flip in a memory cell or register, or a software bug may cause incorrect
values. It is important to abstract these faults to the level of operation-level
models, while preserving the essence of the manner in which a fault affects
a signal value. In this work we propose to abstract the effects of quality
faults as either noise, shift, or spike faults (Figure 2.3). These can be uti-
lized to abstract the effects of the following types of faults (among others) in
operation-level models:

1. sensor faults leading to added noise on output and shift in output signal
trajectory (noise and shift faults).

2. missing data from sensors leading to arbitrary sensor outputs (spikes)
in certain time-slots (for example missing data from a camera).

3. software bugs and hardware errors which do not manifest themselves in
every execution run can be viewed as spike faults in certain time-slots
in which they are exercised. These spike faults overapproximate the de-
fect introduced by the bug/error by producing the maximum/minimum
value possible for the signal in the said time-slot.

4. precision losses in software components are modeled as trajectory shifts.
These shifts can occur due to typecasting bugs, and due to porting con-
trol software to embedded automotive platforms which may not support
many high-precision and floating-point operations.

5. hardware recovered soft-errors and temporary logical faults manifest as
spikes (sudden and short change) on signals(spike fault).

It is assumed that permanent logical faults are detected by appropriate
components in the hardware layer such that fault-silence can be implemented
[2]. Additionally, operations are assumed to be instrumented such that
they are fault-silent, in case any essential input signal indicates fault-silence.
Hence, propagating the effects of permanent logical faults by fault-simulation
is trivial. Such being the case, we shall henceforth focus only on quality faults
in this work, while stating that the proposed methodologies are capable of
handling logical faults as well.
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Figure 2.3: Modelling of Errors at the Operation Level

It may be noted that some of the aforementioned faults do not originate in
software control components of the automotive system. However, due to fault
propagation, their effects are still observed on the outputs of various software
control components (among others). Hence it is imperative for any fault-
tolerance analysis method to address the propagation of the aforementioned
faults across different types of software, hardware, and mechanical (from the
plant) components.

For modeling quality degradations, we associate each type of quality degra-
dation with an appropriate measure for denoting the extent of quality degra-
dation (the error). Measures of quality degradation for the three types of
quality faults introduced earlier are presented next:
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1. Shift: in signal trajectory, for which quality degradation is denoted by
the maximum deviation in signal value among all time instances within
the simulation window.

2. Noise: for which quality degradation is described by amplitude of the
overlaying additive random noise signal

3. Spikes: for which the quality degradation is denoted by the number of
spikes. The peak value of these spikes is bound by the upper limit of
the operation-range or data-type (in case the signal is a digital data).

2.3 Simulation Based Analysis

2.3.1 Inputs for Fault Tolerant Analysis

There are three inputs to the simulation-based fault-tolerance analysis
framework, namely the testcase, the fault-scenario and the fault-tolerance
requirement specifications.

Testcases typically describe a set of typical as well as critical maneuvers
(job sequences) which are performed by the automotive system. Addition-
ally, testcases may also be generated to perform directed analysis of the
automotive system. Usually, the sensor inputs which come from the user are
modeled by these testcases. In case only a part of the system is being tested,
certain signals from the ’plant’, which were generated in response to control
signals from some other sub-system, are also included in the test-suite.

The second input to the simulation-based fault-injection framework is the
description of the fault-scenario under which the system must be analyzed.
Fault-scenarios may be described explicitly by stating a set of faults which
must occur. In the case of quality faults, in addition to the information of
which faults occur, the measure of quality degradation must also be stated.
Hence a fault-scenario is a set of triplets of the form: <location, fault −
type,measure> , where location denotes the signal which is afflicted by the
fault, while fault-type and measure denote the type and measure of error
(measure is irrelevant for logical faults). For example, a fault-scenario may
specify that ’at most 5 spikes (type and measure) may be introduced by all
(location) software components’.
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It must be noted that all types of faults cannot occur on every signal in
the model. In this work we allow noise, shift and spike errors on sensor
outputs, shift and spike errors on outputs of software components, spike
errors on outputs of hardware components, and no errors on outputs of plant
components (we argue that sensor errors can account for plant errors).

While specifying fault-scenarios as inputs to the analysis framework, it is
important to account for the correlation between various faults. For example
a common power supply induces several correlated noise and bias (shift)
faults in all sensors it supplies power to. In this work, we assume that fault-
scenarios are external inputs to the proposed analysis framework, and are
defined by the designer by taking effects of correlation into consideration.

The third set of inputs to the simulation-based fault analysis framework is
the set of fault-tolerance requirements which must be satisfied by the system.
Logical and timing properties specifying the design intent [3] of the system
can be used as specification for the fault-tolerance analysis step. Addition-
ally, specific properties for checking bounds on quality degradation may be
specified (for example an upper bound on amount of superimposed noise).
Besides this, more involved properties may be written where acceptable qual-
ity degradation is a function of time [4].

In this work, we consider quality fault-tolerance requirements to be prop-
erties of the form

∧
i ψi ⇒ φ, where ψi is an antecedent proposition and

φ is the consequent proposition. Both, the antecedent and the consequent
propositions, are either True, False, or are propositions denoted by tuples
of the form: <Sig, fault − type, limit>. Here each tuple specifies that the
sum of quality degradations of type ’fault-type’, at all the signals location ∈
Sig, must be upper-bounded by ’limit’. However, there is a crucial difference
between the antecedent and consequent propositions. While the antecedent
propositions reason about the additive quality degradations (like in case of
fault-scenarios), the consequent proposition reasons about the quality degra-
dation of the signal as compared to the golden (fault-free) signal.
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Figure 2.4: A Schematic Representation of Fault Injection

2.3.2 Fault Simulation Based Analysis

Given the three inputs to the fault-tolerance analysis framework, the simulation-
based fault-tolerance mechanism consists of fault-injection, simulation of the
operation-level model, and checking assertions corresponding to the fault-
tolerance requirement properties. For this, first we instrument the native
operation-level model of the automotive system with ’fault-injection’ opera-
tions. These operations superimpose errors on the native input signal (which
may be error free or may itself contain some prior acquired errors) of such
operations. Here it may be noted that all the fault types proposed in this
work are amenable to signal superposition.

An example fault-injection operation, implemented in Simulink, is illus-
trated in Figure 2.5. This operation can superimpose noise, shift, and spike
errors (at most one spike) on the native signal. The amount of noise and shift,
as well as the number of spikes (0 or 1 spike in this example), are fixed by
assigning values to the parameters ’noise-amplitude’, ’shift-amplitude’ and
’spikes0/1’. For example, ’shift-amplitude’ set to 0 indicates the absence of
a shift fault. The values which must be assigned to these parameters are
obtained from elements of the fault-scenario, corresponding to the given sig-
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Figure 2.5: A Fault Injection mechanism for introducing errors on a signal

nal. Other parameters, like the height of a spike and the position (along the
time-axis) of introduction of a spike are set, either randomly, or by the user
after a study of the signal waveform.

Once the operation-level model of the automotive system has been in-
strumented with the ’fault-injection’ operations, fault-simulation consists of
checking fault-tolerance requirements for all relevant fault-scenarios, for each
functional testcase. In each fault-simulation, monitored signals, which must
conform to fault-tolerance requirements, are compared against logged sig-
nal trajectories of the corresponding fault-free run, for the given functional
testcase. The difference in trajectory between the fault-injected and fault-
free runs for each monitored signal is computed and logged. Thereafter,
the logged difference trajectory is appropriately processed for checking shift,
noise, and spikes causing deviation from the fault-free trajectory.

The difference between the fault-injected and fault-free (golden) signal
trajectories are computed as the difference in amplitudes of the signals in
different time slots. Once the difference trajectory is computed, the number
of spikes is obtained as the number of time-slots in which the difference is
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greater than a limit (spike-limit) which depends on the native trajectory. For
computing the amount of shift and noise errors, we consider windows of a
certain number of time-slots starting at each time-slot within the simulation
window. The amount of shift is then computed as the maximum, over all
windows, of the average value in each difference trajectory window-segment
(while ignoring spikes). This essentially tries to mimic the behavior of a
column filter. The amount of noise is computed as the maximum amplitude
difference within a window, amongst all windows.

Hence, we obtain a set of quality degradation tuples of the form:
<msignal, vnoise, vshift, vspikes> , where vnoise , vshift , and vspikes are the qual-
ity degradations of different types (noise, shift, and spikes) for the monitored
signal, msignal. Fault-tolerance requirements are checked by comparing the
quality degradation tuples of the monitored signals, with their limits in the
fault-tolerance requirement queries.

2.3.3 Complexity of Exhaustive Fault Simulation

An important aspect of the quality fault analysis framework is the notion
of a complete set of fault-scenarios for the automotive system (for a given
functional testcase). Since the measurement of quality degradation for noise
and shift faults involves real numbers (with infinitely many possible values
within a bounded interval), a finite representative set of real numbers may be
selected by the designer for defining a complete set of fault-scenarios. Such
being the case, let Πnoise(l) and Πshift(l) be the finite sets of values of degra-
dation for the additional noise and shift (respectively) introduced on signal
l. Now consider a system where Ss, Sc , and Sh are sets of sensor, software,
and hardware output signals (with ns = |Ss|, nc = |Sc|, andnh = |Sh|). Ad-
ditionally, let us assume that all queries have an antecedent proposition of
the form <Ss ∪ Sc ∪ Sh, spike, nspikes>, restricting the total number of in-
jected spikes to at most nspikes. Clearly, there are

∑
i=0...nspikes

Ci
ns+nc+nh+i−1

fault-scenarios arising out of different ways in which spikes may be injected
(selecting i signals from ns + nc + nh with repetition). Additionally, assum-
ing that |Πnoise(l)| = |Πshift(l)| = nquant, the number of possible ways of
occurrence of shift and noise faults at sensor outputs is n2ns

quant. Also, the
number of possible ways of occurrence of shift faults at software component
outputs is: nquant

nc . Hence, the total number of fault-scenarios possible for
each testcase is:(

∑
i=0...nspikes

Ci
ns+nc+nh+i−1)nquant

2ns+nc . For the automotive
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system case study introduced later,ns = 4, nc = 20 and nh = 3. The number
of fault-scenarios for nquant = 3 and nspike = 5, is approximately 4.6× 1019.

2.4 Look-Up Table Based Analysis of Opera-

tional Models

The analysis of quality degradation of automotive systems is a computa-
tionally intensive problem, often requiring a very large number of simulation
runs, as illustrated in Section 2.3. Hence, it is paramount to devise meth-
ods to reduce the amount of computation required for each simulation run.
In this work we characterize the quality response of components, and then
utilize this result to perform the analysis for the complete system. Char-
acterization is conducted on individual operations, or a user defined set of
operations, to analyze their response to input signal quality degradation, as
well as spikes on inputs. In the proposed lookup table-based method, the
results of characterization are tabulated, and quality degradation of a system
is computed by a series of table lookups.

2.4.1 Characterizing Operations

Let us consider an operation OP , which has k input signals i0, i1, ..., ik−1

and m output signals o0, o1, ..., om−1. The first step for characterization in-
volves logging the input and output signal trajectories for fault-free behavior,
for each testcase tci ∈ TC. For the illustrated setup (in Simulink) for charac-
terization shown in Figure 2.6, ’engine speed.mat’ and ’manifold pressure.mat’
are log files for the fault-free input signals, while ’pumping constant output.mat’
is the log file of the output signal, for one testcase.

Characterization proceeds exactly like fault-injection and simulation as de-
scribed earlier in Section 2.2. The fault-scenarios for characterization involve
invoking noise, shift and spike faults on the input signals. Even though sev-
eral types of errors are not injected on many input signals during full-system
fault-simulation, characterization requires that all types of errors be injected
on each input signal. This is because errors injected at input signals must
not only model errors introduced by the immediate source operations, but
also model propagated errors which originate beyond the source of the signal,
from operations which could introduce any type of error (like sensors).
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Figure 2.6: A setup for characterizing a two-input component

For an exhaustive characterization, all combinations of values of noise and
shift faults at the user defined quantization-level (nquant points each), and
spike faults with an upper bound on the number of spikes (nspikes), are

invoked. Hence (n2
quant)

k
, fault-scenarios iterating over nquant noise, and

nquant shift values for each of the k inputs must be considered. Additionally,
0...nspike spikes are spread across the k inputs, contributing to a factor of∑

i=0...nspikes
Ci

k+i−1. Hence the total number of fault-scenarios for exhaus-

tive characterization is n2k
quant(

∑
i=0...nspikes

Ci
k+i−1). It is notable that the

number of fault-scenarios is not as large as that for full-functional fault-
simulation. For nquant = 3 and nspikes = 5 (as earlier in Section 2.3), the
number of scenarios for a two input operation is 1701. In our studies we
have found that two-input operations are the most commonly encountered
operations in the automotive domain when the system is partitioned at a
reasonable granularity (20-30 operations).

The results of characterization are tabulated in a quality lookup table
mapping the quality degradation on the inputs, to the quality degradation of
the outputs. Hence it stores a mapping LUT : Π(i0)× Π(i1)...× Π(ik−1)→
χ(o0) × χ(o1)... × χ(om−1). Here Π(i) ⊆ Πnoise(i) × Πshift(i) × Πspike(i),
and Πnoise(i),Πshift(i),Πspike(i) are the sets of noise, shift and spike values
for signal i which are invoked during characterization. The values χ(i) ⊂
R+ × R × Z+, denote the values of output noise (positive real), shift (real)
and spikes (natural number) for signal i.
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2.4.2 Analysis using LUTs

Given tuples of quality degradations for all input signals of an operation op,
the quality degradation tuples for the output signals can be approximately
estimated from the quality lookup table for the operation Op. We use the
notation V (il) = <vnoise

in(il), vshift
in(il), vspikes

in(il)>, to denote the quality
degradation tuple for input il, and V (oj) = <vnoise

out(oj), vshift
out(oj), vspikes

out(oj)>,
to denote the tuple of quality degradation for output oj. If the input degra-
dations do not coincide with quality values from characterization, i.e. V (i0)×
V (i1)... × V (ik−1) /∈ Π(i0) × Π(i1)... × Π(ik−1), then one of several interpo-
lation/extrapolation techniques may be used to estimate the output quality
degradations. In this case, the output quality degradations are approxi-
mations of the actual quality degradation values. It may be noted that
the quality lookup table approximately captures the propagation of quality
degradations across an operation, arising from the execution semantics of
that operation. Additionally, the operation may itself add to the quality
degradation of the signal (due to errors in its own execution), which is mani-
fested as injected faults on the output signals of the operation. Hence, besides
the lookup table an ’addition’ operation is needed to model the quality re-
sponse of the operation. This ’lookup table-addition’ pair for each operation
correspond to the ’operation - fault-injector’ pair from the fault-simulation
setup described earlier in Section 2.2. There is exactly one lookup table (and
addition operations) for each operation in the native model.

It is notable that the lookup table-based analysis is a quality centric anal-
ysis. It does not reason about the trajectory of signals, but solely reasons
about the quality degradations of signals. Hence it has obvious gains in
terms of computational effort needed for analysis. Moreover, the lookup
table-based method performs exhaustive local analysis at each operation in
the characterization step. This helps the lookup table approach to attain
higher coverage for quality-centric analysis.

A lookup table-based estimation of quality degradation is performed by
successive table-lookup and addition operations, on a network of lookup ta-
bles and addition operations. Fault-scenarios being analyzed are used to add
to the quality degradation, just like fault-injection was performed for fault-
simulation. For example, consider the partial network of lookup tables and
addition operation in Figure 2.7.
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Figure 2.7: Performing Quality-Centric Analysis using LUTs

We illustrate the lookup table analysis for the fault-scenario:
<SIGNAL12, 0.2, 0.2, 1>, indicating that the signal ’SIGNAL12’ undergoes
an additional quality degradation of 0.2 units for noise, 0.2 units for shift, and
1 additional spike. The initial quality degradations for signals ’INPUT1’ and
’INPUT2 are <0.3,−0.1, 1> and <1.4, 0.0, 2> respectively. This is closest
to the lookup table entry ’<0.4,−0.3, 1> , <1.4,−0.3, 3>’, as circled in the
figure. Hence the propagated value of degradation across the operation is
computed to be <1.0, 0.2, 1>. Additional quality degradation is added as
per the fault-scenario by using the addition operation. This results in the
quality degradation at ′SIGNAL−12′ to be <1.2, 0.4, 2>. A lookup in table
′QualityLUT2′, for another operation OP2, yields the quality degradation of
the output signal of OP2 to be <1.0,−0.2, 0>.

In most designs, like the one presented in Section 2, there is a feedback
loop from the outputs of the plant to the inputs of the sensors. This feedback
loop is removed for the quality centric analysis, since quality degradations are
defined over the complete simulation window (time duration for which simu-
lation is performed) and a lookup table-based analysis without any feedback
covers analysis for the simulation window. However, removing the feedback
results in the lookup table-based analysis not being able to accurately cap-
ture the effects of feedback errors. Additionally, we note that the lookup
table-based approach is oblivious to the variations of errors over time, and
instead reasons only about the maximum values of errors. In this setup,
feedback errors can be modeled by additional sensor errors. However, our
experiments indicate that even without feedback error modeling at sensors,
the lookup table-based approach tends to overapproximate errors.
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Figure 2.8: Quality Fault Tolerance Analysis Flow

2.5 Quality Fault Tolerance Analysis Flow

In this work we propose an analysis-flow which appropriately melds the
lookup table andfault-simulation-based methodologies to leverage both quick
simulation and high coverage of the lookup table approach, while maintaining
the accuracy of the fault-simulation method. The analysis flow is as follows:

The first step in the analysis-flow is a functional simulation of the operation-
level model, in order to obtain golden trajectories at various signals, for each
functional testcase. Thereafter, the user partitions the operation-level model
into operation blocks, and these blocks are characterized. These character-
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izing simulations involve fault-injection and simulation of individual blocks,
comparing the outputs against stored golden trajectories, and storing sig-
nal quality degradation in lookup tables. These lookup tables consist of the
input versus output quality of signals for each functional testcase. Once
the lookup tables have been obtained, a network of lookup tables and ad-
dition operations is constructed, and fault-simulation of the complete sys-
tem is performed by a series of table lookups. Fault-tolerance requirements
are checked on the results obtained by simulation of the lookup table net-
work. If a fault-tolerance requirement is violated, then the counterexample
fault-scenario which violates the fault-tolerance requirement is re-examined
in the operation-level model of the system by fault-simulation. Hence, the
bulk of the fault-tolerance analysis simulations are performed by the lookup
table-based approach, while only the counterexample fault-scenarios are ex-
amined by the simulation of the operation-level model. Additionally, if there
is a significant difference in the values of quality degradations obtained by
operation-level fault-simulation and the lookup table-based approaches, then
the lookup tables are augmented with quality degradation inputs and out-
puts at individual operation blocks, as obtained during the fault-simulation.
Here, if I(i0)...I(ik−1) are the quality tuples for the input signals of an op-
eration Op, as obtained during fault-simulation, and O(o0)...O(om−1) are
the quality tuples for the output signals, then a new lookup table entry
I(i0), I(i1), ...I(ik−1), O(o0), O(o1), ...O(om−1) is added for the operation Op.
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Chapter 3

Modified Approach to Fault
Tolerant Analysis

3.1 Need for Modifications

The existing method has several salient features, among them are the
ability to handle quality faults, and performing analysis at the operation-
level abstraction. Also, it has sufficient coverage and a good deal of ac-
curacy. However, there are several shortcomings of this approach as well.
We try to propose certain modifications in the approach, while still keeping
the operation-level simulation method and the lookup table-based analysis
method as the basic framework of our methodology.

3.1.1 Existing Approach: Interesting Observations

The existing approach has several adavantages as well as several limita-
tions which are worth analyzing. Some interesting observations are as follows:

1. Representation of Signals.

The existing approach uses a combination of noise, shift and spike to
capture the behaviour of residue signals. Ideally, this approach tends
to have several difficulties. If the spike limit is quite low, then it is
easy to confuse between noise and spikes. Also, if the entire signal is
shifted by an amount greater than the spike limit in some contiguous
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time slots(increasing function), then it would be perceived as multiple
spikes in the range, whereas actually it should be considered as a shift
fault. Fortunately for the system being analysed, the spike limits are
much larger in magnitude than the maximum noise, and almost no
signals have the output residue as a monotonically increasing function
of time. Whatever residues have such behaviour, they are very small
in amplitude and hence can be captured by a simple noise term. Thus,
this representation is sufficiently accurate for our analysis.

2. Granularity.

Granularity refers to the user-defined quantization levels for noise,
shift and spike faults. This indicates the various magnitudes of noise
and shift faults that can be added to the golden input signals. Most
of the analysis of the existing approach was performed using a granu-
larity of 3 for noise and shift faults. The basic assumption of having
a certain granularity is that any value taken from a range, other than
the representative value of that range, is assumed to yield the same
output residue as done by the representative value. This, of course,
leads to a certain amount of inaccuracy in the analysis of components.
Nonetheless, having higher granularity increases the simulation time as
well as the space required to store the LUTs by a large amount. So,
there is a distinct trade-off between simulation time and storage space
vs the accuracy of simulation.

3. Functional Testcase.

The functional testcase for a component consists of a set of golden
input signals and its corresponding golden output signal based on which
the fault injection is performed. The existing approach has only one
functional testcase for each component, on which perturbations are
added and characterization is performed. Clearly, this may not cover
all the possible faulty input scenarios. So, the LUTs generated by
using just a single functional testcase per component, are somewhat
incomplete and the component is thus not completely characterized.
We would be much better off, if we had multiple functional test cases,
to form the basis for our characterization.
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3.2 Proposed Approach

After careful study of the shortcomings of the existing approach, a modified
methodology was proposed for performing Fault Tolerant Analysis of Auto-
motive Systems. The entire analysis was done on the Fault Tolerant Fuel
Controller Automotive demonstration provided by Simulink.The procedure
in brief is as follows:

1. Characterization of Components. Each component of the automotive
system is characterized using multiple functional test-cases. This en-
sures that a wider variety of faulty scenarios are considered, leading to
more complete LUTs. The granularity of analysis is also changed as
deeemed suitable to obtain better quality LUTs.

2. Alternate Representation of Residue. Although, the existing classifica-
tion of signals based on noise, shift and spike faults was quite effective,
an alternate representation has been suggested to facilitate comparision
between output residues.

3. Gray Box Approach. The existing approach analyzed each component
as a complete black box, using only the input-output residue pairs to
characterize its behaviour. But, it is observed that any knowledge of
the actual behaviour of the component, i.e. a white box analysis, can
help in characterizing the components better. This combination of
white box and black box is called as a gray box for every component.
So, we try to generate quality LUTs using the gray box approach and
study the analysis performed using such LUTs.

4. Compaction of LUTs. The more detailed characterization means that
the size of the LUTs generated are quite huge and hence, compaction
becomes more important than before. An algorithm has been devel-
oped to perform compaction of LUTs: both inside an LUT as well as
across various LUTs obtained for different functional testcases for a
component.

5. Analysis Using the LUTs. Using the improved quality LUTs generated
for each component, a system level static as well as dynamic analysis is
performed, to obtain the number of counter-examples that violate the
fault tolerant requirements for the system.
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6. Other Models.The proposed methodology is used to analyze other au-
tomotive systems such as an ’Anti-Lock Braking System’ with a view
to finding problems,if any, that are inherent to the analysis.

3.3 Characterization of Components

In order to perform any fault tolerant analysis on an automotive system,
it is of utmost importance that each component should be characterized as
accurately and as completely as possible. Characterization proceeds exactly
like fault-injection and simulation as in the previous approach. The fault-
scenarios for characterization are generated by adding noise, shift and spike
faults on the golden input signals. Even though several types of errors are
not injected on many input signals during full-system fault-simulation, char-
acterization requires that all types of errors be injected on each input signal.
This is because errors injected at input signals must not only model errors
introduced by the immediate source operations, but also model propagated
errors which originate beyond the source of the signal, from operations which
could introduce any type of error (like sensors). The following steps were fol-
lowed to characterize the components of the system at hand.

1. Multiple Functional Testcases. For each component, we used 5 func-
tional testcases to serve as the golden input-output sets. These were
obtained from the golden inputs to these components used in other
Simulink models. If those were not available, then random functional
testcases(with random spikes and noise) were generated. It was ensured
that all the functional testcases had wide variation, so as to cover as
much behaviour of the component as possible.

2. Axes Values and Other Thresholds. Previously, since only one func-
tional testcase was used, the representative values for the noise and
shift axes, and the spike limits, were set by observing the behaviour of
that single golden input. In the modified approach, we use the global
maximum and minimum among all the signals to set the noise and shift
axes values, and to fix the spike upper and lower limits. This ensures
that the magnitude of fault added for a given set of noise, shift and
spike values is the same irrespective of which functional testcase the
perturbation is added on. This makes the input and output residues
amenable to comparision.
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3. Modifying Granularity. Most of the analysis is performed using a gran-
ularity of 3, but we do modify the granularity to assist in distinguish-
ing between components. For a component that shows similar output
residues to within a specified error limit, for same input residue added
across different functional testcases, we do not tinker with the graular-
ity and simply use the LUTs generated at a granularity of 3. But,
if a component shows different behaviour, for the same input residue,
added to different functional testcases, then we look into changing the
granularity to distinguish the components further.

In such a case, we first reduce the granularity from 3 to 2 and generate
the LUTs. If a component still shows different behaviour for different
functional testcases, then we cannot combine them in any way, and
so, we use the LUTs generated with granularity 3, as they are more
accurate. However, if any component generates almost similar LUTs at
this reduced level of granularity, then we increase the granularity from 2
to 4 and generate the LUTs. This ensures that we capture more detailed
behaviour of such components that showed different behaviour to start
off, i.e. we obtain more accurate quality LUTs for such components.

Using this technique more complete LUTs were obtained for each compo-
nent. Obviously, the size of LUTs increased a lot, so suitable compaction
techniques were developed.

3.3.1 Alternate Representation of Residue

An alternate representation was developed to perform comparision be-
tween the output residues obtained from different functional testcases. The
new chosen representation did not involve classifying the signal in terms of
noise,shift and spike, but to store the nature of the signal( its approximate
trajectory) using only a small number of data points. Basically, we tried to
capture the behaviour of the signal by sampling at specific points in various
time slots. We could perform the comparision better by storing the entire
signal, but due to space constraints, we resort to the following algorithm.

Algorithm.
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1. Time-slots. Divide the entire signal into several intervals whose width
is user-specified. The width is so chosen that it captures almost the
entire signal, keeping in mind the memory available for storing each
signal. A width of 100 was found suitable enough as per our memory
constraints.

2. Encoding Scheme. In each interval, find the maximum and minimum
amplitudes of the signal. Store them as (Max-value, Min-value) or
(Min-value, Max-value) pairs depending on their order of occurrence
in each interval. So, for every interval we store two signal points. For
the entire signal store the first and last data points just for the sake of
simplification.

3. Decoding Scheme. Reconstruct the original signal by plotting these
pairs of values at quarter and three-quarters of the interval, in the
order in which they were stored. Plot the first and last data points of
the encoded signal at their original positions.

In Matlab, each signal is stored using 3001 data points. Using an interval
width of 100, we have 30 intervals. For each interval, we store 2 data points,
making a total of 60 data points. Taking into account the first and last points,
we have encoded a signal using 62 data points. For decoding the signal, it
was found that plotting the points at a distance of half the interval length
provided the most accurate representation. Since, we no longer represented
the signal in terms of noise, shift and spikes, there was no chance of wrong
interpretation during comparision.

K-L Divergence.

The Kullback-Leibler divergence, more popularly known as the K-L Diver-
gence is a non-symmetric measure of the difference between two distributions
P and Q. This was used to analyze how much different,the output residues
of two different functional testcases, were, for the same set of noise,shift
and spike input faults. The discrete version of the Divergence is given by :

DKL(P,Q) =
∑

i P (i) log
P (i)

Q(i)
.
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This usually is used to compare two probability distributions. So, to apply
this to any ordinary signal, an appropriate normalization constant was used.
The normalization constant for each signal was the sum of the amplitudes at
the encoding points of the alternate representation. Using those 62 points
for each signal, K-L Divergence was computed for 5 randomly chosen pairs of
output residues. These were averaged out to give the K-L Divergence value
for that component. These K-L Divergence values provided a technique for
categorizing the various components of the automotive system.

3.4 Compaction of LUTs

The LUTs as seen from the calculations above can contain large number
of entries if the component is susceptible to all the three types of quality
faults. Storing such large LUTs may be a problem. So, one of our aims is
to compact the LUTs. The compaction of LUTs can be performed inside
every LUT individually, or across LUTs for different functional testcases for
a component. While compacting, we basically look for entries that can be
merged by virtue of their similar nature, yielding a smaller LUT.

Across a single functional testcase. For each functional testcase, we
add perturbations in the form of noise, shift and spike faults and create
various faulty input signals (say m in number). Now for any pair of the m
input signals, if the output residues are same within a specified error limit,
then we can combine the rows for these two signals to obtain a single row in
the LUT. For performing such compaction, we use a technique very similar
to circuit packing methods, in which we try to form ’solid groups’ comprising
blocks of LUT portions that have similar values. The amount of similarity,
needed for being a member of a solid group, depends on the specified error
limit δ. For those solid groups, we combine the rows of LUTs, to generate
a range of noise, shift or spike axes values that have almost similar LUT
entries. Thus, we can compact across a single functional testcase. These
compacted LUTs are in the format necessary to perform static analysis and
can improve its efficieny to a large extent.

Across multiple functional testcases. For each of the n functional test-
cases, we obtain m signals as before. Choose pairs of signals across the test-
cases. Depending on how much fault tolerant the system is, some or most
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of such pairs will have similar output residues within a certain error limit.
For components that generate almost similar output residues to within a
specified error limit, for same input residue added across different functional
testcases, we average out the LUT entries for all such pairs to obtain only a
single quality LUT for such components. Thus, we have compacted across
functional testcases.

The need for compaction increases in the proposed approach, as for certain
components, we generate the LUTs using a higher granularity of 4. This
means that the tables will be of larger size. Also, we are characterizing
the components based on multiple functional testcases, meaning that we
will have more number of LUTs for each component. Hence, compaction of
LUTs, both inside an individual LUT and across LUTs for a component is
very much an essential step in our analysis.

3.5 Static Analysis

It has been observed that logical faults can be effectively analyzed using
logic-reasoning methods, and methods like fault-tree analysis. However, the
same is not true for quality faults. The analysis of quality faults is usually
done by fault-injection and simulation, which is incapable of providing suffi-
cient coverage. As an example, consider a system which has 20 components,
each of which can introduce some bounded quality degradation. In this case,
even if we were to study a simplistic quality-fault model where a quality
fault with a certain amplitude may either occur or not occur, we have to test
about one million testcases. The alternative to testing a very large number
of testcases is to formulate and solve the quality fault-tolerance problem as
a static analysis, or an optimization problem as done in some robustness
analysis methods.

In this project, we investigated a static analysis method for performing
quality fault-tolerance analysis. The advantage of static analysis over simu-
lation, is that it can store and use partial simulation-run results to build-up
complete simulation-runs, without having to redo simulations from the start.
Moreover, if any partial-result of one simulation run matches with that of a
previously investigated run, then this run is not explored any further (state
matching). Additionally, recent developments in static analysis techniques,
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notably SAT and SMT (Satisfiability Modulo Theory) solving, allows the
use of effective search heuristics to address large problems. However, the ap-
plicability of static methods is usually limited by available computer RAM
memory. In particular, the memory requirements for analyzing operation-
level models, like C-code or Simulink/Stateflow models, is such that scalabil-
ity to handle large programs remains a challenge. Such being the case, it is
important to appropriately abstract the software control system behavior, so
as to facilitate the use of static analysis, while retaining traceability between
results identified by this analysis and the actual system behavior.

We propose a static-analysis-based framework for quality fault-tolerance
analysis of operation-level models like Matlab/Simulink. Due to the trend
towards designing automotive software in operation-level languages like Mat-
lab/Simulink, and with the intention of identifying issues early in the design-
flow, it is important to perform this analysis at the operation-level. The
inputs to the analysis framework are: a functional specification of the fault-
hypothesis and quality fault-tolerance requirements, in a language proposed
in this work; the set of functional testcases; and the operation-level model of
the application. The following algorithm is used to perform static analysis
for automotive systems with quality faults.

Algorithm.

1. Partitioning the complete operation-level system model into sub-systems
components.

2. This is a functional testing step, which creates golden simulation traces
for the quality fault-tolerance analysis, for a suite of functional test-
cases. The input and output traces for each sub-system component,
for each functional-testcase, is recorded in this step.

3. The characterization step wherein for each sub-system component, and
each functional-testcase, several characterizing simulation runs are per-
formed. Each characterization run consists of perturbing inputs (corre-
sponding to a functional testcase) in a systematic manner and recording
the output perturbations. The output of this step is a set of lookup ta-
bles (LUTs), one for each sub-system component, and each functional
testcase. The characterization step is where the abstraction occurs.
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Figure 3.1: Static Analysis : An Overview

Here the detailed dynamics of the system are hidden, and abstracted
as quality lookup tables mapping input quality degradation to output
quality degradation of individual components.

4. A SMT instance is created by replacing each sub-system operation by
a LUT and an addition operation (to model propagation of errors, and
introduction of errors by the component respectively), and adding con-
straints to bind input and output values of sub-system components
appropriately. The variables modeling injected faults, and those mod-
eling the error at the outputs are constrained in accordance with the
fault-hypothesis and fault-tolerance requirements respectively.

5. Thereafter we use a SMT solver to obtain a fault-scenario which violates
the fault-tolerance requirements. This counterexample fault-scenario
indicates a hot-spot in the design (abstraction in the characterization
step implies that the results of static analysis are approximate).

6. Finally, this counterexample fault-scenario is reproduced in the operation-
level model, and checked if it is spurious or an actual fault-scenario.
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Spurious counterexamples may also be used for improving the accuracy
of characterization.

It is notable that one may also consider the aforesaid approach to be a di-
rected fault-simulation, where the results of the SMT solver provide directed
testcases to be simulated in the operation-level model.

3.6 Dynamic Analysis

Any analysis that is simulation-based comes under the category of dynamic
analysis. These simulation-based methods are employed on operation-level,
as well as implementation-level models for logical and quality analysis. Typ-
ical operation-level models used are Simulink models [8], while C/C++ pro-
cessor simulators, and emulation setups executing automotive software, are
employed for implementation-level analysis.

The entire fault simulation based method used in the existing approach
is based on dynamic analysis. In a simple sense, dynamic analysis means
analyzing a system using LUTs. Basically, we construct the system as a
network of LUTs, in which components are connected to each other. We
perform simulation on the entire system using the LUT values and analyze
the results. The dynamic analyis gives us an idea about the number of
counterexamples produced in a set of simulation runs at the operation level,
that violate the given fault tolerance requirements. These counterexamples
are then run at the system level to verify if they actually violate the system
requirements.
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Chapter 4

Work Done

The entire fault tolerant analysis was done on the ’Fault-tolerant fuel con-
troller’ (ft fuelsys model) automotive system from the Simulink automotive
demonstrations. First, a brief overview of the selected automotive model is
presented, followed by the observed experimental results.

4.1 Fault Tolerant Fuel Controller

The ’Fault-tolerant fuel controller’ model is an engine-block application,
which computes the fuel flow rate for the engine, dependent on various inputs.
The Simulink model of the ’Fault-tolerant fuel controller’ example consists
of clearly demarcated control (Fuel-Rate-Controller) and plant (Engine-Gas-
Dynamics) sub-systems. There are two external inputs to the model, namely
the throttle and the engine speed. Additionally, the controller has inputs
which indicate the oxygen flow (EGO) and the manifold pressure (MAP),
connected via a feedback loop from the plant. All controller inputs are ob-
tained from appropriate sensors. The studied output of the system (the
monitored signal) is the fuel-flow rate calculated by the control.

We perform an analysis to study the effects of sensor and software com-
ponent failures on the output (fuel-flow rate) of the control. Sensors suffer
from noise, shift, and spike errors, while software components suffer shift
and spike errors (only spike errors in case of boolean output), and hardware
components suffer from spike errors. A spike error in the sensor is treated as
a temporary logical error by the system and the fault-resilience framework
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Figure 4.1: A Schematic Operation-Level Model of “The Fault Tolerant Fuel
Controller“

(the ’sensor fault correction’ block in Figure 4.2) inbuilt into the system tries
to correct the errors. However, the recovery usually leads to shift errors on
outputs, in lieu of spike errors.

The Simulink model of the ft fuelsys system consists of two main compo-
nents, namely the controller (Fuel-Rate- Controller) and the plant (Engine-
Gas-Dynamics). The control, consists of four main components, as shown
in Figure 4.2. These are the control logic, the sensor fault correction unit,
the air-flow calculation unit, and the fuel calculation unit. The Fuel-Rate-
Controller is assumed to be implemented in software, and a fixed-step solver
(with a time-step of 0.01 s) is employed for simulations. We identify 20 op-
erations in the control component (Fuel-Rate- Controller) of the ft fuelsys
system. Among these components, 15 have two floating-point inputs, 4 have
one floating-point and one boolean input, while 1 has one-floating point in-
put.

The fault-tolerance requirement studied for this automotive system is:
Antecedent:’The noise injected at sensor outputs is less than 10 of the maxi-
mum value of thesignaltrajectory, and the shift injected at sensor outputs is
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Figure 4.2: The actual controller module

between -5 to 5 of the maximum value of the signal trajectory, and the shift
injected at software component outputs is less than 1 of the maximum value
of the signal trajectory, and the total number of spikes injected is less than
or equal to 5.’
Consequent:’The noise and shift at the fuel-flow rate signal is less than 5 of
maximum value of the signal trajectory.’

A random fault-scenario generator for generating fault-scenarios consistent
with the antecedent of the fault-tolerance requirements. We utilize these
fault-scenarios in the developed fault-simulation framework for quality fault-
tolerance analysis. A framework for exhaustive characterization has also
been developed. This characterization framework tests individual operations
for all fault-scenarios(using multiple functional testcases) at a user defined
granularity for shift and noise faults (number of points between 0-10 and -5
to 5 fault-levels respectively), and up to 5 (maximum number allowed by
the antecedent) spikes on the input signals. We develop a network of lookup
tables and addition operations for fault-simulation using lookup tables.

42



4.2 Characterization

4.2.1 Study of LUTs

The components of the fault tolerant fuel controller were characterized using
multiple functional testcases as mentioned before. Based on the results of
comparision of the output residues, the components could be divided into
two broad categories:

Type 1. For these components, the nature of the output residues for sim-
ilar input residue, added to various functional testcases, was same within a
small error limit. So, the LUT entries had almost similar values for perturba-
tions added to different golden input sets. Also, these had low K-L divergence
values for various output residues. This means that our set of functional test-
cases was sufficient to almost completely characterize such components. The
adder, multiplier, TAM MAP, TAM MAR were the two-input components
that showed this type of behavior.

Type 2. For these components, the nature of the output residues for sim-
ilar input residue, added to various functional testcases, was quite varied.
The LUT entries had widely different values for different functional test-
cases, indicating that the output residue was somehow dependent on the
golden input values. A white box approach might give useful insights re-
garding such components. These components also have high K-L diver-
gence values for various output residues. This means that our set of func-
tional testcases is not sufficient to completely characterize such components.
Some examples of such components are MC o2, MC AFR, oxygen correction,
pumping constant, map estimate, throttle estimate,etc.

In order to characterize such components better, we might be tempted to
use more number of functional testcases, thereby obtaining more number of
LUTs. But, there are several limitations to generating large amount of LUTs.
First of all, there is a time constraint. Simulation for multiple functional
testcases require a large amount of time; so we cannot go on generating
LUTs forever. Secondly, the larger the number of LUTs we obtain, the more
difficult it becomes to store and process such LUTs. Greater amount of
compaction then becomes a major requirement.
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Figure 4.3: Original Signal

4.2.2 K-L Divergence using Alternate Representation

The comparision of two output residues, obtained from same input residue
added to different functional testcases, is done using the metric of K-L Diver-
gence. We cannot compare the residues,simply on the basis of LUT values,
because sometimes, the spikes may be slightly lower than the specified spike
limits and hence may be misinterpreted as noise. This would throw off the
LUT values, but the divergence value may still be very small. For obtain-
ing K-L Divergence, we use an alternate representation to capture the basic
behaviour of the signal.

Sample signals using Alternate Representation.

K-L Divergence. As the table 4.1 shows, the components of type 1 have
a much lower K-L Divergence value than components of type 2. For type 2
components, we can perform a further distinction, based on the faults added
to each of the two golden inputs, as follows:

1. Type 2a. In such components, both the inputs are susceptible to all
three types of faults, viz. noise, shift and spike faults. Examples of
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Figure 4.4: Alternate Signal Representation

Figure 4.5: Original Signal
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Figure 4.6: Alternate Signal Representation

such components are Oxygen correction,Pumping constant, MC AFR,
etc.

2. Type 2b. For such components, only one input is susceptible to all
three kinds of faults while the other is susceptible to only spike faults.
Examples of such components are the integrator module, low mode,
rich mode and ramp rate.

It is observed that the Divergence value of Type 2b components is less
than the Divergence value of Type 2a components. This is possibly due to
the presence of lesser variety of faults in one input for type 2b components.
As seen from the table, the K-L Divergence value of the integrator module,
a type 2b component, is 23.47 while that of the pumping constant module, a
type 2a component, has a much higher divergence value of 52.51, reinforcing
our conclusion.

Faults Other than the Quantized Values. Fault injections were done
choosing noise and shift faults other than the representative values inside a
single level of granularity. The LUTs generated had somewhat different val-
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Table 4.1: K-L Divergence for components

Component K-L Divergence Component Type

Adder 0.51 1
Multiplier 0.76 1

TAM MAP 1.23 1
TAM MAR 1.45 1
Integrator 23.47 2

Oxygen correction 32.45 2
MC o2 37.78 2

MC AFR 41.38 2
Pumping constant 52.51 2

ues than that of the ones obtained by using the values of the quantized levels
of faults. Nonetheless, the same pattern followed for all type 1 components,
i.e. even these generated almost similar output residues for different func-
tional testcases. Hpwever, the type 2 components continued to show wide
variation in the output residues, generating different signatures that were de-
pendant on the functional testcase. Again, a white box approach may prove
useful to performing such analysis.

4.3 Behaviour of Certain Components

In this section, we present the behaviour of both type 1 and type 2 compo-
nents, in terms of their LUT values as well as the output residue signals. We
choose the simplest type 1 and type 2 components, namely the adder and
the oxygen correction module respectively.

4.3.1 Adder Module

The adder is a simple component, which has two inputs, both of which are
susceptible to all three types of faults, and the output signal is simply the
sum of the two input signals.

Consider the following case:

� Granularity = 3 for noise and shift faults and 5 for spike faults

47



Figure 4.7: The Adder Module

� Input 1: <noise, shift, spike> = <2, 2, 3>

� Input 2: <noise, shift, spike> = <2, 2, 2>

� Input 1 Axes: noise = [0,367,734], shift = [-367,0,367](scaling factor =
10−4 for both shift and noise faults), spike = [0,1,2,3,4,5]

� Input 2 Axes: noise = [0,35,70], shift = [-35,0,35](scaling factor = 10−4

for both shift and noise faults), spike = [0,1,2,3,4,5]

Fig. 4.8 shows the injected input residues, while Fig. 4.9 and 4.10 show
the behaviour of the output residues for two different functional testcases.

The two output residues are obtained from the same input residue being
added to two different functional testcases. As evident from the figures, both
these signals are quite similar, with a very low K-L Divergence value of 0.57.
The LUT tables corresponding to the above output residues are as follows:

Noise LUTs.

LUT1,noise(:, :, 2, 2, 3, 2) =

 9483 9512 9497
9412 9565 9513
9383 9625 9539


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Figure 4.8: Injected Faults into the Golden Inputs

Figure 4.9: Output Residue 1
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Figure 4.10: Output Residue 2

LUT2,noise(:, :, 2, 2, 3, 2) =

 9461 9533 9449
9407 9579 9487
9349 9658 9515


Shift LUTs.

LUT1,shift(:, :, 2, 2, 3, 2) =

 4867 4878 4839
4833 4895 4861
4821 4902 4893



LUT2,shift(:, :, 2, 2, 3, 2) =

 4861 4867 4844
4817 4879 4869
4809 4893 4881


Spike LUTs.

LUT1,spike(:, :, 2, 2, 3, 2) =

 1 1 1
1 1 1
1 1 1


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Figure 4.11: The oxygen correction module

LUT2,spike(:, :, 2, 2, 3, 2) =

 1 1 1
1 1 1
1 1 1


Discussion. The numbers in bold indicate the LUT values corresponding
to the considered faulty scenario. As one can clearly see, both the signals
have near about the same LUT values. This kind of behaviour was observed
for all pairs of output residues obtained by using all the 5 functional testcases.
Thus, the adder has been completely characterized using our set of testcases.

4.3.2 Oxygen Correction Module

The Oxygen correction module is a simple two input component that con-
trols the amount of oxygen needed for various fuel consumption requirements.
Both its inputs are susceptible to all three types of faults, and the output
signal represents the oxygen needed for different fuel consumption require-
ments.

Consider the following case:

� Granularity = 3 for noise and shift faults and 5 for spike faults

� Input 1: <noise, shift, spike> = <2, 2, 3>

51



Figure 4.12: Injected Faults into the golden inputs

� Input 2: <noise, shift, spike> = <2, 2, 2>

� Input 1 Axes: noise = [0,500,1000], shift = [-500,0,500](scaling factor
= 10−4 for both shift and noise faults), spike = [0,1,2,3,4,5]

� Input 2 Axes: noise = [0,98,196], shift = [-98,0,98](scaling factor =
10−4 for both shift and noise faults), spike = [0,1,2,3,4,5]

Fig. 4.12 shows the injected input residues, while Fig. 4.13 and 4.14 show
the behaviour of the output residues for two different functional testcases.

The two output residues are obtained from the same input residue being
added to two different functional testcases. As evident from the figures, both
these signals are quite different, with a high K-L Divergence value of 33.17.
The LUT tables corresponding to the above output residues are as follows:
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Figure 4.13: Output Residue 1

Figure 4.14: Output Residue 2
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Noise LUTs.

LUT1,noise(:, :, 2, 2, 3, 2) =

 7984 7872 7891
7921 7963 7912
7975 7944 7935



LUT2,noise(:, :, 2, 2, 3, 2) =

 5716 5677 5548
5892 5783 5672
5613 5881 5469


Shift LUTs.

LUT1,shift(:, :, 2, 2, 3, 2) =

 −2085 −2123 −2129
−2146 -2135 −2097
−2131 −2098 −2123



LUT2,shift(:, :, 2, 2, 3, 2) =

 752 735 729
861 745 737
719 787 827


Spike LUTs.

LUT1,spike(:, :, 2, 2, 3, 2) =

 1 1 1
1 1 1
1 1 1


LUT2,spike(:, :, 2, 2, 3, 2) =

 1 1 1
2 2 1
1 2 1


Discussion. The numbers in bold indicate the LUT values corresponding
to the considered faulty scenario. As one can clearly see, both the signals
have radically different LUT values. The magnitude of the spike limit for
the considered set of functional testcases is set at 0.601. The discernable
negative spike has a magnitude of 0.595 in the first residue and a magnitude
of 0.607 in the second residue. So, it is not counted as a spike in the first
residue but is counted as such in the second residue. Hence, a difference of
1 appears in the spike LUTs. Also, in the first residue, since the negative
spike is actually not counted as a spike, it contributes to the noise and shift
faults, resulting in higher noise amplitude(LUT values) and a negative shift
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value. On the other hand, in the second residue, as the negative spike is
classified as a spike, the noise is limited only to the observable crests and
troughs resulting in lower noise values and the shift also has a positive value.
The LUTs of the second residue capture the signal much better than that of
the first residue.

This kind of behaviour was observed for all pairs of output residues ob-
tained by using all the 5 functional testcases. Thus, we can clearly see that
our characterization is by no means complete, and the LUTs cannot be com-
bined in any way. So, for type 2 components, we need more functional
testcases or a different technique for characterization.

4.4 Anti Lock Braking System

An anti-lock braking system, or ABS is a safety system which prevents
the wheels on a motor vehicle from locking up (or ceasing to rotate) while
braking. It simulates the dynamic behavior of a vehicle under hard braking
conditions. The model represents a single wheel, which may be replicated
a number of times to create a model for a multi-wheel vehicle. The wheel
rotates with an initial angular speed that corresponds to the vehicle speed
before the brakes are applied. We used separate integrators to compute wheel
angular speed and vehicle speed. We use two speeds to calculate slip, which
is determined by:

ωv =
Vv

Rr

slip = 1− ωw

ωv
where:

� ωv = vehicle speed divided by wheel radius

� Vv = vehicle linear velocity

� Rr = wheel radius

� ωw = wheel angular velocity
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Figure 4.15: The Anti Lock Braking System

From these expressions, we see that slip is zero when wheel speed and
vehicle speed are equal, and slip equals one when the wheel is locked. A
desirable slip value is 0.2, which means that the number of wheel revolutions
equals 0.8 times the number of revolutions under non-braking conditions with
the same vehicle velocity. This maximizes the adhesion between the tire and
road and minimizes the stopping distance with the available friction. In this
model, we used an ideal anti-lock braking controller, that uses ’bang-bang’
control based upon the error between actual slip and desired slip. We set
the desired slip to the value of slip at which the mu-slip curve reaches a peak
value, this being the optimum value for minimum braking distance.

4.4.1 Slip fcn Mux unit

This module is actually a combination of a MUX and a simple mathemat-
ical module that computes the relative slip. It behaves exactly like a type
1 component of the previous system. In fact, except the integrator module,
all other components of the ABS are of type 1, i.e. they have similar output
residues for same input residues, irrespective of the golden input set.

Consider the following case:

� Granularity = 3 for noise and shift faults and 5 for spike faults

� Input 1: <noise, shift, spike> = <2, 2, 3>
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Figure 4.16: The slip fcn mux model
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Figure 4.17: Injected Faults into the golden inputs

� Input 2: <noise, shift, spike> = <2, 2, 2>

� Input 1 Axes: noise = [0,351943,703885], shift = [-351943,0,351943](scaling
factor = 10−4 for both shift and noise faults), spike = [0,1,2,3,4,5]

� Input 2 Axes: noise = [0,351999,351999], shift = [-351999,0,351999](scaling
factor = 10−4 for both shift and noise faults), spike = [0,1,2,3,4,5]

The two output residues are obtained from the same input residue being
added to two different functional testcases. As evident from the figures, both
these signals are quite similar, with a very low K-L Divergence value of 1.24.
The LUT tables corresponding to the above output residues are as follows:
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Figure 4.18: Output Residue 1

Figure 4.19: Output Residue 2
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Noise LUTs.

LUT1,noise(:, :, 2, 2, 3, 2) =

 680567 681134 682119
679154 678715 679226
680013 679718 682043



LUT2,noise(:, :, 2, 2, 3, 2) =

 698436 684751 687822
683155 680561 681138
689342 680145 682249


Shift LUTs.

LUT1,shift(:, :, 2, 2, 3, 2) =

 64267 64378 63839
63833 64195 64361
63921 64102 63893



LUT2,shift(:, :, 2, 2, 3, 2) =

 64161 64267 64044
63817 64179 64809
64209 64393 64081


Spike LUTs.

LUT1,spike(:, :, 2, 2, 3, 2) =

 3 3 3
3 3 3
3 3 3


LUT2,spike(:, :, 2, 2, 3, 2) =

 3 3 3
3 3 3
3 3 3


Discussion. The numbers in bold indicate the LUT values corresponding
to the considered faulty scenario. As one can clearly see, both the signals have
near about the same LUT values. This kind of behaviour was observed for
all pairs of output residues obtained by using all the 5 functional testcases.
Thus, the slip fcn mux has been completely characterized using our set of
testcases.
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4.5 Dynamic Analysis

Using the modified characterized data, i.e. the new axes values and new LUTs
for each component, the dynamic analysis was performed and compared with
the existing approach. The results are tabulated as follows:

Table 4.2: Dynamic Analysis: Using old and new LUTs

Fuel Fault Rate(%) Counterexamples generated Counterexamples generated

using old LUTs using new LUTs
(No. of Potential Candidates) (No. of Potential Candidates)

5 1164(1171) 1143(1147)
6 1127(1171) 1124(1147)
7 1053(1171) 1089(1147)
8 972(1171) 1014(1147)
9 887(1171) 944(1147)
10 799(1171) 872(1147)

The dynamic analysis was performed on a high speed processor for one hour
in both cases. The algorithm generates the number of cases that violate fault
barriers starting from 5% to 10%. The numbers in the bracket indicate the no.
of faulty cases that the dynamic analysis algorithm expects to generate. The
other numbers indicate how many counterexamples(cases that violate the
fault tolerance requirements) were actually produced. It can be clearly seen
that the percentage of counterexamples generated using the modified LUTs
is more than that generated using the exisiting LUTs. This indicates that
the modified characterization technique is actually effective and generates
better quality LUTs.
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Chapter 5

Conclusions and Action Plan

5.1 Conclusions

The existing method for fault-tolerance analysis of automotive systems
has several salient features, including the ability to handle quality faults,
and performing analysis at the operation-level abstraction. This method can
identify certain types of accumulated loss of precision (or quality) in auto-
motive systems, which may lead to failures. Additionally, it can abstract the
manifestation of automotive system failures to the operation-level, thereby
enabling all analysis steps to be performed on operation-level models like
Simulink. This facilitates quicker analysis, as well as system simulation for
longer time durations wherein quality errors accumulating over time may be
unearthed.

Two methods work in tandem for providing fault-tolerance analysis, namely
an operation-level simulation method and a lookup table-based analysis method.
The operation-level simulation method is based on fault-injection and simulation-
trace analysis. On the other hand, the lookup table analysis method quickly
analyzes a larger number of fault scenarios by ignoring details of operation
behavior and concentrating on quality analysis. This method is based on
characterizing individual sub-systems, and storing the variation in output
quality versus input quality as a lookup table. Through experiments on an
automotive case study, the efficacy of using lookup tables to abstract the
quality response of operations was studied. It was found that the number of
simulation runs needed for exhaustive fault-analysis is very large; the lookup
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table-based method helps in providing a quick, but approximate answer, and
significantly higher coverage. However, the completeness and accuracy of
characterization play a major role in the usefulness of quality LUTs.

We retain the same basic approach of using the lookup table-based and
fault-simulation-based methods in tandem, as it ensures good coverage, while
maintaining the accuracy of analysis. However, keeping the importance of
LUTs in mind, in order to improve their accuracy, a new technique for char-
acterizing components was developed. It characterized certain components
very accurately and almost completely while others had to compromise with
only slightly improved versions of LUTs. Nonetheless, the improved LUTs
were used to perform dynamic analysis on the system. The new LUTs pro-
vided very encouraging results with the number of counterexamples gener-
ated about 6% more than that of the old LUTs. However, their is still scope
for improvement in the dynamic analysis technique. Currently, we have not
yet examined whether the counterexamples produced are actually very close
to each other or far apart. Ideally, we would like them to be as distinct as
possible to cover as much faulty cases as possible.

5.2 Action Plan

The modified techniques have certainly been a step closer towards getting a
generic, robust method for performing fault tolerant analysis of automotive
systems. But the scope for further analysis is huge. We take a look at some
of the steps that we would like to follow in the near future.

Static Analysis. Exhaustive analysis of quality fault-tolerance is a com-
putationally intensive problem. A method has been proposed which suitably
abstracts the behavior of operation-level models, to discrete lookup tables,
and then performs static analysis to identify hotspots in the design. These
hotspots are then analyzed in the operation-level model for checking their
validity. The proposed static analysis-based flow may also be treated as a
directed testing mechanism. A tool-chain has been developed to perform this
analysis. As a first step, we would like to use the modified LUTs to perform
this static analysis and compare the results with those obtained from using
the old LUTs.
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Compacted LUTs. Two algorithms for LUT compaction within the LUT
have been developed. One of them is a very fast algorithm that provides
25-35% compaction. It is highly interesting to utilize these compacted LUTs
to perform static and dynamic analysis, to examine the accuracy of LUTs
preserved under the compaction procedure. Meanwhile, other compaction
techniques are also being looked into.

Gray Box Approach Analyzing an automotive system component, both
in terms of a white box as well as a black box can provide useful insights
to understanding the residue behaviour of the component. So, a gray box
analysis of the system at hand is to be performed to obtain any additional
information about the components, that could prove useful in modifying the
LUTs for better static and dynamic analysis.

Fault Injections Currently, the fault injections for dynamic analysis are
not very elegant. For, example a single fault value is chosen from a very wide
range at random. We would like to quantize these ranges into more useful
intervals, in order to ensure that the counterexamples produced are actually
very distinct from each other. Also, we would like to limit the number of
fault injection points for better handling of the analysis.

Increasing Granularity Given that all the compaction techniques work
properly, we can look into increasing the granularity of analysis as it will ob-
viously improve the accuracy of the LUTs. We hope that using the modified
characterization technique at a high granularity, we can come up with much
improved LUTs for performing fault tolerant analysis.
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