Trickles: A Stateless Protocol Stack

Alan Shieh
Andrew Myers
Emin Gün Sirer

Cornell University
State placement is important

- In typical network stacks, both servers and clients hold per-connection state
 - Requires resources
 - Limits scalability
 - Increases vulnerability to DoS attack
 - Poses barriers to migration

- State problems are inherent to TCP+Sockets
Trickles approach

- Make one end stateless
- Migrate all state to client, recreate state at server via continuations
 - Encapsulate server state
 - Piggyback on request and data packets
 - Secure continuations with tamper-resilient MAC
- Any server replica can service any request
Trickles properties

- Entire server protocol stack is **stateless**
 - Replaces inherently stateful TCP+Sockets

- Trickles enables:
 - Transparent failover
 - Load balancing
 - Anycast services
Trickles properties

- Linux implementation
 - 15,000 LOC
 - Deployed on PlanetLab
- Comparable performance
- Backwards-compatible & TCP-friendly
 - Same wire format
 - Same client interface
 - Uses TCP flow control

Point-to-point performance

Throughput under contention
Summary

• Trickles enables stateless connection oriented services
 – Scale well
 – Resist DoS attacks
 – Require less resources
• Makes possible qualitatively different kinds of services
 – Geographically-distributed anycast services with long-lived connections