A Full Characterization of Functions that Imply Fair Coin Tossing and Ramifications to Fairness

Gilad Asharov
Bar-Ilan University

Yehuda Lindell
Bar-Ilan University

Tal Rabin
IBM Research

TCC 2013
Secure Multiparty Computation

• A set of parties with private inputs wish to compute some joint function of their inputs
• Parties wish to preserve some security properties. E.g., privacy and correctness
• Security must be preserved in the face of adversarial behavior by some of the participants, or by an external party
• The adversary receives an output if and only if the honest party receives an output
 – In some sense, parties receive outputs simultaneously
Coin-Tossing

- The coin-tossing functionality:
 \[f(\lambda, \lambda) = (U, U) \]

 \((U\) is the uniform distribution over \(\{0,1\}\))

 - both parties agree on the same uniform bit
 - no party can bias the result

- In 1986, Cleve showed that it is impossible to construct a fair coin-tossing protocol

 - Intuitively, no simultaneous exchange, so one party always has more information about the result, and can abort and bias the result
• Gordon, Hazay, Katz and Lindell [STOC08] showed that there exist **some non-trivial** functions that can be computed with **complete fairness**!

 – Any protocol with no embedded XOR (essentially the less-than functionality)
 – Some specific functionalities with embedded XOR
A fundamental question:

What functions can and cannot be securely computed with complete fairness?

The only known impossibility result for fairness today is still that of Cleve
What Do We Know About the World?

- coin-tossing

- trivial \(\checkmark\)
- less-than \(\checkmark\)
- functions that imply coin-tossing \(\times\)
- anything else?
- some functionalities with embedded XOR [GHKL] \(\checkmark\)
Characterizing Fairness

• Which Boolean functions with finite domain can be computed with complete fairness?

• Can we characterize the functions via a property such that:
 – If the function satisfies the property: it can be computed fairly
 – If the function does not satisfy the property: it cannot be computed fairly
• We give a simple property (a criterion) such that
• If the function satisfies the property – it implies coin-tossing
 – Thus, it cannot be computed with complete fairness
• If the function does not satisfy the property – it does not imply coin-tossing*
 – We know exactly what Cleve’s impossibility rules out
 – Proving impossibility for other functions requires a new proof (cannot be reduced to Cleve)
What Do We Know About the World?

Deterministic Boolean Functions with Finite Domain

- trivial ✓
- less-than ✓
- anything else?
- Functions that imply coin-tossing ✗
- some functionalities with embedded XOR [GHKL] ✓
What About This Function?

<table>
<thead>
<tr>
<th></th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
What About This Function?

<table>
<thead>
<tr>
<th></th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
What About This Function?

<table>
<thead>
<tr>
<th></th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
What About This Function?

<table>
<thead>
<tr>
<th>1/2</th>
<th>x_1</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>x_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>x_3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
What About This Function?

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1/2 1/2 1/2
The Protocol – Malicious Y

pick $x \in \{x_1, x_2, x_3\}$ according to distr. $(1/2, 1/2, 0)$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$f(x,y) = \frac{1}{2}$
<table>
<thead>
<tr>
<th></th>
<th>γ_1</th>
<th>γ_2</th>
<th>γ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
What About Party Y?

<table>
<thead>
<tr>
<th></th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2$</td>
<td>$1/2$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$1/2$</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$1/2$</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1/2$</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The Overall Protocol

pick \(x \in \{x_1, x_2, x_3\} \) according to distr. \((1/2, 1/2, 0)\)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

pick \(y \in \{y_1, y_2, y_3\} \) according to distr. \((1/2, 0, 1/2)\)

\[
\text{Pr}[f(x, y) = 1] = \frac{1}{2}
\]
Another Point of View

<table>
<thead>
<tr>
<th></th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Another Point of View

\[
\begin{pmatrix}
\ p_1 \\
\ p_2 \\
\ p_3
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
q_1 \\
q_2 \\
q_3
\end{pmatrix}
\]

\[= \Pr[\text{output} = 1] \]
Another Point of View

\[
\begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
1 & 0 & 1 \\
1 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
q_1 \\
q_2 \\
q_3 \\
\end{pmatrix} =
\begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\end{pmatrix}
\begin{pmatrix}
q_1 \\
q_2 \\
q_3 \\
\end{pmatrix} = \frac{1}{2}
\]

\[
\begin{pmatrix}
p_1 & p_2 & p_3 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
1/2 \\
0 \\
1/2 \\
\end{pmatrix} =
\begin{pmatrix}
p_1 & p_2 & p_3 \\
1/2 & 1/2 & 1/2 \\
\end{pmatrix} = \frac{1}{2}
\]
Generalizing the Above: Definitions

\(f \) is \(\delta_1 \)-left balanced

if there exists a probability vector \(p = (p_1, \ldots, p_m) \), \(0 \leq \delta_1 \leq 1 \)
such that: \(p \cdot M_f = \delta_1 \cdot 1_{\ell} \)

\(f \) is \(\delta_2 \)-right balanced

if there exists a probability vector \(q = (q_1, \ldots, q_{\ell}) \), \(0 \leq \delta_2 \leq 1 \)
such that: \(M_f \cdot q^T = \delta_2 \cdot 1_{m}^T \)

\(f \) is \(\delta \)-balanced

if \(f \) is \(\delta \)-left balanced and \(\delta \)-right balanced
Our Main Theorem

- If f is δ-balanced for some $0 < \delta < 1$, then it implies coin-tossing

- If f is not δ-balanced for any $0 < \delta < 1$, then it does not imply coin-tossing*
Theorem

If \(f \) is \(\delta \)-balanced for some \(0 < \delta < 1 \), then it implies coin-tossing.

Proof:

\(f \) is \(\delta \)-balanced \(\Rightarrow \) coin tossing for \(\delta \)-coin

Apply von-Neumann’s method to toss a fair-coin.
The Impossibility Result

Theorem

If f is not δ-balanced for any $0 < \delta < 1$, then it **does not imply** coin tossing*

- We show that there does not exist a fair coin-tossing protocol in the f-hybrid model
 - For any coin-tossing protocol in the f-hybrid model, there exists an (inefficient) adversary that can bias the result
- Unlike Cleve – the parties have some **simultaneous exchange**. Thus, a completely different argument is needed
Impossibility in the OT-hybrid model

- The adversary is *inefficient*
 - It computes the distributions over all possible random coins of an honest X
 - This computation can be approximated given an NP-oracle
- We do not know how to construct an *efficient* adversary
- Impossibility still holds if the parties have an ideal OT
 - Embedded OR implies OT [Kilian 91]
 - A function that doesn’t contain an embedded OR is $1/2$-balanced
A malicious Y can always bias the probability to get 1 in a single invocation!
We can assume that the protocol consists only of invocations of f.
The Protocol Transcript Tree

\[(r_1, r_2)\]

\[(r_1, r_2): x_i, y_j: 1\]

\[(r_1, r_2): x_k, y_k: 0\]
The Protocol Transcript Tree

distributions over the inputs

$(\alpha_1, \ldots, \alpha_m)$
$(\beta_1, \ldots, \beta_\varepsilon)$

probability of $\text{coin}=1$ conditioned on reaching ν

probability that the output is 1 in this invocation

p_ν

0

$1 - \gamma^\nu$

γ^ν

$(r_1, r_2): x_i, y_j: 1$

1

0

1

0

1
The adversary acts honestly but searches for a “jump” between probabilities in parent and children.

We show that in any execution, such a “jump” exists.
• We also study the case of a **fail-stop** adversary
 – Follows the protocol specifications but may abort prematurely
• Unclear how to model fail-stop in the ideal world
 – Is the simulator allowed to change the corrupted party’s input?
• We consider two possible definitions and study fairness in *both* cases
• We give a simple property (a criterion) s.t.:
 – If the function satisfies the property, it implies coin-tossing
 – If the function does not satisfy the property, it does not imply coin-tossing
• We consider the same question for fail-stop adversary
• This is an important step forward towards understanding fair secure computation

Thank You!!
Every path (execution) from root to leaf has such a “jump”:

- The probability in the root is $1/2$
- The probability in each leaf is either 0 or 1

End of Proof Sketch