
3D-Based Reasoning with Blocks, Support, and Stability

Zhaoyin Jia†, Andrew Gallagher†, Ashutosh Saxena⇤, Tsuhan Chen†

† School of Electrical and Computer Engineering, Cornell University.
⇤ Department of Computer Science, Cornell University.

zj32@cornell.edu, andrew.c.gallagher@gmail.com, asaxena@cs.cornell.edu, tsuhan@ece.cornell.edu

Abstract

3D volumetric reasoning is important for truly under-
standing a scene. Humans are able to both segment each
object in an image, and perceive a rich 3D interpretation
of the scene, e.g., the space an object occupies, which ob-
jects support other objects, and which objects would, if
moved, cause other objects to fall. We propose a new ap-
proach for parsing RGB-D images using 3D block units for
volumetric reasoning. The algorithm fits image segments
with 3D blocks, and iteratively evaluates the scene based
on block interaction properties. We produce a 3D repre-
sentation of the scene based on jointly optimizing over seg-
mentations, block fitting, supporting relations, and object
stability. Our algorithm incorporates the intuition that a
good 3D representation of the scene is the one that fits the
data well, and is a stable, self-supporting (i.e., one that does
not topple) arrangement of objects. We experiment on sev-
eral datasets including controlled and real indoor scenar-
ios. Results show that our stability-reasoning framework
improves RGB-D segmentation and scene volumetric repre-
sentation.

1. Introduction
3D reasoning is a key ingredient for scene understand-

ing. Confronted with an image, a human perceives a 3D
interpretation of the scene rather than viewing objects as
groups of ‘flat’ color patches. Objects occupy volumes in
space, are supported and stable (in static scenes), and oc-
clude farther objects. All these properties require reasoning
beyond traditional object recognition.

In this paper, we propose a framework for reasoning with
3D volumes that incorporates the physical constraints of our
natural world. Our algorithm inputs RGB-D data, performs
3D box fitting of proposed object segments, and extracts
box representation features for scene reasoning, such as box
intersection and stability inference.

Past works for producing 3D interpretations represent
the world as a “pop-up” model, as piece-wise planar seg-

(a) (b)

(c) (d)
Figure 1. (a) The input RGB-D image. (b) Initial segmentation
from RGB-D data. (c) A 3D bounding box is fit to the 3D point
clouds of each segment, and several features are extracted for rea-
soning about stability. Unstable boxes are labeled in red. (d) The
segmentation is updated based on the stability analysis and it pro-
duces a better segmentation and a stable box representation.

ments, or as blocks constrained to rest on the ground. How-
ever, inferring a 3D interpretation is only part of the pic-
ture, a good scene interpretation should also follow physi-
cal rules: objects should be placed stably in the scene. If
we attempt to segment the scene purely based on appear-
ance or shape, we may end up with the segmentations that
do not make physical sense, as shown in Fig. 1c. Reasoning
about stability brings physics into our model, and encour-
ages more plausible segmentations and block arrangements
(see Fig. 1d).

The challenge is that objects can be arranged in com-
plicated configurations. While some recent work consid-
ers notions of support (e.g., [9, 14, 23]), they are limited to
single support or isolated objects on a flat surface. Thus,
these methods do not apply to more complicated stacking
arrangements of objects that can occur, for example, on

1

desks or other cluttered situations.
In detail, we first fit a 3D box to the point-cloud of each

segment, and then extract several features to reason about
the scene: 1) we define the box fitting error based on the 3D
points and box surfaces; 2) we ensure that 3D points lie on
the visible surfaces of the boxes given the camera position;
3) we find space violations when neighboring boxes inter-
sect one another; 4) we propose supporting relations and
the stability of the scene given the boxes. This evaluation of
the box representation allows us to refine the segmentation
based on these box properties through a learning process.

We experiment on several datasets, from a synthetic
block dataset to the NYU dataset of room scenes, and a new
Supporting Object Dataset (SOD) with various configura-
tions and supporting relations. Experimental results show
that our algorithm improves RGB-D segmentation. Fur-
thermore, the algorithm provides a 3D volumetric model of
the scene, and high-level information related to stability and
support.

To summarize, our major contributions are:
1. A volumetric representation of the RGB-D segments

using boxes.
2. Novel features based on box representation and stabil-

ity reasoning.
3. A learning framework for inferring the object segmen-

tation in the scene.
4. A new supporting objects dataset including human

segmentation and support information.

2. Related work
Geometric inference from a single color image has been

investigated in [11] and [21, 22] for estimating the depth of
each segment using only color features. The results appear
either in the format of “pop-up images” [5]: segments stand
like billboards in different depth layers, and have empty
space behind, or as piecewise planar segments [22]. The
limitation is obvious: these models do not align with our
understanding of the scene, where each object actually oc-
cupies some space in 3D, as we do in this work (Fig. 1d).

To overcome this limitation, Gupta et al. [9] proposed
a block world representation to fit 2D color segments. Seg-
ments in outdoor scenes are represented by one of eight pre-
defined box types that represent a box viewed from various
positions. Although the buildings in these outdoor scenes
often fit nicely into one of the block categories, this assump-
tion is not true for general images of stacked objects, where
the orientations of objects are not limited to eight. Zheng
et al. [25] also used blocks representation for objects, but
required interactive human labelings for non-box objects.
Xiao et al. [24] propose detecting 3D cuboids solely in RGB
images, and Bleyer et al. [2] show box fitting for improved
stereo. In this work, we use RGB-D data and fit boxes with
depth information for volumetric and stability reasoning.

In addition, researchers have studied indoor environment
reasoning on color images, where the 3D geometric infer-
ence can be approximated as a Manhattan World [6] [10]
[18]. Indoor images have strong clues of lines and planes
as well as a fixed composition of ceiling, wall and ground.
However, these approaches will likely to fail if only par-
tial or no wall/floor are captured, and at a close-up views of
small objects lying on the table.

Previous work has shown that integrating depth with
color information improves many vision problems, such as
segmentation [23], object recognition ([12], [13] and [17]),
scene labeling [15], and activity detection [16]. These al-
gorithms usually treat depth as another information channel
without explicitly reasoning about the space that an object
occupies. For example, if one object is partially observed, it
remains hollow inside. In this way, segmentation and sup-
porting inference are transformed into a classification prob-
lem in a 2.5-D space. In contrast, we explicitly reason about
full 3D models by fitting boxes to objects. This leads to a
more natural interpretation of the scene, provided by better
segmentation and support inference.

Grabner et.al. [8] analyzes the interaction between hu-
man and objects such as chairs in 3D space. The algorithm
finds the object support, and shows that a 3D model can pre-
dict well where a chair supports the person. This also helps
chair detection. However, in this paper, we perform a more
general analysis of the 3D objects in the scene through box
fitting and stability reasoning.

Jiang et al. [14] reason about stability for object arrange-
ment, but their task is different from ours: given a few ob-
jects, their goal is to place them in the environment sta-
bly. In other recent works, Silberman et al. [23] iden-
tify which image segments support which other segments.
However, reasoning about support and stability are two dif-
ferent things. Past work on support pre-supposes that seg-
mentations are already stable, and implicitly assumes that
all regions need only one region to support them, without
checking any physics-based model of stability. We use sta-
bility reasoning to verify whether a given volumetric rep-
resentation of a scene could actually support itself without
toppling, and adjust the segmentation accordingly.

We use a simple model for evaluating the stability of our
block arrangements, although more complicated physics-
based simulators [1] could be employed. One approach
could be to consider all possible reasonable segmentations,
and plug each into a simulator. However, this would result
in an exponential number of evaluations, and would still be
susceptible to noise and other unknown physical parame-
ters (e.g., coefficients of friction). Our approach for sta-
bility evaluation is based on a simple Newtonian model: the
center of gravity of each adjacent object subset must project
within its region of support. This simple model is justified
by the ideas of intuitive physics [20] that humans even have

Figure 2. An overview of our algorithm.

(a) (b)
Figure 3. (a) A bounding box fit based on minimum volume may
not be a good representation for RGB-D images, where only par-
tially observed 3D data is available. (b) A better fit box will not
only enclose a small volume, but also have many points near the
box surface. Data points are projected in 2D for illustration.

a sense of stability at a glance. Our algorithm is not a perfect
reflection of the physical world, but it is accurate enough to
achieve our goal of improved 3D scene parsing.

3. Approach Overview
Our input is an initial RGB-D over-segmentation. First,

we fit a 3D bounding box to each segment in the 3D point-
cloud. Next, we compute features between boxes and pro-
pose supporting relations, perform stability reasoning, and
adjust the box orientation based on the supporting sur-
faces. Finally, we extract features on the single and pairwise
neighboring segments from these 3D boxes, and model the
segmentation with an energy function based on learned re-
gressors using these features. Fig. 2 shows an overview.

4. Single box fitting

RGB-D data is observed from only one viewpoint, and
fitting 3D bounding boxes with minimum volumes [3] may
fail. Fig. 3a gives an illustration. A minimum volume box
covers all the data points but might not give the correct ori-
entation of the object, and fails to represent the object well.
A well-fit box should have many 3D points near box sur-
faces, as shown in Fig. 3b.1. We use a RANSAC based al-
gorithm (details below) to fit boxes to point clouds.

1Recent related work [19] considered cylinder fitting of 3D points to
the surface but did not consider visibility.

4.1. Minimum surface distance
The orientation of a 3D bounding box is determined by

two perpendicular normal vectors (the third normal is per-
pendicular to these two vectors). The idea is to find the two
principle orientations of the 3D bounding box so that the 3D
points are as close as possible to the box surfaces. Given a
set of 3D points {P

i

} and a proposed 3D box, we calculate
the distance of each point to the 6 surfaces of the box, and
assign each point to this nearest-face distance {D

min

(P
i

)}.
The objective for our box fitting algorithm is to minimize
this sum for all the 3D points:

P
i

D

min

(P
i

).
We use RANSAC to find a plane to fit all the 3D points

within one segment, and it provides the first surface S1.
Next, we collect the outlier 3D points not near S1, and
project them to surface S1 as 2D points {p

j

}. Then we re-
trieve the boundary points {p

j,boundary

} that form the con-
vex hull of {p

j

}, and fit a line to {p
j,boundary

} also us-
ing RANSAC. This line gives the second surface orientation
perpendicular to S1.

The above steps give the orientations that aligns with
many points. The minimum volume is determined by find-
ing the extent of the 3D points given the box orientation.
Note that there are usually noisy depth points: If a segment
mistakenly includes a few points from other segments be-
fore or behind, it can lead to a large increase of the box
volume. Therefore, we allow for up to 5% outliers in the
3D points.

With the final 3D bounding box, the sum of the minimum
surface distance of the point,

P
i

D

min

, is calculated. The
whole process is repeated several times and the best fitting
box (smallest distance

P
i

D

min

) is chosen.

4.2. Visibility
We identify which box surfaces are visible to the camera.

If the objects in the scene are mostly convex, then most 3D
points should belong to the visible box surfaces instead of
hidden faces.

Fig. 4 illustrates the visibility feature for our box fitting.
Surface visibility is determined by the position of the cam-
era center and the surface normal. We define the positive
normal direction of a surface as the normal pointing away
from the box center, and then a surface is visible if the cam-
era center lies at its positive direction. Each box has at most
three visible surfaces. We compute the percentage of the

(a) (b)
Figure 4. Given the camera position and a proposed bounding box,
we determine the visible surfaces of the box, shown as a solid
parallel black line to the box surface. (a) This box may give a
compact fit, but most of the points lie on the hidden surfaces. (b)
With a better box fit, most of the points lie on the visible surfaces
of the two boxes.

(a) (b)
Figure 5. (a) Well fit boxes should not intersect much with neigh-
boring boxes. (b) If two segments are merged incorrectly, e.g., the
two books in the image, then the new box fit to the segment is
likely to intersect with neighboring boxes, e.g., the box shown in
red.

points that belong to visible surfaces, and use this as the
feature for later processing.

5. Pairwise box interaction
We examine the two pairwise relations between nearby

boxes: box intersection, and box support.

5.1. Box intersection
Box intersection gives an important clue for volume rea-

soning. Ideally, a box fit to an object should contain the ob-
ject’s depth points, and not intrude into neighboring boxes.
If a proposed merging of two segments produces a box that
intersects with many other boxes, it is likely an incorrect
merge. An example is shown in Fig. 5.

We explicitly compute the box intersection, and the min-
imum separation distance between box pairs and direction.
Since 3D bounding boxes are convex, we apply the Separat-
ing Axis Theorem (SAT) [7], used in computer graphics for
collision detection. We present a 2D illustration of finding
the distance of the box intersection in Fig. 6. The distance
D shown in Fig. 6b is the minimum moving distance to sep-
arate two intersecting boxes.

Extending this algorithm to 3D bounding boxes is
straight-forward: since three surface orientations of a box
are orthogonal to one another, we examine a plane parallel

(a) (b)
Figure 6. Separating Axis Theorem in 2D: (a) to separate two
boxes, we rotate the axis perpendicular to any of the edge, and
project all the vertices to this rotated axis. (b) If two bounding
boxes are separate, there exists an axis that has a zero overlap dis-
tance (D in the image). We examine all the possible axis rotations
(in this case four possibilities), and choose the minimum overlap
distance. This gives the orientation and the minimum distance re-
quired to separate two boxes.

to each surface, and project the vertexes of the two pair-
wise boxes to this plane. We compute the convex hull of the
projection of each box, check whether the two convex hulls
intersect and find their minimum separating distance D.

This process gives both separating distance, and the
orientation ✓

sep

to separate the two boxes with the mini-
mum distance. ✓

sep

is used when determining the pairwise
supporting relations between boxes. For non-intersecting
boxes, we choose the orientation and the distance that max-
imally separate the two boxes as their intersection features.

5.2. Box supporting relation
In order to address various supporting scenarios, we de-

fine three supporting relations between the boxes: 1) sur-
face on-top support (and object is supported by a surface
from below); 2) partial on-top support (an object is tilted
and only partially supported from below); 3) side support.
Examples are shown in Fig. 7 (a) to (c).

To classify supporting relations, we detect the ground
and compute the ground orientation following [23]. We de-
fine the 3D axis as the follows: the xz-plane is parallel to
the ground plane, and y = �1 is the downward gravity vec-
tor. We align the point-cloud with this axis.

Given the box representation of the scene, we classify
pairwise supporting relations with the following set of rules:
1) we use the separating orientation ✓

sep

to distinguish be-
tween “on-top” support and the “side” support: an “on-top”
support has a separating direction nearly parallel to y axis
(< 20�), while the “side” support has a separating direc-
tion close to parallel to the xz-plane (ground plane); 2) for
“on-top” supporting relations, there are two possibilities:
an even on-top support, shown in Fig. 7a, and a tilted on-
top support, shown in Fig. 7b. We distinguish these two
types by examining the two closest surfaces of the pairwise

(a) (b) (c) (d) (e) (f) (g)
Figure 7. (a) to (c): three different supporting relations: (a) surface on-top support (black arrow); (b) partial on-top support (red arrow);
(c) side support (blue arrow). Different supporting relations give different supporting areas plot in red dashed circles. (d) to (e): stability
reasoning: (e) considering only the top two boxes, the center of the gravity (in black dashed line) intersects the supporting area (in red
dashed circle), and appears (locally) stable. (e) When proceeding further down, the new center of the gravity does not intersect the
supporting area, and the configuration is found to be unstable. (f) to (g) supporting area with multi-support: (f) one object can be supported
by multiple other objects. (g) The supporting area projected on the ground is the convex hull of all the supporting areas.

boxes. If these two surfaces have a large angle difference
(> 20�) with each other, and have different orientations to
the ground plane, then it is classified as a partial “on-top”
support, i.e., the object on top is tilted. Otherwise it is a
“surface on-top” support.

Reasoning about stability requires that we compute cen-
ters of mass for object volumes, and determine areas of sup-
port (i.e., regions or points of the object that are supported,
either on side or beneath). Stability requires that the pro-
jection of the center of mass of the object along the gravity
vector falls within the region of support. We use an ob-
ject’s supporting relation to find the supporting area pro-
jected on the ground, and different supporting relations pro-
vide different supporting areas. For “surface on-top” sup-
port, we project the vertexes of the two 3D bounding box
to the ground, compute the convex hull for each projection,
and use their intersection area on the ground plane as the
supporting area. For “partial on-top” and “side” support,
we assume there is only one edge touching between two
boxes, and project this touching edge on the ground plane
as the supporting area. Examples of the supporting areas
are shown as red dashed circles in Fig. 7 (a) to (c).

6. Global stability
Box stability is a global property: boxes can appear to

be fully supported locally, but still be in a globally unstable
configuration. Fig. 7 (d) and (e) provide an illustration.

We perform a top-down stability reasoning by iteratively
examining the current gravity center and supporting areas.
This process is shown in Fig. 7. For simplicity we assume
each box has the same density.

We begin with the top box by finding the box center of
mass, and check whether its gravity projection intersects the
supporting area. If so, we mark the current box stable, and
proceed to another box beneath for reasoning. Following
the constant density assumption, the center of mass P

c

=
[x, y, z] for a set of boxes is calculated by averaging the
volume V

i

of each box i:

P

c

= (
X

i

P

c,i

· V
i

)/
X

i

V

i

(1)

We iteratively update the center of mass by adding the
boxes below until we reach the ground. If we found that
the current supporting area does not support the center of
mass, we label the current box unstable, shown in Fig. 7e.
For the set of boxes with multiple supports, we compute the
convex hull of the multi-supporting areas as the combined
supporting area, shown in Fig. 7 (f) to (g).

Support reasoning: Stability reasoning helps delete unnec-
essary supports. For example, side-to-side nearly touching
objects do not necessarily support one another. We trim
these unnecessary supporting relations by examining the
support relations in the order: surface on-top, partial on-top
and side support. If the object has a “surface on-top” sup-
port and the configuration can be stable, then additional sup-
port relations are unnecessary and can be trimmed. If not,
then we find a minimum combination of the on-top supports
(both surface and partial) and at most two side supports to
see if the object can be stable. If so, all other support rela-
tions for this object are deleted.

Box fitting: Stability reasoning and supporting relations are
used to refine the orientation of a box. If the box is fully
supported through a “surface on-top” relation, then we re-
fit the 3D bounding box of the object on top, confining the
rotation of the first principle surface S1 to be the same as the
supporting surface. We repeat the supporting relation infer-
ence and stability reasoning with the re-fitted boxes. This
improves the box representation and support interpretation
of the scene.

7. Integrating box-based features
For the segmentation application, we start with some ini-

tial segments generated with features from [23]. Then, us-
ing the ground-truth segmentation, we label the segments
that should be merged as y = 1, and the others as y = 0. We
extract a set of features x based on the box fitting, pairwise
box relation, and the global stability, shown in Table 1. For
example, for a merge move, we record the minimum sur-
face distances of two neighboring boxes before merging (2
dimensions, noted as B), and the minimum surface distance
of the box after merging (1 dimension, noted as A), as well

Table 1. Features based on volumetric and stability reasoning. B:
the feature before a move; A the feature after a move; D: the dif-
ference of the feature before and after a move. Possible moves are
merging and splitting.

Single/Pairwise features dim
Box orientation with respect to the ground (B, A) 3
mean of the minimum surface distance (B, A, D) 5
Percentage of the visible points (B, A) 3
Percentage increase in the invisible points after a move 1
Number of intersecting boxes (B, A, D) 5
Average intersecting distance of the boxes (B, A, D) 5
Average intersecting distance of the boxes (B, A, D)
with respect to volume

5

Pairwise supporting relations 1
Stability features dim
Global stability (B, A, D) 3
Stabilities of the objects (B, A) 3
Distance of the projected gravity center to the support-
ing area center (B, A, D)

5

Difference for the three supporting relations 3
Average over number segments of the three supporting
relations (B, A)

6

as the difference of this criterion before and after merging
(1 dimension for each box before merging, 2 dimensions in
total, noted as D).

As a base model (Stability), we train an SVM regression
y = f(x) based on these features x and labels y. During
testing, we greedily merge the neighboring segments based
on the output prediction of the regression f , fit a new bound-
ing box for the segment, perform stability reasoning, and
re-extract the features for regression. We repeat the above
steps until the classifier does not suggest merging.

8. Splitting and Merging with MCMC
In this Section, we improve our model (Stability) from

Section 7 by introducing an energy function with unary and
pairwise terms based on the volumetric boxes, their support
relations, and stability (MCMC). We use s

i

to represent
one individual segment in a segmentation. Given a segmen-
tation S = {s1, ..., sN} with N segments and M pairs of
neighboring segments,2 we define the energy function:

E(S) =
1

N

X

i

�(s
i

) +
1

M

X

i,j

 (s
i

, s

j

), (2)

where �(s
i

) is a regression score of a segment s
i

describing
the quality of the segment when compared with the ground-
truth, and it is learned using single box features and its sta-
bility. (s

i

, s

j

) is a regression score of two neighboring
boxes learned using pairwise box features and their support
relations.

Our goal is to minimize this energy function and find the
optimal segmentation S

⇤: S⇤ = argmin
S

E(S). Note that
2Here {S} represents the space of all possible segmentations

Figure 8. Examples of the RGB-D Block Dataset (left) and Sup-
porting Object Dataset (right).

this energy function is non-convex, and the space of possi-
ble segmentations {S} is very large. However, only a few
segmentations are likely. In order to explore the space, we
adopt a Markov-Chain-Monte-Carlo (MCMC) [4] approach
to this problem, where we design appropriate moves to ex-
plore the space. We start with an initial segmentation, and
move to a new set of segmentations by either: (a) merging
two neighboring segments into one; or (b) splitting one seg-
ment into two smaller segments based on the boundary be-
liefs from [11]. We then re-evaluate the segmentations after
making one move, and take the top K (= 5 in our setting)
segmentations for the next iteration. In practice, this algo-
rithm optimizes our energy function to a reasonable local
minima in about 10-15 iterations.

9. Experiments
We experiment on three datasets: a block dataset, a sup-

porting object dataset, and a dataset of indoor scenes [23].

9.1. Block dataset
We apply our algorithm to a toy block dataset. This

dataset has 50 RGB-D images of blocks, shown in Fig. 8,
left. For each block, we manually provide the ground-truth
segment labels, as well as the orientations of two perpendic-
ular surfaces. Ground-truth surface orientations are labeled
by manually clicking at least 8 points on the same surface,
and fitting a plane to these labeled 3D points. Supporting
relations of each block are also labeled.

First we evaluate our box fitting algorithm. The follow-
ing algorithms are compared:
Min-vol: the baseline algorithm from [3] of fitting mini-
mum volume bounding box .
Min-surf: the proposed box fitting algorithm of finding the
minimum surface distance.
Supp-surf: use our proposed algorithm Min-surf to find
the initial boxes, and adjust the orientation of the box based
on the supporting relations and stability.

We compare the orientation of the bounding box from
each algorithm to the ground-truth, and calculate the av-
erage angle difference. Table 9.1 shows that our proposed
minimum surface distance provides a better box fitting com-
pared to the minimum volume criteria, reducing the errors
in angle to 40%. With stability reasoning, the fitting de-
creases error by another 15%.

We then analyze the performance of our stability reason-
ing. We compare with the ground truth supporting relations,

Table 2. Average angle error on the bounding box orientation.
Min-vol Min-surf Supp-surf
15.41� 9.75� 7.02�

Table 3. Supporting relation accuracy for different dataset.
neighbor stability

Block 80.59% 91.68%
SOD 52.88% 72.86%

Figure 9. Fitting results on the block dataset. Left, Min-vol. Mid-
dle, Min-surf. Right, Supp-surf. Blocks with large fitting error
in orientation are labeled as a red “x”.

Figure 10. The predicted supporting relations on block dataset.
Three different types of the supporting relations are colored in
black (surface-top), red (partial-top), and blue (side). The ground
plane center is plot as a green dashed circle.

and count an object as correct if all its supporting objects are
predicted. We compare our proposed algorithm (stability)
that reasons about the stability of each block and deletes the
false supporting relations with the baseline (neighbor) that
assumes one block is supported by its neighbors, i.e., the
initialization of the supporting relations.

Table 3 reports the supporting relation accuracy. Since
the segments in the dataset are perfect blocks, the neigh-
boring rule gives a high accuracy at over 80% for predict-
ing support. However, our proposed stability reasoning im-
proves the supporting relation accuracy by an absolute 10%,
achieving over 90% of accuracy. Exemplar images of the
predicted supporting relations are shown in Fig. 10.

9.2. Supporting object dataset
We collect a new Supporting Object Dataset (SOD) com-

posing of 307 RGB-D images. Various daily objects are
randomly placed in scenes in different configurations of
support. For each object, we manually label the segment
and the other objects supporting it. See Fig. 8, right, for a
few examples.

First, we measure the prediction of the supporting rela-
tions with the ground truth segmentation. The results of us-
ing the baseline neighbors and our stability reasoning sta-
bility are shown in Table. 3, bottom row. In this dataset
with irregular shaped objects and complicated support con-
figurations, using the touching neighbors to infer supporting

Table 4. Pixel-wise segmentation score.
[23] S/P Stability MCMC

SOD 60.2% 64.7% 66.7% 70.0%
NYU 60.1% 60.8% 61.0% 61.7%

Figure 12. We qualitatively show our box fitting algorithm (left) on
daily objects with ground-truth image segmentation and the sup-
porting relation prediction after stability reasoning (right). Boxes
for large surfaces (like the back wall and the ground) are not dis-
played for better visualization. The ground plane is plot as a green
dashed circle for showing the support inference results.

relations has an accuracy of 52%. Stability reasoning gives
an absolute 20% boost, reaching over 72% accuracy. Fig. 12
presents the exemplar results of our box fitting and support
prediction from the supporting object dataset.

We also evaluate the segmentation performance with our
proposed features based on box properties. We randomly
choose half of the images for training, and the other half
for testing. We follow the procedure in [23] and use their
color and depth features as the baseline. Then we add our
features using the single and pairwise box relations (S/P),
and our full feature set with stability reasoning (stability)
with the model proposed in Section 7. Finally we perform
our final model based on the energy function with MCMC
sampling allowing both merging and splitting (MCMC).

The segmentation accuracy is scored by pixel-wise over-
lapping with the ground-truth segments, proposed in [11]
and [23]. Table 4, top row, shows the performance com-
parison with different feature sets for our proposed dataset
(evaluating only on the object segments because the back-
ground is shared across the images). Reasoning about
each object as a box gives around 4% boost in segmenta-
tion accuracy, and adding the stability features further im-
proves the performance by 2%. Our final energy model with
MCMC sampling gives the best results with another 3% im-
provement. Testing results are presented in Fig. 11.

Figure 11. Segmentation and box fitting results of our proposed algorithm on the testing images.

Figure 13. Qualitative result of box fitting (left) and supporting
relation inference (right) on indoor scenes. For better visualiza-
tion, boxes that are too large (wall, ground) or too small are not
displayed.

9.3. NYU indoor dataset
We evaluate segmentation performance on the newly re-

leased RGB-D NYU indoor dataset [23], and report the per-
formance in Table 4, bottom row. This dataset is proposed
for scene understanding instead of object reasoning, and
many large surfaces, such as counters and drawers, are not
labeled as boxes as the framework proposed in this paper.
Although these conditions limit the performance of the pro-
posed algorithm, adding the proposed features improves the
performance. We qualitatively present the box fitting and
supporting inference result with ground-truth segmentation
in Fig. 13.

10. Conclusion
In this paper, we propose analyzing RGB-D images

through physical-based stability reasoning. We begin with
box fitting on partially observed 3D point clouds, and then
introduce pairwise box interaction features. We explore
global stability reasoning on proposed box representations
of a scene. Segmentations associated with unstable box
configurations are not physically possible and are therefore
modified. Stability reasoning allows us to improve reason-
ing about supporting relations (by requiring enough support
to provide stability for each object) and improve box orien-
tation (by knowing when objects are fully or partially sup-
ported from below). Experiments show that our proposed
algorithm works in synthetic scenarios as well as real world
scenes, and leads to improvements in box fitting, support
detection, and segmentation.
Acknowledgement: We thank Daniel Jeng for useful dis-
cussions about stability reasoning. This work is supported
in part by NSF DMS-0808864.

References
[1] D. Baraff. Physically based modeling: Rigid body simulation. Tech-

nical report, Pixar Animation Studios, 2001. 2
[2] M. Bleyer, C. Rhemann, and C. Rother. Extracting 3D scene-

consistent object proposals and depth from stereo images. In ECCV,
2012. 2

[3] C. Chang, B. Gorissen, and S. Melchior. Fast oriented bounding box
optimization on the rotation group SO(3, R). ACM Transactions on
Graphics, 30(5), 2011. 3, 6

[4] J. Chang and J. W. Fisher. Efficient MCMC sampling with implicit
shape representations. In CVPR, 2011. 6

[5] H. D, A. A. Efros, and M. Hebert. Recovering surface layout from
an image. IJCV, 75(1):151–172, 2007. 2

[6] A. Flint, D. W. Murray, and I. Reid. Manhattan scene understanding
using monocular, stereo, and 3D features. In ICCV, 2011. 2

[7] S. Gottschalk. Separating axis theorem. Technical Report, 1996. 4
[8] H. Grabner, J. Gall, and L. J. V. Gool. What makes a chair a chair?

In CVPR, 2011. 2
[9] A. Gupta, A. A. Efros, and M. Hebert. Blocks world revisited: Image

understanding using qualitative geometry and mechanics. In ECCV,
2010. 1, 2

[10] V. Hedau, D. Hoiem, and D. A. Forsyth. Recovering free space of
indoor scenes from a single image. In CVPR, 2012. 2

[11] D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert. Recovering
occlusion boundaries from a single image. In ICCV, 2007. 2, 6, 7

[12] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and
T. Darrell. A category-level 3-D object dataset: Putting the kinect to
work. In ICCV workshop, 2011. 2

[13] Y. Jiang, H. Koppula, and A. Saxena. Hallucinated humans as the
hidden context for labeling 3d scenes. In CVPR, 2013. 2

[14] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to place new
objects in a scene. IJRR, 31(9), 2012. 1, 2

[15] H. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic label-
ing of 3D point clouds for indoor scenes. In NIPS, 2011. 2

[16] H. Koppula, R. Gupta, and A. Saxena. Learning human activities and
object affordances from rgb-d videos. IJRR, 2013. 2

[17] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-
view RGB-D object dataset. In ICRA, 2011. 2

[18] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial
layout of rooms using volumetric reasoning about objects and sur-
faces. In NIPS, 2010. 2

[19] D. Ly, A. Saxena, and H. Lipson. Co-evolutionary predictors for
kinematic pose inference from rgbd images. In GECCO, 2012. 3

[20] M. McCloskey. Intuitive physics. Scientific American, 248(4):114–
122, 1983. 2

[21] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from single
monocular images. In NIPS, 2005. 2

[22] A. Saxena, M. Sun, and A. Y. Ng. Make3D: Learning 3D scene
structure from a single still image. PAMI, 31(5), 2009. 2

[23] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmenta-
tion and support inference from RGBD images. In ECCV, 2012. 1,
2, 4, 5, 6, 7, 8

[24] J. Xiao, B. C. Russell, and A. Torralba. Localizing 3D cuboids in
single-view images. In NIPS, 2012. 2

[25] Y. Zheng, X. Chen, M. Cheng, K. Zhou, S. Hu, and N. J. Mitra.
Interactive images: cuboid proxies for smart image manipulation.
ACM Trans. Graph, 31(4):99, 2012. 2

