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_ _ _ However, most work in deep learning has been applied in
~ Abstract—We consider the problem of detecting robotic grasps the context ofrecognition Grasping is inherently detection
in an RGB-D view of a scene containing objects. In this work, ,5hem and previous applications of deep learning to detec-
we apply a deep learning approach to solve this problem, which tion h tvoically f d L licati h
avoids time-consuming hand-design of features. This presents two lon have yp'cf"l y focused on Spec! cvision app iIcations suc
main challenges. First, we need to evaluate a huge number of @s face detection [45] and pedestrian detection [57]. Our goal
candidate grasps. In order to make detection fast and robust, is notonly to infer a viable grasp, but to infer the optimal grasp
we present a two-step cascaded system with two deep networksfor a given object that maximizes the chance of successfully
where the top detections from the rst are re-evaluated by grasping it, which differs signi cantly from the problem of
the second. The rst network has fewer features, is faster to bi d . Th h . ibuti f K
run, and can effectively prune out unlikely candidate grasps. 9 ject detection. u§,t e rst major contri utlon orour 'vvor'
The second, with more features, is slower but has to run IS to apply deep learning to the problem of robotic grasping, in
only on the top few detections. Second, we need to handlea fashion which could generalize to similar detection problems.
multimodal inputs effectively, for which we present a method ~ The second major contribution of our work is to propose
that applies structured regularization on the weights based on a new method for handling multimodal data in the context

multimodal group regularization. We show that our method .
improves performance on an RGBD robotic grasping dataset, of feature learning. The use of RGB-D data, as opposed

and can be used to successfully execute grasps on two different® Simple 2D image data, has been shown to signi cantly
robotic platforms. [f improve grasp detection resulis [28] 14] 56]. In this work, we

present a multimodal feature learning algorithm which adds a
Keywords: Robotic Grasping, deep learning, RGB-D multistructured regularization penalty to the objective function to

modal data, Baxter, PR2, 3D feature learning. be optimized during learning. As opposed to previous works
in deep learning, which either ignore modality information at
[. INTRODUCTION the rst layer (i.e., encourage all features to use all modalities)

Robotic grasping is a challenging problem involving perceff89] or train separate rst-layer features for each modality
tion, planning, and control. Some recent works [54,56[ 28, 643, [61], our approach allows for a middle-ground in which
address the perception aspect of this problem by converting@@ch feature is encouraged to use only a subset of the input
into a detection problem in which, given a noisy, partial viewnodalities, but is not forced to use only particular ones.
of the object from a camera, the goal is to infer the top loca- We also propose a two-stage cascaded detection system
tions where a robotic gripper could be p|aced (See Fi@re j(_))a_lsed on deep learning. Here, we use fewer features for the
Unlike generic vision problems based on static images, suébt pass, providing faster, but only approximately accurate
robotic perception problems are often used in closed loop wiigtections. The second pass uses more features, giving more
controllers, so there are stringent requirements on performa@égurate detections. In our experiments, we found that the
and computational speed. In the past, hand-designing featufésdeep network, with fewer features, was better at avoiding
has been the most popular method for several robotic ta$ké&r tting but less accurate. We feed the top-ranked rectangles
[40, [32]. However, this is cumbersome and time-consumin@om the rst layer into the second layer, leading to robust
especially when we must incorporate new input modaliti€grly rejection of false positives. Unlike manually designed
such as RGB-D cameras. two-step features as in_[28], our method uses deep learning,

Recent methods based on deep learning [1] have demdhich allows us to learn detectors that not only give higher
strated state-of-the-art performance in a wide variety of tasigrformance, but are also computationally ef cient.
including visual recognition[[35, 60], audio recognitidn [39, We test our approach on a challenging dataset, where
47], and natural language processingl[12]. These techniqi¢g show that our algorithm improves both recognition and
are especially powerful because they are capable of learnfgfection performance for grasping rectangle data. We also
useful features directly from both unlabeled and labeled dafdiow that our two-stage approach is not only able to match
avoiding the need for hand-engineering. the performance of a single-stage system, but, in fact, improves

results while signi cantly reducing the computational time

Iparts of this work were presented at ICLR 2013 as a workshop papgeeded for detection.

and at RSS 2013 as a conference paper. This version includes signi cantly T ; .
extended related work, algorithmic descriptions, and extensive robotic exper—In summary, the contributions of this paper are.

iments which were not present in previous versions. We present a deep learning algorithm for detecting



Fig. 1: Detecting robotic grasps:Left: A cluttered lab scene labeled with rectangles corresponding to robotic grasps for objects in the
scene. Green lines correspond to robotic gripper plates. We use a two-stage system based on deep learning to learn features and perfort
detection for robotic grasping. Center: Our Baxter robot “Yogi” successfully executing a grasp detected by our algorithm. Right: The grasp
detected for this case, in the RGB (top) and depth (bottom) images obtained from Kinect.

robotic grasps. To the best of our knowledge, this is tH84, [44,[49] focused on testing for form- and force-closure,
rst work to do so. and synthesizing grasps ful lling these properties according to
In order to handle multimodal inputs, we present a neaome hand-designed “quality score” [17]. More recent works
way to apply structured regularization to the weights tbave re ned these de nitiong_[50]. These works assumed full
these inputs based on multimodal group regularizationknowledge of object shape and physical properties.

We present a multi-step cascaded system for deteCtigfyasping Given 3D Model: Fast synthesis of grasps for
signi cantly reducing its computational cost. known 3D models remains an active research topic [14, 20,
Our method outperforms the state-of-the-art for rectanglgs) with recent methods using advanced physical simulation
based grasp detection, as well as previous deep learnjgdng optimal grasps. Gallegos et al. [18] performed opti-
algorithms. . mization of grasps given both a 3D model of the object to be
We implement our algorithm on both a Baxter and grasped and the desired contact points for the robotic gripper.
PR2 robot, and show success rates of 84% and 890y et al.[[48] de ne spaces of graspable objects, then
respectively, for executing grasps on a highly varied sg{an new objects to these spaces to discover grasps. However,
of objects. these works are only applicable when the full 3D model of
The rest of the paper is organized as follows: We discusise object is exactly known, which may not be the case when
related work in Sectiof]Il. We present our two-step cascadadrobot is interacting with a new environment. We note that
detection system in Sectign]lll, and some additional detag®dme of these physics-based approaches might be combined
in Section[TV. We then describe our feature learning algevith our approach in a multi-pass system, discussed further in
rithm and structured regularization method in Secfign V. Weec[TX.
present our experiments in Sectjon VI, and discuss resultsg’

Sectior{ VI|. We then present experiments on both Baxter a I not have full knowledge of the 3D model and pose of an

PR2 robots in Sectiofi VI|Il. We present several interesting,.o. 1 14 pe grasped, but rather only incomplete information

direCti‘:E; for future work in Sectiop 1X, then conclude Mrom some set of sensors such as color or depth cameras
Section’X. '

tactile sensors, etc. This makes the problem of grasping
Il. RELATED WORK signi cantly more challenging([4], as the algorithm must use
more limited and potentially noisier information to detect a
good grasp. While some works_[10,146] simply attempt to
In this section, we will focus on perception- and learningestimate the poses of known objects and then apply full-model
based approaches for robotic grasping. For a more complgtasping algorithms based on these results, others avoid this
review of the eld, we refer the reader to review papers bgssumption, functioning on novel objects which the algorithm
Bohg et al. [[4], Sahbani et al. [63], Bicchi and Kumar [2] anthas not seen before.
Shimoga [[58]. Such works often made use of other simplifying assump-
Most works de ne a “grasp” as an end-effector con g-ions, such as assuming that objects belong to one of a
uration which achieves partial or complete form- or forceset of primitive shapes_[47,] 6], or are planarl[42]. Other
closure of a given object. This is a challenging problemworks produced impressive results for speci ¢ cases, such as
because it depends on the pose and con guration of the robai@sping the corners of towels [40]. While such works escape
gripper as well as the shape and physical properties of e assumption of a fully-known object model, hand-coded
object to be grasped, and typically requires a search ovegrasping rules have a hard time dealing with the wide range
large number of possible gripper con gurations. Early workef objects seen in real-world human environments, and are

nsing for Grasping: In a real-world robotic setting, a robot

A. Robotic Grasping



dif cult and time-consuming to create. more robust features for RGB-D and other multimodal data.

Learning for Grasping: Machine learning methods have
proven effective for a wide range of perception problems’
[64, 22,[38,[59/ 1], allowing a perception system to learn Deep learning approaches have demonstrated the ability to
a mapping from some feature set to various visual propégarn useful features directly from data for a wide variety of
ties. Early work by Kamon et al[ [31] showed that learningasks. Early work by Hinton and Salakhutdingv [22] showed
approaches could also be applied to the problem of graspihgt a deep network trained on images of hand-written digits
from vision, introducing a learning component to grasp qualityill learn features corresponding to pen-strokes. Later work
scores. using localized convolutional features [38] showed that these
Recent works have employed richer features and learnifgtworks learn features corresponding to object parts when
methods, allowing robots to grasp known objects which migmained on natural images. This demonstrates that even the
be partially occluded[[27] or in an unknown pose[13] aBasic features learned by these systems will adapt to the data
well as fully novel objects which the system has not sediiven. In fact, these approaches are not restricted to the visual
before [54]. Here, we will address the latter case. Earlilomain, but rather have been shown to learn useful features for
work focused on detecting only a single grasping point from wide range of domains, such as audiol [39, 41] and natural
2D partial-view data, using heuristic methods to determid@nguage daté [12].
a gripper pose based on this point. [[55]. The use of 3Deep Learning for Detection: However, the vast majority
data was shown to signi cantly improve these results! [5&jf work in deep learning focuses on classi cation problems.
thanks to giving direct physical information about the obje@nly a handful of previous works have applied these methods
in question. With the advent of low-cost RGB-D sensors sugb detection problems$ [45, B7, 9]. For example, Osadchy et al.
as the Kinect, the use of depth data for robotic grasping hi@%] and LeCun et al[[37] applied a deep energy-based model
become ubiquitous. to the problem of face detection, Sermanet et[all [57] applied
Several other works attempted to use the learning algorittanconvolutional neural network for pedestrian detection, and
to more fully constrain the detected grasps. Ekvall and Krag@toates et al[[9] used a deep learning approach to detect text in
[15] and Huebner and Kragi€ [23] used shape-based approixitages. Girshick et al. [19] used learned convolutional features
mations as bases for learning algorithms which directly gawger image regions for object detection, while Szegedy et al.
an approach vector. Le et dl. |36] treated grasp detection afga] used a multi-scale approach based on deep networks for
ranking problem over sets of contact points in image spaghe same task.
Jiang et al.[[28] represented a grasp as a 2D oriented rectanglgll these approaches focused on object detection and similar
in image space, with two edges corresponding to the gripgsioblems, in which the goal is to nd a bounding box
plates, using surface normals to determine the grasp approagfich tightly contains the item to be detected, and for each
vector. These approaches allow the detection algorithm item, all valid bounding boxes will be similar. However, in
detect more exactly the gripper pose which should be usgshotic grasp detection, there may be several valid grasps for
for grasping. In this work, we will follow the rectangle-base@n object in different regions, making it more important to
method. select the one with the highest chance success. In addition,
Learning-based approaches have shown impressive resalisntation matters much more to robotic grasp detection, as
in grasping novel objects, showing that learning some paramest grasps will only be viable for a small subset of the
eters of the detection system can outperform human tunimmssible gripper orientations. Our approach to grasp detection
However, these approaches still require a signi cant degreewill also generalize across object classes, and even to classes
hand-engineering in the form of designing good input featurasever seen before by the system, as opposed to the class-

Other Applications with RGBD Data. Due to the avail- SPECi € nature of object detection.

ability of inexpensive depth sensors, RGB-D data has beerMaltimodal Deep Learning: Recent works in deep learning
signi cant research focus in recent years for various roboti¢gve extended these methods to handle multiple modalities
applications. For example, Jiang et al.][30] consider robotid input data, such as audio and vidéol[43], text and image
placement of objects, while Teuliere and Marchand [63] usekdta [61], and even RGB-D dafa [59, 3]. However, all of these
RGB-D data for visual servoing. Several works, includingpproaches have fallen into two camps - either learning com-
those of Endres et al_[16] and Whelan et al.1[66] have epletely separate low-level features for each modality [43, 61],
tended and improved Simultaneous Localization and Mapping simply concatenating the modaliti€s [59, 3]. The former
(SLAM) for RGB-D data. Object detection and recognitiormpproaches have proven effective for data where the basic
has been a major focus in research on RGB-D datd [11,! 33, Modalities differ signi cantly, such as the aforementioned case
Most such works use hand-engineered features such_as [82]text and images, while the latter is more effective in cases
The few works that perform feature learning for RGB-D datahere the modalities are more similar, such as RGB-D data.
[59, [3] largely ignore the multimodal nature of the data, not For some new combinations of modalities and tasks, it
distinguishing the color and depth channels. Here, we presemy not be clear which of these approaches will give better
a structured regularization approach which allows us to legoerformance. In fact, in the ideal feature set, different features

Deep Learning



Fig. 2: Detecting and executing graspsFrom left to right: Our system obtains an RGB-D image from a Kinect mounted on the robot,

and searches over a large space of possible grasps, for which some candidates are shown. For each of these, it extracts a set of raw featur
corresponding to the color and depth images and surface normals, then uses these as inputs to a deep network which scores each rectang|
Finally, the top-ranked rectangle is selected and the corresponding grasp is executed using the parameters of the detected rectangle and tt
surface normal at its center. Red and green lines correspond to gripper plates, blue in RGB-D features indicates masked-out pixels.

may use different subsets of the modalities. In this work, weandidate grasp, then used to score that grasp. Our approach
will give a structured regularization method which guides theill include a structured multimodal regularization method
learning algorithm to select such subsets, without imposimghich improves the quality of the features learned from
hard constraints on network structure. RGB-D data without constraining network structure.

Structured Learing and Structured Regularization: Sev-  In our system for robotic grasping, as shown in Fig. 2, the
eral approaches have been proposed which attempt to ug®pt rst obtains an RGB-D image of the scene containing
specially-designed regularization function to impose structup®iects to be grasped. A small deep network is used to score
on a set of learned parameters without directly enforcing ROtential grasps in this image, and a small candidate set of the
Jalali et al. [[26] used a group regularization function in thP-ranked grasps is provided to a larger deep network, which
multitask learning setting, where one set of features is used ¥¢lds a single best-ranked grasp.
multiple tasks. This function applies high-order regularization !N this work, we will represent potential grasps using
separately to particular groups of parameters. Their functi@fiented rectangles in the image plane as seen on the left in
regularized the number of features used for each task in a et [4. with one pair of parallel edges corresponding to the
multi-class classi cation tasks solved by softmax regressioffbotic gripper [28]. Each rectangle is thus parameterized by
Intuitively, this encodes the belief that only some subset 81€ X and Y coordinates of its upper-left corner, its width,
the input features will be useful for each task, but this set 8£ight, and orientation in the image plane, giving a ve-
useful features might vary between tasks. dimensional search space for potential grasps. Grasps will be
A few works have also explored the use of structured@nked based on features extracted from the RGB-D image
regularization in deep learning. The Topographic ICA algd€gion contained inside their corresponding rectangle, aligned
rithm [24] is a feature-learning approach that applies a similt® the gripper plates, as seen in the center of [Fig. 2.
penalty term to feature activations, but not to the weights TO translate a rectangle such as that shown on the right in
themselves. Coates and Ng [8] investigate the problem fog.[d into a gripper pose for grasping we nd the point with
selecting receptive elds, i.e., subsets of the input featurdde minimum depth inside the central third (horizontally) of
to be used together in a higher-level feature. The structtfe rectangle. We then use the averaged surface normal around
of the network is learned rst, then xed before learning thdhis point to determine the approach vector for the gripper.

parameters of the network. The orientation of the detected rectangle is translated to a
rotation around this vector to orient the gripper. We use the

IIl. DEEPLEARNING FORGRASPDETECTION: X-Y coordinates of the rectangle center along with the depth
SYSTEM AND MODEL of the closest point to determine a grasping point in the robot's

In this work, we will present an algorithm for robotic grasgcoordinate frame. We compute a pre-grasp position by shifting
detection from a single RGB-D view. Our approach will bd0 cm back from the grasping point along this approach vector
based on machine learning, but distinguish itself from previoasd position the gripper at this point. We then approach the
approaches by learning not only the weights used to rankject along the approach vector and grasp it.
prospective grasps, but also tfeaturesused to rank them, Using a standard feature learning approach such as sparse
which were previously hand-engineered. auto-encoder[[21], a deep network can be trained for the

We will do this using deep learning methods, learning problem of grasping rectangle recognition (i.e., does a given
set of RGB-D features which will be extracted from eachectangle in image space correspond to a valid robotic grasp?).



Fig. 3: lllustration of our two-stage detection process:Given an image of an object to grasp, a small deep network is used to exhaustively
search potential rectangles, producing a small set of top-ranked rectangles. A larger deep network is then used to nd the top-ranked rectangle
from these candidates, producing a single optimal grasp for the given object.

Predicted Output . . .
detections for the second stage. Using deep learning allows us

to circumvent the costly manual design of features by simply
training networks of two different sizes, using the smaller for
the exhaustive rst pass, and the larger to re-rank the candidate
detection results.

Model: To detect robotic grasps from the rectangle repre-
sentation, we model the probability of a rectang€), with
featuresx(V 2 RN being graspable, using a random variable
(1) 2 f 0; 1g which indicates whether or not we pred@t!) to

be graspable. We use a deep network, as shown irj Fig. 4-left,
Input Features Input Features with two layers of sigmoidal hidden unitg! andh!?, with

) K1 andK, uni r layer, r ively. A logistic classi er
Fig. 4: Deep network and auto-encoder:Left: A deep network 1 athd 2tU tts F;eth ayer, edSFeCt ﬁ'()jld 09.? (t:hc ass 3. ¢
with two hidden layers, which transform the input representatioﬂ,vezt)_e(gu puts or the secona-layer hidden uniis then pre_ '(_; S
and a logistic classier at the top layer, which uses the featurds(¥'”jx'"’; ) , so chosen because ground-truth graspability is
from the second hidden layer to predict the probability of a graggpresented as binary. Each layawill have a set of weights
being feasible. Right: An auto-encoder, used for pretraining. A set@f['l mapping from its inputs to its hidden units, so the param-

weights projects input features to a hidden layer. The same WeigBE%rs of our model are= fW[l].W[Z].W[3]g Each hidden
are then used to project these hidden unit outputs to a reconstruction ' ’ :

of the inputs. In the sparse auto-encoder (SAE) algorithm, the hidcféﬂ't forms output by a sigmoid(a) = 1=(1+exp( a)) over

Reconstructed Input

unit activations are also penalized. its weighted input:
|
2 !
_ - 0= wg
However, in a real-world robotic setting, our system needs to i=1 |
perform detection(i.e., given an image containing an object, it P, ‘
how should the robot grasp it?). This task is signi cantly more hj[ 10 = hi[ I )Wigj]
challenging than simple recognition. i=1 |
2
- ion: - : Y — 2)(t 3
'I_'wo stage C_ascaded Detection:In order to perform detec _ Po® =1jx®; )= hi[ I( )Wi[] 1)
tion, one naive approach could be to consider each possible i=1

oriented rectangle in the image (perhaps discretized to some
level), and evaluate each rectangle with a deep netwosk |nference and Learning
trained for recognition. However, such near-exhaustive searc

of possible rectangles (based on positions, sizes, and orient _turlnlg 'nfﬁ:iﬁce our goal is t:ob'F? tr;eb s_lngle grasg;ng;
tions) can be quite expensive in practice for real-time robotigctang'e with the maximum probability of being graspable for
some new object. WittG representing a particular grasping

grasping. rectangle position, orientation, and size, we nd this best
Motivated by multi-step cascaded approaches in previoys ge p ' ' '

work [28, [64], we instead take a two-stage approach gctangle as.

detection: First, we use a reduced feature set to determine G = arg maxP(9V =1j (G);) 2)
a set of top candidates. Then, we use a larger, more robust G
feature set to rank these candidates. Here, the function extracts the appropriate input representa-

However, these approaches require the design of two sefian for rectangleG.
rate sets of features. In particular, it can be dif cult to manually During learning, our goal is to learn the parametersthat
design a small set of rst-stage features which is both quick taptimize the recognition accuracy of our system. Here, input
compute and robust enough to produce a good set of candiddaéa is given as a set of pairs of featurd® 2 RN and



deep learning works, we use a two-phase learning approach
In the rst phase, we will useinsupervised feature learning
to initialize the hidden-layer weightsvl and W2, Pre-

tr?mmg WelghFS this way is critical to avoid over tting. We Fig. 5: Preserving aspect ratio: Left: a pair of sunglasses with

will use a variant of a sparse auto-encoder (SAE) [21], @Spotential grasping rectangle. Red edges indicate gripper plates.
illustrated in Fig[ #-right. We de ngy(h) as a sparsity penalty Center: image taken from the rectangle and rescaled to t a square
function over hidden unit activations, with controlling its aspect ratio. Right: same image, padded and centered in the receptive

weight. With f (W) as a regularization function Weightedeld' Blue areas indicate masked-out padding. When rescaled, the
by a.lnd 2 as the reconstruction of SAE sé)lves the rectangle incorrectly appears graspable. Preserving aspect ratio and

. e . ) padding allows the rectangle to correctly appear non-graspable.
following to initialize hidden-layer weights:

X x
argmin  (jg®  xWjj2+ gh)+ f (W)
t=1 j=1

=
1

-

w
X

= x{"w)
i=1

Fig. 6: Improvement from mask-based scaling:Left: Result with-

20 =7 how, ©) ing. Ri i i
] b out mask-based scaling. Right: Result with mask-based scaling.

i=1

We rst use this algorithm to initializaV™ to reconstruck. ) )
We then x W and learnw2 to reconstruchld] The rst three channels are the image in YUV color space,

During thesupervisedohase of the learning algorithm, Weused becgusg it represents image intensity anq color separately.
then jointly learn classi er weight®/® and ne-tune hidden The next is simply the depth channel of the image. The last
layer weightsiV 1l andw 2 for recognition. We maximize the three are the X, Y, and Z components of surface normals

log-likelihood of the data along with regularization penaltie‘s\iompute(.j base_d on the depth channel. These are computed
on hidden layer weights: after the image is aligned to the gripper so that they are always

relative to the gripper plates.

bd
=argmax logP(p® = y®OjxM:) A. Data Pre-Processing
t=1 Whitening data is critical for deep learning approaches to
F WY Lf (wih (4) work well, especially in cases such as multimodal data where

the statistics of the input data may vary greatly. While PCA-
Two-stage Detection Model: During inference for two-stage based approaches have been shown to be effecfive [25], they
detection, we will rst use a smaller network to produce a sefre dif cult to apply in cases such as ours where large portions
of the topT rectangles with the highest probability of beingf the data may be masked out.
graspable according to network parameters We will then  Depth data, in particular, can be dif cult to whiten because
use a larger network with a separate set of parameter® the range of values may be very different for different patches
re-rank thesel rectangles and obtain a single best one. The the image. Thus, we rst whiten each depth patch indi-
only change tdearning for the two-stage model is that thes&sidually, subtracting the patch-wise mean and dividing by the
two sets of parameters are learned separately, using the saaxeh-wise standard deviation, down to some minimum.
approach. For multimodal data, the statistics of the data for each
modality should match as closely as possible, to avoid learning
features which are biased towards or away from using partic-
In this section, we will de ne the set of raw features whichular modes. This is particularly important when regularizing
our system will use, forming in the equations above, and howeach modality separately, as in our approach. Thus, we drop
they are extracted from an RGB-D image. Some examplesiakan values for each feature separately, but scale the data for
these features are shown in Ifig 2. each channel by dividing by the standard deviation of all its
Our algorithm uses only local information - speci cally, wefeatures combined.
extract the RGB-D sub-image contained within each rectangle, ) )
and use this to generate features for that rectangle. This im&yePreserving Aspect Ratio.
is rotated so that its left and right edges correspond to thelt is important for to preserve aspect ratio when feeding
gripper plates, and then re-scaled to t inside the networkfgatures into the network. This is because distorting image fea-
receptive eld. tures may cause non-graspable rectangles to appear graspable,
From this 24x24 pixel image, seven channels’ worth ais shown in Fig[]5. However, padding with zeros can cause
features are extracted, giving 24x24x7 = 4032 input feature@ectangles with less padding to receive higher graspability

IV. SYSTEM DETAILS



Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2
Simple concatenation Separate first-layer features Multimodal group regularization

Fig. 7: Three possible models for multimodal deep learningLleft: fully dense model—all visible features are concatenated and modality
information is ignored. Middle: modality-speci c sparse model - separate rst layer features are trained for each modality. Right: group-sparse
model—a structured regularization term encourages features to use only a subset of the input modes.

scores, as the network will have more nonzero inputs. It $galing factor for each mode. In practice, we found it necessary
important to account for this because in many cases the id&alimit the scaling factor to a maximum of some valgieas
grasp for an object might be represented by a thin rectanglét) = min( E‘);c).
which would thus contain many zero values in its receptive As shown in Tabl¢ T|l our mask-based scaling technique at
eld from padding. the visible layer improves grasping results by over 25% for
To address this problem, we scale up the magnitude of theth metrics. As seen in Figufé 6, it removes the network's
available input for each rectangle based on the fraction @herent bias towards square rectangles, exhibiting a much
the rectangle which is masked out. In particular, we de ne wider range of aspect ratios that more closely matches that
multiplicative scaling factor for the inputs from each modalityof the ground-truth data.
based on the fraction of each mode which is masked out, since
each mode may have a different mask. V. STRUCTUREDREGULARIZATION FOR
In the multimodal setting, we assume that the input data FEATURE LEARNING
known to come fronR distinct modalities, for example audio. A naive way of applying feature learning to multimodal
and video data, or depth and RGB data. We de ne the modalify;, s 1o simply takex (as a concatenated vector) as input
matrix S as anRxN binary matrix, where each eleme8ti 1 1o model described above, ignoring information about
indicates membership of visible unit in a particular modality speci ¢ modalities, as seen on the lefthand side of Figire 7.

r, such as depth or imag(jg interEiLy. The sc?lir:“g factor({c))r mo‘ﬁ'\is approach may either 1) prematurely learn features which

ris then dened as: ' = {5, Si= ;S i’ . include all modalities, which can lead to over tting, or 2) fail
where i(t) is 1 if xi(t) is mBsked in, O otherwise. The scalind® learn associations between modalities with very different
factor for casé is: i(t) - rR:l Sy OF underlying statistics. _ _ _

We could simply scale up each valuexoby its correspond-  Instead of concatenating multimodal input as a vector,
ing scale factor when training our model, x&” = (Vx(® Ngiam et al.[[43] proposed training a rst layer representation

However, since our sparse autoencoder penalizes squared efpbréach modality separately, as shown in Figife 7-middle.
scalingx linearly will scale the error for the corresponding! NS @pproach makes the assumption that the ideal low-level
cases quadratically, causing the learning algorithm to lef@ftures for each modality are purely unimodal, while higher-
increased signi cance to cases where more data is masked Ger features are purely multimodal. This approach may work

Instead, we can use the scateblas input to the network, but better for some problems where the modalities have very
penalize reconstruction based on the origivabnly scaling different basic representations, such as the video and audio

after the squared error has been computed: data (as used in_[43]), so that separate rst layer features
- 0 5 » 1 may give better performance. However, for modalities such
. as RGB-D data, where the input modes represent different

W =agmn @ Ol xUy2, g(h{")A P P

channels of an image, learning low-level correlations can lead
to more robust features — our experiments in Se¢tign VI show

©) that simply concatenating the input modalities signi cantly

We rede ne the hidden units to use the scaled visible inputoutperforms training separate rst-layer features for robotic

’ grasp detection from RGB-D data.

hj(t) = xoi(t)Wi;,— (6) For many problems, it may be dif cult to tell which of these

i=1 approaches will perform better, and time-consuming to tune

This approach is equivalent to adding additional, potentialgnd comparatively evaluate multiple algorithms. In addition,
fractional, “virtual' visible units to the model based on thé¢he ideal feature set for some problems may contain features

Woimr = j=1



(a) Features corresponding to positive grasps. (b) Features corresponding to negative grasps.

Fig. 8: Features learned from grasping data:Each feature contains seven channels - from left to right, depth, Y, U, and V image channels,
and X, Y, and Z surface normal components. Vertical edges correspond to gripper plates. Left: eight features with the strong positive
correlations to rectangle graspability. Right: similar, but negative correlations. Group regularization eliminates many modalities from many
of these features, making them more robust.

which use some, but not all, of the input modalities, a catmwer-valued ones. This also means that forming a high-valued
which neither of these approaches are designed to handleweight in a group with other high-valued weights will accrue

To solve these problems, we propose a new algorithm farlower additional penalty than doing so for a group with
feature learning for multimodal data. Our approach incorponly low-valued weights. At the limitg(! 1 ), this group
rates a structured penalty term into the optimization probleregularization becomes equivalent to the in nity (or max)
to be solved during learning. This technique allows the modebrm:

to learn correlated features between multiple input modalities, ¥R
but regularizes the number of modalities used per feature f(W)= max Sy jWi; | (8)
(hidden unit), discouraging the model from learning weak j=1r=1

correlatiqns between modalities. With this regularization terqyich penalizes only the maximum weight from each mode to
the algorithm can specify how mode-sparse or mode-dense g, feature. In practice, the in nity norm is not differentiable
features should be, representing a continuum between the {yy therefore is dif cult to apply gradient-based optimization
extremes outlined above. methods; in this paper, we use the log-sum-exponential as a
Regularization in Deep Learning: In a typical deep learn- differentiable approximation to the max norm.
ing model, L, regularization (i.e.f (W) = jjWijj3) or Ly In experiments, this regularization function produces rst-
regularization (i.e.f (W) = jjWjj1) are commonly used in layer weights concentrated in fewer modes per feature. How-
training (e.g., as speci ed in Equatioris (3) anfl (4)). These agger, we found that at values of suf cient to induce the
often called a “weight cost” (or “weight decay”), and are leftlesired mode-wise sparsity patterns, penalizing the maximum
implicit in many works. also had the undesirable side-effect of causing many of the
Applying regularization is well known to improve the genweights for other modes to saturate at their mode's maximum,
eralization performance of feature learning algorithms. Orseiggesting that the features were overly constrained. In some
might expect that a simple; penalty would eliminate weak cases, constraining the weights in this manner also caused
correlations in multimodal features, leading to features whi¢he algorithm to learn duplicate (or redundant) features, in
use only a subset of the modes each. However, we found thaeffect scaling up the feature's contribution to reconstruction to
practice, a value of large enough to cause this also degradesbmpensate for its constrained maximum. This is obviously an
the quality of features for the remaining modes and lead umdesirable effect, as it reduces the effective size (or diversity)
decreased task performance. of the learned feature set.

Multimodal Regularization: Structured regularization, such 1S suggests that the max-norm may be overly con-
as in [26], takes a set of groups of weights, and appli§&aining. A more des_lrable sparsity function would penalize
some regularization function (typically high-ordesparately "Onzero weight maxima for each mode for each feature
to each group. In our structured multimodal regularizatioffithout additional penalty for larger values of these maxima.
algorithm, each modality will be used as a regularization grolfye can achieve this effect by applying the norm, which

separately for each hidden unit. For example, a group-wisegkes @ value of 0 for an input of 0, and 1 otherwise, on top

norm would be applied as: of the max-norm from above:
1o xR ) _
X X _ _ f(W)= If (max Sy; jW;; j) > Og 9
f(wW)= Sri JWif} J (7) j=1r=1 !
j=1r=1 =1

where| is the indicator function, which takes a value of 1
whereS;; is 1 if featurei belongs to group and O otherwise. if its argument is true, 0O otherwise. Again, for a gradient-
Using a high value op allows us to penalize higher-valuedbased method, we used an approximation to lthenorm,

weights from each mode to each feature more strongly thamch adog(1+ x2). This regularization function now encodes



TABLE I: Recognition results for Cornell grasping dataset.

{ y’/ Algorithm Accuracy (%)
ot ﬁ Chance 50
=

Jiang et al.[[2B] 84.7

Jiang et al.[[2B] + FPFH 89.6
Sparse AE, separate layer-1 feat. 92.8
Sparse AE 93.7

Sparse AE, group reg. 93.7

—~0 —FX\ A
exhaustive search using this network, then used the 200-unit

network to re-rank the 100 highest-ranked rectangles found by

Fig. 9: Example objects from the Cormell grasping dataset{2g]. the 50-unit network.
This dataset contains objects from a large variety of categories.

[=3

B. Baselines

We compare our recognition results in the Cornell grasping

a direct penalty on the number of modes used for eadataset with the features from[28], as well as the combination
weight, without further constraining the weights of modes witbf these features and Fast Point Feature Histogram (FPFH)
nonzero maxima. features[[51]. We used a linear SVM for classi cation, which

Figure[8 shows features learned from the unsupervised stggee the best results among all other kernels. We also report
of our group-regularized deep learning algorithm. We discushance performance, obtained by randomly selecting a label
these features, and their implications for robotic grasping, in the recognition case, and randomly assigning scores to
Section V1. rectangles in the detection case.

We also compare our algorithm to other deep learning
approaches. We compare to a network trained only with
A. Dataset standard L1 regularization, and a network trained in a manner

We used the extended version of the Cornell graspignilarto [43], where three separate sets of rst layer features
dataset for our experiments. This dataset, along with code f§¢ learned for the depth channel, the combination of the Y,
this paper, is available #ttp://pr.cs.cornell.edu/ U, and V channels, and the combination of the X, Y, and Z
deepgrasping . We note that this is an updated versiogurface normal components.
of the dataset used in_[R8], containing several more compl
objects, and thus results for their algorithms will be differen i
from those in [[2B]. This dataset contains 1035 images of FOr detection, we compare the top-ranked rectangle for
280 graspable objects, several of which are shown in[Eig._‘?ﬁCh method with the set of ground-truth _rectangles for each
Each image is annotated with several ground-truth positif®age. We present results using two metrics, the “point” and
and negative grasping rectangles. While the vast majority ¢gctangle” metric.
possible rectangles for most objects will be non-graspable, thé Or the point metric, similar to Saxena et al.|[55], we com-
dataset contains roughly equal numbers of graspable and nBWte the center point of the predicted rectangle, and consider
graspable rectangles. We will show that this is useful for dA€ grasp a success if it is within some distance from at least
unsupervised learning algorithm, as it allows learning a go&l€ ground-truth rectangle center. We note that this metric
representation for graspable rectangles even from unlabel@@ores grasp orientation, and therefore might overestimate the
data. performance of an algorithm for robotic applications.

We performed ve-fold cross-validation, and present results For the rectangle metric, similar to Jiang et al.|[28],Gebe
for splits on per image (i.e., the training set and the validatidi€ top-ranked grasping rectangle predicted by the algorithm,
set do not share the same image) and per object (i.e., #d G be a ground-truth rectangle. Any rectangles with
training set and the validation set do not share any imag@3 orientation error of more thad(> from G are rejected.
from the same object) basis. Hyper-parameters were selecté@m the remaining set, we use the common bounding box
by validating performance on a separate set of 300 grasps fyaluation metric of intersection divided by union - i.e.
used in any of the cross-validation splits. Area(G\ G )=Area(G[ G ). Since a ground-truth rectangle_

We take seven 24x24 pixel channels as described in SE8N de ne a large space of graspable rectangles (e.g., covering
tion IV]as input, giving 4032 input features to each networil€ entire length of a pen), we consider a prediction to be
We trained a deep network with 200 hidden units each g@'rect if it scores at least 25% by this metric.
the rst and second layers using our learning algorithm as VI
described in Sectior[s ]Il ar[d]V. Training this network took ) ) .
roughly 30 minutes. For trials involving our two-pass systerd:: D€ep Leaming for Robotic Grasp Detection
we trained a second network with 50 hidden units at eachFigure[§ shows the features learned by the unsupervised
layer in the same manner. During inference we performed phase of our algorithm which have a high correlation to

VI. EXPERIMENTS

. Metrics for Detection

. RESULTS ANDDISCUSSION


http://pr.cs.cornell.edu/deepgrasping
http://pr.cs.cornell.edu/deepgrasping
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Fig. 10: Learned 3D depth features:3D meshes for depth channels of the four features with strongest positive (top) and negative(bottom)
correlations to rectangle graspability. Here X and Y coordinates corresponds to positions in the deep network's receptive eld, and Z
coordinates corresponds to weight values to the depth channel for each location. Feature shapes clearly correspond to graspable and nor
graspable structures, respectively.

positive and negative grasping cases. Many of these featulégv lEEk”p:) riifgi%gigounsif;lgféor different modalities, for a deep
show non-zero weights to the depth channel, indicating that '

it learns the correlation of depths to graspability. We can see l\c/lr?des Accuracy (%)
that weights to many of the modalities for these features have rep ¢ gg‘g
been eliminated by our structured regularization approach. In Depth 924
particular, many of these features lack weights to the U and V gurfihNOVgﬂaLS \ | gg-g
rd th H . epth + Surf. Normals .
(3@ and 4™) channels, which correspond to color, allowing RGB + Depth + Surf. Normals 93.7

the system to be more robust to different-colored objects.

Figure [I0 shows 3D meshes for the depth channels of
the four features with the strongest positive and negative
correlations to valid grasps. Everithout any supervised infor- information improves results over either alone, indicating that
mation our algorithm was able to learn several features whidhey give non-redundant information.
correlate strongly to graspable cases and non-graspable caseEhe highest accuracy is still obtained by using all the
The rst two positive-correlated features represent handlesput modalities. This shows that combining depth and color
or other cases with a raised region in the center, while tirformation leads to a system which is more robust than
second two represent circular rims or handles. The negativeither modality alone. This is due to the fact that some
correlated features represent obviously non-graspable caggaspable cases (rims of monochromatic objects, etc.) can only
such as ridges perpendicular to the gripper plane and “valleys? detected using depth information, while in others, the depth
between the gripper plates. From these features, we can skannel may be extremely noisy, requiring the use of color
that even during unsupervised feature learning, our approanformation. From this, we can see that integrating multimodal
is able to learn a representation useful for the task at hamuformation, a major focus of this work, is important in
thanks purely to the fact that the data used is composedre€ognizing good robotic grasps.
half graspable and half non-graspable cases. Table[TM shows that the performance gains from deep learn-

From Table[]l, we see that the recognition performance iisg for recognition carry over to detection, as well. Once mask-
signi cantly improved with deep learning methods, improvindased scaling has been applied, all deep learning approaches
9% over the features fronm) [28] and 4.1% over those featurescept for training separate rst-layer features outperform the
combined with FPFH features. Both, and group regulariza- hand-engineered features from|[28] by up to 13% for the point
tion performed similarly for recognition, but training separatmetric and 17% for the rectangle metric, while also avoiding
rst layer features decreased performance slightly. This showge need to design task-speci ¢ features. Without mask-based
that learned features, in addition to avoiding hand-design, aealing, the system performs poorly, due to the bias illustrated
able to improve performance signi cantly over the state dh Fig.[§. Separate rst-layer features also give weak detection
the art. It demonstrates that a deep network is able to legrerformance, indicating that the relative scores assigned by
the concept of “graspability” in a way that generalizes to nethis form of network are less robust than those learned using
objects it hasn't seen before. our structured regularization approach.

Table[Tl shows that even using any one of the three inputUsing structured multimodal regularization also improves
modalities (RGB, depth, or surface normals), our algorithmesults over standaid; regularization by up to 1.8%, showing
is able to learn features which outperform hand-engineertitht our method also learns more robust features than standard
ones for recognition. Depth gives the highest performanapproaches which ignore modality information. Even though
of any single-mode network. Combining depth and normaking the rst-pass network alone underperforms the second-



TABLE III: Detection results for point and rectangle metrics for
various learning algorithms.

. Image-wise split| Object-wise split
Algorithm Point Rect Point Rect
Chance 35.9 6.7 35.9 6.7
Jiang et al.[[2B] 753 | 605 | 74.9 58.3
SAE, no mask-based scaling 62.1 39.9 56.2 35.4
SAE, separate layer-1 feat. 70.3 43.3 70.7 40.0
SAE, L1 reg. 87.2 72.9 88.7 71.4
SAE, struct. reg., ¥ pass only | 86.4 70.6 85.2 64.9
SAE, struct. reg.,® pass only| 87.5 73.8 87.6 73.2
SAE, struct. reg. two-stage 88.4 73.9 88.1 75.6

Fig. 12: Improvements from group regularization: Cases where

3 . - our group regularization approach produces a viable grasp (shown
=2 1 e v T - - in green and yellow), while a network trained only with simple
> H . (:_s“ el regularization does not (shown in blue and red). Top: RGB image,
§ E & . bottom: depth channel. Green and blue edges correspond to gripper.
e T
[

0 degrees 45 degrees 90 degrees

Fig. 11: Visualization of grasping scores for different grippers:

Red indicates maximum score for a grasp with left gripper plane
centered at each point, blue is similar for the right plate. Best-scoring
rectangle shown in green/yellow.

pass network alone by up to 8.3%, integrating both in our two-

pass system outperforms the solo second-pass network b{\gﬁj 13: Improvements from two-stage system:Example cases

. . ere the two-stage system produces a viable grasp (shown in green
to 2.4%. This shows that the two-pass system improves yellow), while the single-stage system does not (shown in blue

only ef ciency, but accuracy as well. The performance gaingnd red). Top: RGB image, bottom: depth channel. Green and blue
from multimodal regularization and the two-pass system agedges correspond to gripper.

discussed in detail below.

Our system outperforms all baseline approaches by all ) . )
metrics except for the point metric in the object-wise split Figure[12 shows typical cases where a network trained using
case. However, we can see that the chance performanc®YE 9roup regularization nds a valid grasp, but a network
much higher for the point metric than for the rectangle metrif@inéd with L, regularization does not. In these cases, the
This shows that the point metric can overstate performan@asp chosen by thie;-regularized network appears valid for

and the rectangle metric is a better indicator of the accurat§me modalities —the depth channel for the sunglasses and nail
of a grasp detection system. polish bottle, and the RGB channels for the scissors. However,

d bility: . q ; q . when all modalities are considered, the grasp is clearly invalid.
Adapta ! 'tyr‘] One |mpor_t§|nt a vgntaﬁe or our etec;tu;prhe group-regularized network does a better job of combining
system is that we can exibly specify the constraints of t fhformation from all modalities and is more robust to noise and

gripper in our detection system. This is particularly importa%issing data in the depth channel, as seen in these cases.
for a robot like Baxter, where different objects might require

different gripper settings to grasp. We can constrain tii& Two-stage Detection System

detectors to handle this. Figufe]11 shows detection SCOregysing our two-pass system enhanced both computational
for systems constrained based on two different settings @frformance and accuracy. The number of rectangles the full-
Baxter's gripper, one wide and one thin. The implications Qfize network needed to evaluate was reduced by roughly a
these results for other types of grippers will be discussed fi:tor of 1000. Meanwhile, detection performance increased
Section1X. by up to 2.4% as compared to a single pass with the large-
size network, even though using the small network alone
signi cantly underperforms the larger network. In most cases,
Our group regularization term improves detection accuratiye top 100 rectangles from the rst pass contained the top-
over simpleL; regularization. The improvement is moreranked rectangle from an exhaustive search using the second-
signi cant for the object-wise split than for the image-wisestage network, and thus results were unaffected.
split because the group regularization helps the network toFigure[I3 shows some cases where the rst-stage network
avoid over tting, which will tend to occur more when thepruned away rectangles corresponding to weak grasps which
learning algorithm is evaluated on unseen objects. might otherwise be chosen by the second-stage network. In

B. Multimodal Group Regularization



PR2: Our second platform was our PR2 robot, “Kodiak.”
Similar to Baxter, PR2 has two 7-DoF arms with approx-
imately 1 m reach, and we used only the left for these
experiments. PR2's grippers open to a width of 8 cm, and
are capable of closing completely from that span, so we did
not need to use two settings as with Baxter. We augmented
PR2's gripper friction with gaffer tape on the ngertips.

For the experiments on PR2, we used the Kinect already
mounted to Kodiak's head, and used ROS's built-in function-
ality to obtain 3D locations from that Kinect and transform

. . . . _ these to Kodiak's body frame for manipulation. Control was
Fig. 14: Robotic experiment objects: Several of the objects used

in experiments, including challenging cases such as an oddly-sha &jj’for.med us!ng the eeart stiffness controller [5] with tra-
RC car controller, a cloth towel, plush cat, and white ice cube trajectories provided by our own custom MATLAB code.

Experimental Setup: For each experiment, we placed a
single object within a 25 cm x 25 cm square on the ta-
these cases, the grasp chosen by the single-stage system myjgtapproximately 1.2 m below the mounting point of the
be feasible for a robotic gripper, but the rectangle chosen Rihect. This square was chosen to be well-contained within
the two-stage system represents a grasp which would cleashth robot's workspace, allowing objects to be reached from
be successful. most approach vectors. Object positions and orientations were
The two-stage system also signi cantly increases the CORjaried between trials, although objects were always placed in
putational ef ciency of our detection system. Average infercon gurations in which at least one viable grasp was visible
ence time for a MATLAB implementation of the deep networlgnd accessible to the robot.
was reduced from 24.6s/image for an exhaustive search usingvhen using Baxter, due to the limited stroke (span from
the larger network to 13.5s/image using the two-stage systespen to closed) of its gripper, we pre-selected one of the
two gripper settings discussed above for each object. We

VIIl. ROBOTIC EXPERIMENTS ! X X
_ .__constrained the search space as illustrated in[Fig. 11 to nd
In order to evaluate the performance of our algorithms in t asps for that particular setting.

real world, we ran an extensive series of robotic experimenisy getect grasps, we rst took an RGB-D image from the

To explore the generalizability and effect of the robot ORjnect with no objects in the scene as a background image.
the success rate of our algorithms, we performed experimesiss gepth channel of this image was used to segment objects
on two different robotic platforms, a Baxter Research Robgh,, the scene, and to correct for the slant of the Kinect. Once

(“vogi”) and a PR2 (*Kodiak”). an object was segmented, we used our algorithm, as described
Baxter: The rst platform used is our Baxter Research Robotibove, to obtain a single best-ranked grasping rectangle.
which we call “Yogi.” Baxter has two arms with seven degrees The search space for the rst-pass network progressed in 15-
of freedom each and a maximum reach of 104 cm, although degree increments from 15 to 180 degrees (angles larger than
used only the left arm for these experiments. The end-effectt80 being mirror-images of grasps already tested), searching
for this arm is a two- nger parallel gripper. We augmented thever 10-pixel increments across the image for the X and Y
gripper tips using rubber bands for additional friction. Baxter'soordinates of the upper-left corner of the rectangle. For the
grippers are interchangable, and we used two settings for thésia gripper setting, rectangle widths and heights from 10 to
experiments - a “wide” setting with an open width of 8 cni0 pixels in 10-pixel increments were searched, while for the
and closed width of 4 cm, and a “thin” setting with an opethick setting these ranged from 40 pixels to 100 pixels in
width of 4 cm and a closed width of 0 cm (completely close®0-pixel increments. In both cases, rectangles taller than they
gripper tips touching). were wide were ignored. Once a single best-scoring grasp was
To detect grasps, we mounted a Kinect sensor to Yogietected, we translated it to a robotic grasp consisting of a
head, approximately 1.75 m above the ground. angled dovgrasping point and an approach vector using the rectangle's
wards at roughly &/5° angle towards a table in front of it. parameters and the surface normal at the rectangle's center as
The Kinect gives RGB-D images at a resolution of 640x48fescribed above.
pixels. We calibrated the transformation between the Kinect'sTo execute the grasp, we rst positioned the gripper at
and Yogi's coordinate frames by marking four points correa location 10 cm back from the grasping point along the
sponding to a set of 3D axes, and obtaining the coordinaigsproach vector. The gripper was oriented to the approach
of these points in both Kinect's and Yogi's frames. vector, and rotated around it based on the orientation of the
All control for Baxter was done by specifying an enddetected grasping rectangle.
effector position and orientation, and using the inverse kine-Since Baxter's arms are highly compliant, slight impreci-
matics provided with Baxter to determine a set of joint anglesons in end-effector positioning are to be expected — we found
for this pose. Baxter's built-in control systems were used tbat errors of up to 2 cm were typical. Thus, we implemented a
drive the arm to these new joint angles. visual servoing system using its hand camera, which provides



TABLE IV: Results for robotic experiments for Baxter, sorted by object category, for a total of 100 trials.
Tr. indicates number of trials, Acc. indicates accuracy (in terms of success percentage.)

Kitchen tools Lab tools Containers Toys Others
Object Tr. | Acc. || Object Tr. | Acc. || Object Tr. | Acc. || Object Tr. | Acc. || Object Tr. | Acc.
Can openerf 3| 100 || Kinect 5| 100 || Colored cereal box 3| 100 || Plastic whale 4 75 || Electric shaver| 3| 100
Knife 3| 100 || Wire bundle 3| 100 || White cereal box 4 50 || Plastic elephant 4 | 100 || Umbrella 4 75
Brush 3| 100 || Mouse 3| 100 || Cap-shaped bowl | 3| 100 || Plush cat 4 75 || Desk lamp 3| 100
Tongs 3| 100 || Hot glue gun | 3 67 || Coffee mug 3| 100 || RC controller 3 67 || Remote controll 5| 100
Towel 3| 100 || Quad-rotor 4 75 || Ice cube tray 3| 100 || XBox controller| 4 50 || Metal bookend| 3 33
Grater 3| 100 || Duct tape roll| 4 | 100 || Martini glass 3 0 || Plastic frog 3 67 || Glove 3| 100
Average 100 || Average 90 || Average 75 || Average 72 || Average 85
Overall 84 ]
TABLE V:Results for robotic experiments for PR2,sorted by object category, for a total of 100 trials.
Tr. indicates number of trials, Acc. indicates accuracy (in terms of success percentage.)
Kitchen tools Lab tools Containers Toys Others

Object Tr. | Acc. || Object Tr. | Acc. || Object Tr. | Acc. || Object Tr. | Acc. || Object Tr. | Acc.
Can openerf 3| 100 || Kinect 5| 100 || Colored cereal box 3| 100 || Plastic whale 4 75 || Electric shaver| 3| 100
Knife 3| 100 || Wire bundle 3| 100 || White cereal box 4| 100 || Plastic elephantl 4 | 100 || Umbrella 4| 100
Brush 3| 100 || Mouse 3| 100 || Cap-shaped bowl | 3| 100 || Plush cat 4| 100 || Desk lamp 3| 100
Tongs 3| 100 || Hot glue gun | 3 67 || Coffee mug 3| 100 || RC controller 3 67 || Remote control 5| 100
Towel 3| 100 || Quad-rotor 4| 100 || Ice cube tray 3| 100 || XBox controller| 4 25 || Metal bookend| 3 67
Grater 3| 100 || Duct tape roll| 4 | 100 || Martini glass 3 0 || Plastic frog 3 67 || Glove 3| 100
Average 100 || Average 95 || Average 83 || Average 72 || Average 95
Overall 89 ]

Fig. 15: Robots executing grasps:Our robots grasping several objects from the experimental dataset. Top row: Baxter grasping a quad-rotor
casing, coffee mug, ice cube tray, knife, and electric shaver. Middle row: Baxter grasping a desk lamp, cheese grater, umbrella, cloth towel,
and hot glue gun. Bottom row: PR2 grasping a plush cat, RC car controller, cereal box, toy elephant, and glove.



RGB images at a resolution of 320x200 pixels. We used colonderperforming our system.
segmentation to separate the object from the background, an®n Baxter, our algorithm sometimes detected a grasp which
used its lateral position in image space to drive Yogi's endvas not realizable by the current setting of its gripper, but
effector to center the object. We did not implement visuahight be executable by others. For example, our algorithm
servoing for PR2 because its gripper positioning was found detected grasps across the leg of the plush cat, and the region
be precise to within 0.5 cm. between the handle and body of the umbrella, both too thin
After visual servoing was completed, we drove the grippdor the wide setting of Baxter's gripper to grasp since it has
14 cm forwards from its current position along the approach minimum span of 4 cm. Since PR2's gripper can close
vector, so that the grasping point was well-contained withicompletely from any position, it did not encounter these issues
it. We then closed the gripper, grasping the object, and movaudd thus achieved a 100% success rate for both these objects.
it 30 cm upwards. A grasp was determined to be successful ifThe XBox controller proved to be a very dif cult object for
it was suf cient to lift the object and hold it for one second.either robot to grasp. From a top-down angle, there is only a
Objects to be Grasped: For our robotic experiments, WesmaII space of viable grasps with a span of less than 8 cm, but

collected a diverse set of 35 objects within a size of .3 m x gany WhiCh have gither a slightly larger span (making them
m x .3 m and weighing at most 2.5 kg (although most we on-realizable by either gripper), or are subtly non-viable (e.g.

less than 1 kg) from our of ces, homes, and lab. Many of theff aoPS across the two “handles,” which tend to slip Oﬁ_') Al
Y §ble grasps are very near to the 8 cm span of both grippers,

are shown in Fig. 14. Most of these objects were not preseﬁ ing that liaht i S itioni lead t
in the training dataset, and thus were completely new to t £aning that even sight imprecision in positioning can fead to
; . allure. Due to this, Baxter achieved a higher success rate for
grasp detection algorithm. ; . o
the XBox controller thanks to visual servoing, succeeding in

Due to the physical Ilmltatl_ons of the robots 9NPPETSE 004 of cases as compared to the 25% success rate for PR2.
we found that ve of these objects were not graspable evén ; .
Our algorithm was able to consistently detect and execute

when given a hand-chosen grasp. The small pair of pliers,. .
X . valid grasps for a red cereal box, but had some failures on a
was too low to the table to grip properly. The spray paint, . S
i ... White and yellow one. This is because the background for all
can was too smooth for the gripper to get enough fricti

on . . . ) ; .
to lift it. The weight of the hammer was too imbalancedOaneCts in the dataset is white, leading the algorithm to learn

causing the hammer to rotate and slip out of the gripper theatures relating white areas at the edges of the gripper region

- . . ?ngraspable cases. However, it was able to detect and execute
grasped. Similar problems were encountered with the bicycle L
\ .correct grasps for an all-white ice cube tray, and so does not
U-lock. The bevel spatula's handle was too close to the thip-. . . . . .
ail for all white objects. This could be remedied by extending

ﬁet rgggelm Enaoxl;[erhstgnezgr’ ifc;eﬁir;atfl W(\ENSO(;IS nnocitcg?]‘?itéo{be dataset to include cases with different background colors.
P Y 9 grasp y- v - Interestingly, even though the parameters of grasps detected
these objects for purposes of our experimental results, sing

i ¥ the white box were similar for PR2 and Baxter, PR2 was
our focus was on evaluating the performance of our gras
detection algorithm.

3Ble to succeed in every case while Baxter succeeded only
half the time. This is because PR2's increased gripper strength
Results: Table IV shows the results of our robotic experimentgliowed it to execute grasps across corners of the box, crushing
on Baxter for the remaining 30 objects, a total of 100 trials slightly in the process.
Using our algorithm, Yogi was able to successfully execute aQther failures were due to the limitations of the Kinect
grasp in 84% of the trials. Figure 15 shows Yogi executingensor. We were never able to properly grasp the martini glass
several of these grasps. In 8% of the trials, our algorithgecause its glossy nish prevented Kinect from returning any
detected a valid grasp which was not executed correctly Bgpth estimates for it. Even if a valid grasp were detected
Yogi. Thus, we were able to successfully detect a good gragging color information only, there was no way to infer a
in 92% of the trials. Video of some of these trials is availablgroper grasping position without depth information. Grasps
at http://pr.cs.cornell.edu/deepgrasping . for the metal bookend failed for similar reasons, but it was
PR2 vyielded a higher success rate as seen in Table Nt as glossy as the martini glass, and gave enough returns
succeeding in 89% of trials. This is largely due to the mudiar some to succeed.
wider span of PR2's gripper from open to closed and its ability However, our algorithm also had many noteworthy suc-
to fully close from its widest position, as well as PR2's abilitycesses. It was able to consistently detect and execute grasps for
to apply a larger gripping force. Some speci ¢ instances wheeecrumpled cloth towel, a complex and irregular case which
PR2 and Baxter's performance differed are discussed belowore little resemblance to any object in the dataset. It was also
For comparison purposes, we ran a small set of contaible to nd and grasp the rims of objects such as the plastic
experiments for 16 of the objects in the dataset. The contlmseball cap and coffee mug, cases where there is little visual
algorithm simply returned a xed-size rectangle centered at thistinction between the rim and body of the object. These
object's center of mass, as determined by depth segmentatidajects underscore the importance of the depth channel for
from the background. The rectangle was aligned so that thabotic grasping, as none of these grasps would be detectable
gripper plates ran parallel to the object's principal axis. Thisithout depth information.
algorithm was only successful in 31% of cases, signi cantly Our algorithm was also able to successfully detect and



execute many grasps for which the approach vector was néwding a term modeling the probability of each region of
vertical. The grasps shown for the coffee mug, desk lamie image being a semantically-appropriate area to grasp the
cereal box, RC car controller, and toy elephant shown object would allow us to incorporate this information. This
Fig. 15 were all executed by aligning the gripper to such d@arm could be computed once for the entire image, then added
approach vector. Indeed, many of these grasps may have fatieeach local detection score, keeping detection ef cient.

had the gripper been aligned vertically. This shows that ourln this work, our visual-servoing algorithm was purely
algorithm is not restricted to detecting top-down grasps, bbeuristic, simply attempting to center the segmented object
rather encodes a more general notion of graspability whicimderneath the hand camera. However, in future work, a simi-
can be applied to grasps from many angles, albeit within ther feature-learning approach might be applied to hand camera
constraints of visibility from a single-view perspective. images of graspable and non-graspable regions, improving the

While a few failures occurred, our algorithm still achievedisual servoing system's ability to ne-tune gripper position
a high rate of accuracy for other oddly-shaped objects suthensure a good grasp.
as the quad-rotor casing, RC car controller, and glue gun.Many robotics problems require the use of perceptual infor-
For objects with clearly de ned handles, such as the cheesmtion, but can be dif cult and time-consuming to engineer
grater, kitchen tongs, can opener, and knife, our algorithm wgsod features for, particularly when using RGB-D data. In
able to detect and execute successful grasps in every trfature work, our approach could be extended to a wide range
showing that there is a wide range of objects which it casf such problems. Our system could easily be applied to
grasp extremely consistently. other detection problems such as object detection or obstacle
detection. However, it could also be adapted to other similar
problems, such as object tracking and visual servoing.

Our algorithm focuses on the problem of grasp detection for Multimodal data has become extremely important for
a two- ngered parallel-plate style gripper. It would be directlyrobotics, due both to the advent of new sensors such as the
applicable to other grippers with xed con gurations, simplyKinect and the application of robots to more challenging tasks
requiring new training data labeled with grasps for the gripperhich require multiple modalities of information to perform
in gquestion. Our system would allow even the basic featuragll. However, it can be very dif cult to design features which
used for grasp detection to adapt to the gripper. This might He a good job of integrating many modalities. While our
useful in cases such as jamming grippers [29], or two- ngeragork focuses on color, depth, and surface normals as input
grippers with differently-shaped contact surfaces, which mighiodes, our structured multimodal regularization algorithm
require different features to determine a graspable area. might also be applied to others. This approach could improve

Our detection algorithm does not directly address the properformance while allowing roboticists to focus on other
lem of 3D orientation of the gripper — this orientation isngineering challenges.
determined only after an optimal rectangle has been detected,
orienting the grasp based on the object's surface normals. X. CONCLUSIONS
However, just as our approach here considers aligns a 2DMNe presented a system for detecting robotic grasps from
feature window to the gripper, an extension of this work mighlRGB-D data using a deep learning approach. Our method
align a 3D window — using voxels, rather than pixels, as itsas several advantages over current state-of-the-art methods.
basic unit of representation for input features to the networkirst, using deep learning allows us to avoid hand-engineering
This would allow the system to search across the full 6-DdEatures, learning them instead. Second, our results show that
3D pose of the gripper, while still leveraging the power ofleep learning methods signi cantly outperform even well-
feature learning. designed hand-engineered features from previous work.

Our system gives only a gripper pose as output, but multi-We also presented a novel feature learning algorithm for
ngered recon gurable hands also require a con guration ofmultimodal data based on group regularization. In extensive
the ngers in order to grasp an object. In this case, owxperiments, we demonstrated that this algorithm produces
algorithm could be used as a heuristic to nd one or moreetter features for robotic grasp detection than existing deep
locations likely to be graspable (similar to the rst pass in ouearning approaches to multimodal data. Our experiments and
two-pass system), greatly reducing the search space neede@salts, both of ine and on real robotic platforms, show that
nd an optimal gripper con guration. our two-stage deep learning system with group regularization

Our algorithm also depends only on local features to des capable of robustly detecting grasps for a wide range of
termine grasping locations. However, many household objedtsjects, even those previously unseen by the system.
may have some areas which are strongly preferable to grasp
over others - for example, a knife might be graspable by ACKNOWLEDGEMENTS
the blade, or a hot glue gun by the barrel, but both shouldWe would like to thank Yun Jiang and Marcus Lim for
actually be grasped by their respective handles. Since theseful discussions and help with baseline experiments. This
regions are more likely to be labeled as graspable in thesearch was funded in part by ARO award W911NF-12-1-
data, our system already weakly encodes this, but some n@&67, Microsoft Faculty Fellowship and NSF CAREER Award
not be readily distinguishable using only local information(Saxena), and Google Faculty Research Award (Lee).
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