
Robotic Object Detection: Learning to Improve
the Classifiers Using Sparse Graphs for Path Planning

Zhaoyin Jia

School of Electrical and
Computer Engineering

Cornell University
zj32@cornell.edu

Ashutosh Saxena

Department of Computer Science
Cornell University

asaxena@cs.cornell.edu

Tsuhan Chen

School of Electrical and
Computer Engineering

Cornell University
tsuhan@ece.cornell.edu

Abstract

Object detection is a basic skill for a robot to per-
form tasks in human environments. In order to
build a good object classifier, a large training set
of labeled images is required; this is typically col-
lected and labeled (often painstakingly) by a hu-
man. This method is not scalable and therefore lim-
its the robot’s detection performance.
We propose an algorithm for a robot to collect more
data in the environment during its training phase so
that in the future it could detect objects more reli-
ably. The first step is to plan a path for collecting
additional training images, which is hard because a
previously visited location affects the decision for
the future locations. One key component of our
work is path planning by building a sparse graph
that captures these dependencies. The other key
component is our learning algorithm that weighs
the errors made in robot’s data collection process
while updating the classifier. In our experiments,
we show that our algorithms enable the robot to im-
prove its object classifiers significantly.

1 Introduction

Object detection (e.g., [Meger et al., 2008; Forssén et al.,
2008; Leibe et al., 2008; Felzenszwalb et al., 2008; Sapp et
al., 2008]) is an essential component for performing several
robotic tasks, including object fetching [Kemp et al., 2008;
Li et al., 2011] and door opening [Meeussen et al., 2010;
Sturm et al., 2010; Klingbeil et al., 2008]. More generally,
reliable object detection would enable any robot with a cam-
era to be useful in a variety of other scenarios. In this paper,
we propose an algorithm that allows a robot to actively collect
more images for improving its detectors during its training
phase. Specifically, it plans and executes a path that maxi-
mizes its utility of collecting images from more views.

In the area of computer vision and robotics, a lot of re-
search has been done on active vision [Laporte and Ar-
bel, 2006; Laporte et al., 2004; Denzler and Brown, 2002;
Jia et al., 2010], where a robot actively selects the next best
view, and uses pre-trained classifiers to perform multi-view
recognition. However, the goal of this work is different. In

(a) (b) (c)
Figure 1: Our algorithm enables a robot to collect more im-
ages to re-train the object detector. If the robot has already
seen the object in view (a), then collecting the image from
view (b) is a better plan than collecting it from (c). That is,
the view (a) and (c) are dependent on each other.

our work, the robot’s task is to actively build the object clas-
sifiers during the training time. Our work is motivated by ac-
tive learning, where the algorithm selects the next data-point
to be labeled and uses that for training. Our proposed algo-
rithm also selects a path where the robot takes the new views,
and then uses these views for training the classifiers.

For a robot to perform object detection in common home
and office environments, existing online datasets are not good
enough because of two reasons. First, they may not have
enough data-points for that object type or that specific object.
Second, online images may be available for some canonical
views, but in practice a robot may see the object from any ar-
bitrary view. Objects can appear drastically different from
different viewing angles. For example, a car can become
completely different between the side view and the front view.
Therefore, we believe that by actively collecting more data in
its environment and learning how to use it, a robot can signif-
icantly improve the detection performance.

Two questions arise while actively building the object clas-
sifier: where to take the images and how to update the object
model. For the first question, we note that not all additional
views are equally useful. New training images are dependent
on each other, and observing from one view may make fu-
ture observations from other views redundant (see Fig. 1). To
address this, we build a sparse graph that represents these de-
pendencies and present an efficient algorithm to plan a path.
Also we consider additional challenges such as: the robot
may be able to observe multiple objects in the same view,
some obstacles may prohibit the robot from moving into cer-
tain areas, and other obstacles may block the view.

The second question of “how” to update the classifier is
hard, because in order to use the collected data, a robot first

2072

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



needs to separate the object from the background. To label the
object in the new training images, we use a Hidden Markov
Model (HMM) to combine the evidences from tracking sub-
sequent views with the beliefs from the existing classifiers.
These labels may still be noisy, and therefore they are used
with a grain of salt—in the re-training phase these labels are
weighted to represent how good the algorithm thinks the new
data-points are.

In our experiments for eight objects in six different obsta-
cle scenarios, we show that the robot improved its classifiers
significantly by using our algorithm.

2 Related Work

In the field of robotic active recognition, a robot is asked to
recognize the object in as few actions as possible, or attain
a high recognition accuracy in early steps (e.g., [Laporte and
Arbel, 2006; Laporte et al., 2004; Denzler and Brown, 2002;
Meger et al., 2010]). It is usually achieved by selecting the
next view based on measurement related to entropy. In our
work, however, the robot’s goal is not to detect the current
object at hand, but rather to use that object in order to im-
prove its model for future classifications. This is a quite dif-
ferent goal from previous literature and requires a different
algorithm. In our problem, we would like the image set to
cover all the faces of the object, whereas for active recogni-
tion the robot’s future action is usually evaluated based on the
current ambiguity.

In the sensor placement problem [Krause et al., 2008a;
2008b], the goal is to place sensors so that the errors in fu-
ture measurements are minimized. Given a map, they mea-
sure the dependencies between any two locations in a Gaus-
sian Process and calculate the near-optimal sensor placement.
At first blush, our problem may seem to resemble the sensor
placement problem. However, there are important distinc-
tions. First, multiple views become important in getting the
new training images. We aim to maximally cover the differ-
ent views of the object, and this is a quite different objective.
Second, we prefer capturing multiple objects in one image to
improve the efficiency. Third, we need to output a (preferably
short) path that a robot can follow without hitting obstacles,
and this makes the problem more involved.

There is a large body of work in path-planning, where the
goal is to find a path with minimum cost that avoids the obsta-
cles. [LaValle, 2006] presents an overview of path planning.
In our work, since the cost of a path is dependent on the pre-
vious locations where the robot took the images, the standard
path planning algorithms do not apply.

Our ultimate goal is to improve object detection for
robotics. There are a lot of researches that develop object
detection algorithms for different robotic applications, such
as [Meger et al., 2008; Forssén et al., 2008; Klingbeil et al.,
2010; Ekvall et al., 2007]. In particular, [Meger et al., 2008;
Forssén et al., 2008] build an attentive search robot that ac-
tively recognizes multiple objects in the environment. [Kling-
beil et al., 2010] focuses on a specific scenario and the robot
can identify various buttons in the elevator. [Ekvall et al.,
2007] combines the object recognition task with the 3D map-
ping problem. Most of these approaches follow a conven-

tional process: as the first step a human-labeled training set
is used to train a classifier for the respective application. The
classifiers are fixed once learned. In contrast, our method up-
dates the classifier by making the robot actively collect new
training data. There is also some work in the area of online
learning, where a robot keeps gathering more data in order
to improve its performance. For example [Sofman et al.,
2006] proposes the online learning algorithms for robot nav-
igation. In our case, however, we are specifically considering
the properties of the image data and modeling the inaccura-
cies in collecting the data for object detection.

3 Overview

Our approach consists of the following three steps:
1. Model the importance of different views by a “utility”

function. We want to take training images from locations
that efficiently cover different views of the object.

2. Plan a path for the robot to take new training images.
New images are dependent on each other for re-training
the classifier. We model this dependency through a
sparse graph. We then plan a path for the robot that max-
imizes the total utility gain while keeping the total length
of path small and also avoiding obstacles.

3. Use the collected images to update the classifier. We
first generate the labels using an HMM that combines
tracking and detection beliefs. We then use this labeled
data for training our soft-margin classifier, which takes
this noise in the labeling into account.

4 Utility function

In order to plan a path for collecting new training images, we
first define a “utility” function that measures the importance
of observing the object from different views.

One property that we need to model is that the utility
changes after each observation because of the dependencies
between the views. I.e., if the robot has already observed the
object from one view, then observations from other similar
views should give less utility.

More formally, we define the utility function u over the
2D map as follows. For an object i, let the remaining utility
at time t be ut

i. An observation from the robot will provide
some information of this object. We define this information
as a utility gain, f t

i . Considering all the objects, the total util-
ity at time t is ut =

∑
i u

t
i, and the total gain is f t =

∑
i f

t
i .

At time t+1, the remaining utility of the object decreases be-
cause of the previous observation (i.e., there is no additional
utility in observing it from the same viewpoint):

ut+1
i = ut

i − f t
i

If the robot has observed the object from every possible view-
point, then the remaining utility will become zero.

The initial utility, u0
i , is an isotropic distribution in the an-

gular coordinate with respect to the object center, i.e. we
assume that each view is equally useful for future training.
In the radius coordinate we set a peak indicating the ideal
distance for observation. The utility will decrease when the
robot moves away from this location. The utility map gets

2073



updated at each step. Fig. 2 shows an example of the utility
distribution after one observation.

Figure 2: The utility distribution for two objects (plotted as
circles) after camera observations (plotted as a triangle). The
brightness indicate the utility value of the location, and the
dotted lines indicate the neighborhood of the view. After the
observation, the utility of the current view location is set to
zero, and the utilities of the neighboring views also decrease
in the remaining areas in the map.

Modeling the utility gain as a function of the viewing an-
gle: In the following sections we describe how to calculate
the utility gain f based on the utility distribution u. Com-
mon objects look similar when observed from similar view-
ing angles, and therefore there is only a small gain in utility
by observing from a similar viewing angle. More formally,
when the robot observes the object from view θc, it also at-
tains partial information of the neighboring viewpoints (θc-
θn) to (θc+θn). The amount of information decreases as we
deviate further from θc, shown in Fig. 3b. We model this vari-
ation as a scaled Gaussian function, with w(θ) = N (θ|μ =
θc, σ)/N (0|μ = 0, σ) as the weighting function. In this func-
tion we always have w(θc) = 1 ≥ w(θ), which ensures that
the center view θc has the full utility gain, and there is no util-
ity left at the exact same location. Therefore the utility gained
f t at viewpoint θc is

f t(θc) =

∫ θc+θn

θc−θn

w(θ)ut(θ)dθ (1)

Modeling the utility gain as a function of the distance:
There is usually an optimal distance at which we get a full and
detailed image of the object. If we come closer, some parts
of the object may no longer be visible; if we step any farther,
we may start to lose the details because the object appears
smaller in the image. We model this by a log-normal func-
tion, which has a peak at the optimal value, falls off slowly as
we go farther away, and goes to zero when we fail to capture
the full view. (See Fig. 3 (a).) If we have observed from a
particular view-point when the object is fully visible, another
image farther away at this angle will gain no additional util-
ity because it is exactly a sub-sampled version of the image
closer. Therefore, our final equation is modified as:

f(rc, θc) =

∫ θc+θn

θc−θn

∫ ∞

r=0

w(θ)min(u(rc, θc), u(r, θ))drdθ

(2)
Finally, we set the utility of a viewpoint to zero if the object
is completely occluded by an obstacle.

(a) (b)
Figure 3: (a) Utility value for a camera position along radius
coordinate. (b) Given one camera position at θc (in red trian-
gular), exact the same view angle to the object (circle) should
be suppressed (no utility for the camera ‘1’). There is less
utility for similar view angle (camera ‘2’). Cameras (like ‘3’)
capturing different view angles should not be affected (posi-
tions outside [θc − θn, θc + θn]).

Occlusion: We also consider the obstacle in the environment
in a simplified way. In this case, we draw a line from the
camera location (rc, θc) to the object center and check the
collision along this line. If this line is collided the obstacle,
then the camera is occluded and cannot contain any informa-
tion about the object. We set the utility gain at this location
to zero, i.e. f(rc, θc) = 0.

5 Path-planning using Sparse Graph

The goals of our path-planning algorithm are as follows.
1. The new views of the object are dependent on each other.

The algorithm should collect images that maximize the
total utility gained considering this dependency. We
build a sparse graph to address this problem.

2. The total distance of the path should be minimized while
avoiding obstacles.

Naively picking the locations with the largest utility will
not solve the problem because the utility function evolves dy-
namically. Taking an image at one location affects optimiza-
tion problems of subsequent steps. This makes an exhaus-
tive evaluation intractable even for a relatively small problem
(e.g., with a robot in just 100× 100 grid).

Therefore, we build a “sparse graph” connecting points that
affect each other’s utility gain. We note that if the robot makes
an observation at point (x, y), then the utility function ut is
only changed for points (x′, y′) that are close to (x, y). More
formally, we sample the space randomly to obtain an initial
location set {Pi,i=1...N} without updating the utility map,
having utility gain f(Pi) for each location. Pi and Pj are
neighbors if they are (a) facing the same object and (b) their
view angle difference is within [−θn, θn], i.e. they are in sim-
ilar viewpoints of an object. This means that if the robot takes
a picture at Pi , then the utility gain for Pj , f(Pj), would be
changed. However,disjoint points will not affect each other.

Our next step is based on random sampling to achieve a
path that is close to the global optimal. This is inspired
by the Probabilistic Road Map algorithm [LaValle, 2006;
Geraerts, 2006] that has been found to perform well in prac-
tice. From our sparse graph, we pick the top M sample points

2074



in a way that they are not neighbors of each other. I.e., we
start by picking the point with the maximum utility gain, and
then ignore all its neighbors. We then pick a point with the
highest utility in the remaining set and repeat the process.
This ensures that the selected sample points are distributed
around the map and not clustered. All of them are added to
the “current” set of points {Si,i=1,...,M} . These M positions
indicate the high utility regions in the map individually, but do
not necessarily constitute a good set of locations jointly, be-
cause we have explicitly ignored the neighbors when choos-
ing them.

In the final step, we refine our initial guess by incorporat-
ing the fact that utility gets updated after each observation.
For each position Si that is selected before, we re-sample
W more points around it, calculate the utility associated with
each point (i.e. the utility given that all the other points Sj,j �=i

were visited and fixed), and find the best point among these
W points. We replace the original point Si with this new best
point. Because we fix the other points, we can efficiently cal-
culate the updated utility gain f(Pn) when replacing Si with
the new point 1. We do this iteratively over all M points until
it converges. The algorithm is formally described in Algo-
rithm 1.

Algorithm 1 Path-planning Algorithm
Given utility u(x, y), M , N
Randomly sample N points, Pj,j=1,...,N ,. Independently
calculate utility gain for each point f(Pj).
for i=1 to M do
Si = max f(Pj)
Set f(Pn) = 0, Pn are the neighbors to Si.

end for
Link Si, i = 1 to M to form a short path using heuristic
optimization.
repeat

for i=1 to M do
sample W neighbor points Pn to Si

calculate distance change D(Pn) and utility f(Pn)
given all the other Sj,j �=i fixed
V (Pn) = λ× f(Pn)−D(Pn).
Si = argmaxPn(V (Pn))

end for
until converge

6 Updating the Model

After the robot finishes collecting the new training images
from the computed path, it needs to figure out how to use
these images for updating its object classifier.

These images are however not labeled, and automatically
labeling is hard because of background clutter in real environ-
ments. We first estimate the labels for the images by combin-
ing two sources: (a) we already have a few training images
that are manually labeled (such as from an online dataset). A

1Trying to balance the total distance change D(Pn) and utility
f(Pn) after replacing Pn with Si, we select Pn by maximizing
V (Pn) = λ×f(Pn)−D(Pn) and replace it with Si. λ is a param-
eter to weigh these two factors.

classifier Iori can be built with these few training samples,
and some views of the object can be labeled through Iori. (b)
Given these initial labels from Iori, we can track the object
across the collected multi-view images. Although individu-
ally each source is noisy, we propose an algorithm that ro-
bustly combines them.

6.1 Tracking the object using Implicit Shape
Model

Different views of the same object vary significantly, and thus
a simple SIFT [Lowe, 1999] matching would fail for tracking.

We follow the Implicit Shape Model (ISM) [Leibe et al.,
2008] to solve this problem, where we use a “feature set” to
represent the target object, O. First we take the most likely
detection in the newly acquired images using the pre-trained
classifier Iori. Within this detected region, we compute the
SIFT descriptors, C0 (used as the codebook), and their loca-
tions, l0. They together form the initial feature set , and we
save the voting of each feature to the object center, i.e the 2D-
(x, y)-shift s from the feature location l0 to the object center
c, s = c − l0. We record this as a 2D-spatial distribution
d0(O, c|C0, l).

When we try to identify (i.e. track) the object in a new
frame, we first compute the SIFT features along with their lo-
cations, and match them to the codebook. Matched features
will vote for the new object center based on the previously
2D-spatial distribution, e.g. if the current feature wi

t at lo-
cation lit is matched to the codebook Cj with shift sj , then
feature wi

t will cast a vote at lit + sj for the object center. We
predict the new object center according to the vote, and up-
date the feature set by including all the features contained in
the predicted object region, forming the new codebook and
voting distribution dt.

Specifically, in image t we compute the SIFT descriptors
wt = {wi

t, i = 1, ..., Nt} and their locations lt = {lit, i =
1, ..., Nt} (Nt is the total number of the features). The prob-
ability of identifying the object Ot at location ct depends on
two things: (a) distance between current features wi

t to the
codebook Ct−1, modeled as p(Ct−1|wi

t); (b) features’ voting
of the object’s location at ct given the current feature location
lit. It is calculated based on the previous 2D voting distri-
bution, dt−1(Ot, ct|Ct−1, l). The probability of the object
center given the current features is:

p(Ot, ct|wt, lt) =
∑
i

dt−1(Ot, ct|Ct−1, lit)p(C
t−1|wi

t)

(3)
We choose the object center c̃t in the new image by se-

lecting the location with the maximum probability, c̃t =
argmax

ct
p(Ot, ct|wt, lt). The resulting probability P (Ot)

represents our belief in finding the object based on tracking
(we are not writing ct, wt, lt explicitly for brevity). Fig. 4a
shows an example of a probability map, and Fig. 4b shows
the object location with the maximum probability. To track
the object across the views, we update the codebook C and
their shifts s by adding new features and dropping old ones
that no longer match for a few frames. We also simplify the
model by assuming the tth tracking result only depends on

2075



the frame (t-1): p(Ot|Ot−1) = p(Ot). (assuming the fea-
ture set is completely updated at each stage). This probability
gives us a measure of the confidence in the label of the object
based on tracking.

(a) (b)
Figure 4: Use ISM to find the object. (a) the voting space
after matching the feature. (b) the bounding box is generated
by taking the extremes in x and y coordinates of the matched
feature locations.

Figure 5: An HMM model to estimate the label noise.

6.2 Combining Detection Beliefs with Tracking
Beliefs

Previously p(Ot|Ot−1) is a belief from tracking. We also get
a belief p(Bt|Ot) from the pre-trained detector, Iori, where
Bt represents if the object is recognized in the image t.

The tracking is noisy and may miss the object because of
occlusions—we cannot completely rely on tracking to propa-
gate the labels. On the other hand, the original classifier Iori
does not perform well on the new views. We combine these
two beliefs by formulating this problem as a Hidden Markov
Model (HMM), where Ot represents the hidden state at time
t, and Bt are the observations made by running the original
classifier Iori, shown in Fig. 5. We use the Viterbi algorithm
[Viterbi, 1967] to determine the probability of each state be-
ing the object, PHMM (Ot).

6.3 Re-training the model

We use Support Vector Machines (SVM) to train the detec-
tor, and incorporate the belief PHMM (Ot) for our new data-
points by modifying the SVM training process.

We weigh each training image by using Ct, which is com-
puted using the log-odds of PHMM (Ot):

Ct = C0 − exp (−α logPHMM (Ot)) (4)
where C0 is a set parameter for the maximum penalty on ξ.
α is a parameter to ensure Ct > 0. A high value in Ct means
that we have a high believe in this training sample and only
allow very small amount of error, otherwise it will result in a
large penalty in minimization.

We update the final classifier in the SVM formulation as:

min
w,ξt,b

|w|2 +
∑

Ctξt

s.t. yt(wxt + b) > 1− ξt,

ξt ≥ 0 (5)

where xt is the feature for detection (we use Histogram of
Oriented Gradient (HoG) [Dalal and Triggs, 2005][Felzen-
szwalb et al., 2008] feature to do this), and yt is the training
label (object(1) or non-object (-1)). We use CVX [Grant and
Boyd, 2010] for this optimization.

7 Experiments

Robot hardware. We use the Rovio robot with a Vivotek
pan-tilt camera mounted on it. The Rovio robot has a built-
in sensor for self-localization. The pan-tilt camera produces
images with a resolution of 640× 480.
Experimental setting. We implement our algorithm on a
ground robot that navigates an environment containing ob-
stacles in different configurations. The robot collects new
training images on eight objects in six different categories:
two network cameras, a toy car, a digital camera, a stapler,
two different telephones, and a mouse. For each object, we
manually label around 10 training images to build the original
pre-trained classifier Iori. Our testing set is in a separate col-
lection with a total of 1000 images from different views and
scales, on which we compute precision-recall curves. Most of
the testing images are from the novel view angle comparing
to the labeled training images. A detection is a true positive if
and only if the predicted bounding box has over 50% overlap
with the ground truth. We use edge detection and homogra-
phy (using the known height of the camera) to localize the
objects on ground.
Environment scenarios. An environment with obstacles is a
more realistic situation. Suppose a robot is going in an office
to update the model of a stapler on the desk, then the wall
and the desk become the obstacles in the way. We test on five
settings with obstacles, and consider two types of obstacles,
as shown in Fig. 6. The first one, shown in dashed lines, is a
see-through obstacle (e.g., a table)—the robot can see through
these obstacles, however it cannot get past or walk into them.
The second one (e.g., walls) is shown as filled rectangles, and
the robot can neither see through nor walk through them.

(a) (b)
Figure 7: Example of path planning for two objects: (a) The
baseline path that takes the images around the object. (b)The
proposed path, which prefers viewpoints with both objects
visible and thus improves efficiency.

Algorithms compared. We compare our algorithm “soft”
with the following approaches:

ori: (original model) the original classifier Iori with solely
the manually labeled training images.

base: (baseline path) the robot follows the baseline path to up-
date the classifier, and directly uses the predicted objects

2076



(ob 1) (ob 2) (ob 3) (ob 4) (ob 5)
Figure 6: Five settings with obstacles in the environment. Two types of obstacles are considered.

cam-1cam-2 car di-cam mou ph-1 ph-2 stapler ave
ori 46.2 68.9 59.0 64.1 26.8 87.1 80.8 56.4 61.2

base 58.9 74.9 73.1 75.5 43.3 82.0 77.9 74.1 70.0
semi 51.2 70.0 63.2 39.3 12.4 88.2 74.5 63.1 57.7
pp 65.8 76.1 82.0 83.1 46.0 84.2 84.9 80.8 75.4

soft 69.4 80.4 80.6 84.5 51.8 88.5 86.7 83.1 78.1

Table 1: Average precision (in %) on 8 objects. The value is
averaged over different environment settings for each object.

to re-train.2

semi: (semi-supervised Alg.) the robot follows the proposed
path pp, and we implement an existing Semi-supervised
algorithm [Leistner et al., 2008] to re-train the classifier
with the collected images.

pp: (proposed path) the same setting with base, but the robot
follows the path computed using our approach.

soft: (soft-weighting Alg.) this is our full algorithm that has
the same setting with pp, but uses our proposed algo-
rithm to re-train the model.

Results. For path-planning, Fig. 7(a) shows an example of
the baseline path, and Fig. 7(b) shows the path computed by
our proposed method.

Table 1 shows the detection average precision of the dif-
ferent algorithms for each object. We detail the results on all
five different algorithms in six different environments (one
with no-obstacle and five different settings with obstacles) in
Fig. 8. We see that compared to the baseline method, our
method takes better images, more reliably uses them for re-
training, and hence increases the performance of the detec-
tors. It can choose efficient locations to observe multiple ob-
jects in one image, (Fig. 7 shows an example). Therefore,
although we constrain the number of total collected images,
the proposed method can acquire more images for each indi-
vidual object. For semi, because the appearance of the object
is very different when the view changes, directly measuring
the similarity between features cannot give a boost. The pro-
posed soft-margin algorithm performs the best among the five
because it builds a more robust classifier that handles the er-
rors in tracking.

We show some detection results of base and soft in Fig. 10.
The proposed algorithm can localize the object in the testing
images better, and has fewer false positives than the baseline.
Two examples of the Precision-Recall curves are shown in
Fig. 9.

Fig. 8 shows the performance of the algorithms in differ-
ent obstacle scenarios (Fig. 6). We observe that the environ-

2The baseline method samples the points around the object on
the maximum utility circle.

ment with no obstacles (no-ob) has the highest performance
because in the free space with no occlusion, different object-
views can be better captured and used to learn. Also, in set-
ting ob-3 the proposed path offers less improvement over the
baseline because given the constraint of the obstacles, the
baseline path and proposed path are very similar. They all
travel around the two objects and form a circle around the ob-
stacle (in dashed lines), and thus two methods have very sim-
ilar performances in this situation. However in other settings,
the proposed paths can clearly out-perform the baselines. Af-
ter combining with our soft-weighting scheme (soft), the pro-
posed algorithm becomes the best one.

Figure 8: The average precision of five methods in six cases:
no-ob: the settings with no obstacle in the environment. ob-1
to ob-5: five settings with obstacles. Y-axis is the mean of
average precision for different methods.

(a) (b)
Figure 9: Two examples of the Precision-Recall curves ((a):
camera 1; (b): stapler) using different algorithms.

8 Conclusion

We proposed an algorithm for enabling a robot to improve
its classifiers by efficiently collecting and using more train-

2077



Figure 10: Improvement in object detection with the pro-
posed algorithm. The first row: it shows the results using the
baseline path to update the detector (base). The second row:
it shows the results of the detector updated with the proposed
path and soft-weighting (soft). Bounding boxes indicate the
object detection and the red rectangles represent the one with
the maximum beliefs.

ing data from its environment. While collecting additional
training images from new views, a previously visited loca-
tion affects the utility of collecting data from a future loca-
tion and therefore the path planning problems becomes hard
with views being dependent on each other. We address this is-
sue by proposing a path planning algorithm that uses a sparse
graph to model these dependencies. After the robot collected
additional images by following this path, we generated labels
for these images by combining beliefs from tracking and be-
liefs from existing detectors by using an HMM. We found
that our approach handles the errors from tracking well, and
the resulting method for updating the classifier is quite ro-
bust. We then performed robotic experiments in six different
settings with obstacles, and our robot was able to improve its
detectors significantly for eight objects from six categories.

References

[Dalal and Triggs, 2005] N Dalal and B Triggs. Histograms of ori-
ented gradients for human detection. In CVPR, 2005.

[Denzler and Brown, 2002] J Denzler and C M Brown. Information
theoretic sensor data selection for active object recognition and
state estimation. PAMI, 24(2):145–157, 2002.

[Ekvall et al., 2007] S Ekvall, D Kragic, and P Jensfelt. Ob-
ject detection and mapping for service robot tasks. Robotica,
25(2):175–187, 2007.

[Felzenszwalb et al., 2008] P F Felzenszwalb, D McAllester, and
D Ramanan. A discriminatively trained, multiscale, deformable
part model. In CVPR, 2008.

[Forssén et al., 2008] P Forssén, D Meger, K Lai, S Helmer, J J Lit-
tle, and D G Lowe. Informed visual search: Combining attention
and object recognition. In ICRA, 2008.

[Geraerts, 2006] R Geraerts. Sampling-based motion planning:
Analysis and path quality, 2006.

[Grant and Boyd, 2010] M. Grant and S. Boyd. CVX: Matlab
software for disciplined convex programming, version 1.21.
http://cvxr.com/cvx, August 2010.

[Jia et al., 2010] Z Jia, Y Chang, and T Chen. A general boosting-
based framework for active object recognition. In BMVC, 2010.

[Kemp et al., 2008] C C Kemp, C D Anderson, H Nguyen, A J
Trevor, and Z Xu. A point-and-click interface for the real world:

laser designation of objects for mobile manipulation. In HRI,
2008.

[Klingbeil et al., 2008] E Klingbeil, A Saxena, and A Ng. Learning
to open new doors. In RSS workshop on Robot Manipulation,
2008.

[Klingbeil et al., 2010] E Klingbeil, B Carpenter, O Russakovsky,
and A Y Ng. Autonomous operation of novel elevators for robot
navigation. In ICRA, 2010.

[Krause et al., 2008a] A Krause, J Leskovec, C Guestrin,
JV Briesen, and C Faloutsos. Efficient sensor placement
optimization for securing large water distribution networks.
JWRPM, pages 134(6),516–526., 2008.

[Krause et al., 2008b] A Krause, A P Singh, and C Guestrin. Near-
optimal sensor placements in gaussian processes: Theory, effi-
cient algorithms and empirical studies. JMLR, 9:235–284, 2008.

[Laporte and Arbel, 2006] C Laporte and T Arbel. Efficient dis-
criminant viewpoint selection for active bayesian recognition.
IJCV, 68(3):267–287, 2006.

[Laporte et al., 2004] C Laporte, R Brooks, and T Arbel. A fast
discriminant approach to active object recognition and pose esti-
mation. In ICPR, 2004.

[LaValle, 2006] S M LaValle. Planning Algorithms. Cambridge
University Press, 2006.

[Leibe et al., 2008] B Leibe, A Leonardis, and B Schiele. Robust
object detection with interleaved categorization and segmenta-
tion. volume 77, pages 259–289, 2008.

[Leistner et al., 2008] C Leistner, H Grabner, and H Bischof. Semi-
supervised boosting using visual similarity learning. In CVPR,
2008.

[Li et al., 2011] C Li, TP Wong, N Xu, and A Saxena. Feccm for
scene understanding: Helping the robot to learn multiple tasks.
In Video contribution in ICRA, 2011.

[Lowe, 1999] D G Lowe. Object recognition from local scale-
invariant features. In ICCV, 1999.

[Meeussen et al., 2010] W Meeussen, M Wise, S Glaser, S Chitta,
C McGann, P Mihelich, E Marder-Eppstein, M Muja, V Eruhi-
mov, T Foote, and et al. Autonomous door opening and plugging
in with a personal robot. In ICRA, 2010.

[Meger et al., 2008] D Meger, P Forssén, K Lai, S Helmer, S Mc-
Cann, T Southey, M A Baumann, J J Little, and D G Lowe. Cu-
rious george: An attentive semantic robot. RAS, 56(6):503–511,
2008.

[Meger et al., 2010] D Meger, A Gupta, and J J Little. Viewpoint
detection models for sequential embodied object category recog-
nition. In ICRA, 2010.

[Sapp et al., 2008] B Sapp, A Saxena, and A Ng. A fast data collec-
tion and augmentation procedure for object recognition. In AAAI,
2008.

[Sofman et al., 2006] B Sofman, E Lin, J A Bagnell, J Cole, N Van-
dapel, and A Stentz. Improving robot navigation through self-
supervised online learning. JFR, 23(11-12):1059–1075, 2006.

[Sturm et al., 2010] J Sturm, K Konolige, C Stachniss, and W Bur-
gard. Vision-based detection for learning articulation models of
cabinet doors and drawers in household environments. In ICRA,
2010.

[Viterbi, 1967] A J Viterbi. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm. TIT, IT-
13:260–269, 1967.

2078




