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Abstract—We consider the problem of enabling a robot
to autonomously open doors, including novel ones that the
robot has not previously seen. Given the large variation in the
appearances and locations of doors and door handles, this is a
challenging perception and control problem; but this capability
will significantly enlarge the range of environments that our
robots can autonomously navigate through. In this paper, we
focus on the case of doors with door handles. We propose an
approach that, rather than trying to build a full 3d model of the
door/door handle—which is challenging because of occlusion,
specularity of many door handles, and the limited accuracy
of our 3d sensors—instead uses computer vision to choose a
manipulation strategy. Specifically, it uses an image of the door
handle to identify a small number of “3d key locations,” such
as the axis of rotation of the door handle, and the location
of the end-point of the door-handle. These key locations then
completely define a trajectory for the robot end-effector (harl)
that successfully turns the door handle and opens the door.
Evaluated on a large set of doors that the robot had not
previously seen, it successfully opened 31 out of 34 doors.
We also show that this approach of using vision to identify
a small number of key locations also generalizes to a range of
other tasks, including turning a thermostat knob, pulling open
a drawer, and pushing elevator buttons.

I. INTRODUCTION

There is growing interest in using robots not only inlocation of the endpoint of the handle) as well as some vector
controlled factory environments, but also in unstructuredirections (such as the direction in which to push the handle
home and office environments. Although robots are able ¥/e can then straightforwardly map from the 3d features to
successfully navigate open spaces even of novel envirod arm trajectory.
ments, it is desirable that robots also be able to manipulateOur robot identifies 3d locations on a door handle using
their environment to gain access to new spaces. In this papepmputer vision and supervised learning. Specifically, we
we propose an algorithm that enables a robot to open ati@in an object detection algorithm to accurately place a
navigate through doors, even ones that it has not previoudhpunding box around door handles. By incorporating an
seen. appropriate Bayesian prior into the system, our object de-

Because of the wide range of variation in the shapes arection algorithm also takes into account usefohtextual
appearances of doors, door handles, etc., it is a challgngiimformation, such as that door handles are most likely found
perception and control problem to open a novel door. Furtheat a certain height. And further, the information that there
because a door handle almost invariably occludes part afe usually 1-2 door handles per door, and that pairs of door
itself or part of the door (and is often specular or has littldandles (as in a pair of double doors) are usually at the same
texture) using our robot’s sensors to build a full 3d model oheight.
the door also proves challenging. Rather than build a full 3d Because of mechanical limitations of our robot (limited
model, we instead proposes an approach that uses compufeength of the arm), our work focuses primarily on doors
vision to identify a small number of “3d key locations” with door handles (i.e., similar to the ones shown in Figure
or “3d features,” that completely define a trajectory forl), and that open away from the robot. Our approach results
the robot arm to open the door. More formally, these 3é¢h our robot robustly opening a wide range of doors, even
features comprise some number of points in 3d (such as thaes very different from the training set. Tested on a large

. L . _ set of novel doors, our robot successfully opens 31 out of 34
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trajectory. Specifically, we show that by using computesystem must be capable of locating the object and inferring
vision to identify 3d features, we can also carry out sucBome additional information, since a push-bar or spherical
tasks as turn a thermostat knob, push an elevator button, dwor knob must be manipulated much differently than a turn
pull open a drawer. lever door handle.

Much prior work in manipulation tasks such as grasping Some researchers address the problem of identifying the
and door opening assumes that an accurate 3d model 3uf location of an object through human assistance. Kemp
the object is available and focuses more on developing tle al. [9] consider having a human use a laser pointer to
control actions required to manipulate the single knowspecify the 3d position of objects for the robot to grasp.
object ([1], [2], [3]). Recently some researchers have dedther researchers have recently considered using vision-
veloped control strategies that allow a robot to manipulateased learning techniques to enable robots to grasp unknown
unknown doors [4], but these assume the robot has alreadpjects [10]. However, since only a single grasp point is
accurately located the unknown door handle and establishieténtified, these algorithms are insufficient for more caempl
an appropriate grasp. When entering a novel building, a robotanipulation tasks, such as opening a door, where the
must rely on only its sensors to perform manipulation, buappropriate grasp and subsequent control actions depend on
many modern 3d imaging sensors (such as a laser rantpe type of object and the task to be performed.
finder, time-of-flight depth camera, or stereo camera) often In contrast to many of these previous endeavors, our work
provide sparse and noisy point clouds. does not assume the existence of a known, 3d model of the

In this paper, we focus on the problem of manipulation idoor handle or knowledge of its location. However we do
novel environments where an accurate 3d model of the objeassume that the robot is provided with a rough 2d map of
is not available and its location is unknown. Some recerhe building which allows it to navigate to a door (with an
efforts in grasping [5] use learning to address this problenerror of standard navigation algorithms). We focus on the
However, their system identifies only a single grasp poinfproblem of autonomous manipulation in novel environments
which is not sufficient information for the more complexwhere the robot must rely on its onboard sensor data only.
task of opening a door, where the appropriate grasp amie do not attempt to reconstruct a 3d model of the object,
subsequent control actions depend on the type of object ahdt instead recognize the object and identify only the small
the task to be performed. set of 3d features sufficient to compute the required control

We use a mobile manipulation platform, where we inteactions.
grate vision, navigation, planning, and control, to perfor  The difficult task of recognizing objects in an image is a
the task of opening the door. We validate our perceptiolarge area of ongoing research. A number of algorithms have
algorithms in a set of experiments, where the robot waseen developed that achieve good performance on object
able to autonomously open novel doors in 31/34 trials. Weecognition [11]. However, since scenes are often cluttere
also evaluate the extensibility of our algorithms by appdyi with objects (or portions of objects) that look very simitar
the perception algorithms, trained on a different data setbe object of interest, these 2d image based vision algosith
for each task to enable our robot to perform the additiondénd to have lots of false positives. To locate objects in the
manipulation tasks of pressing an elevator call buttorljmmul  world, a human often uses prior knowledge about where
out a drawer, and turning a thermostat knob. certain objects tend to be located. For example, a door bandl

usually lies on a vertical plane at some distance above the
Il. RELATED WORK floor. Using contextual cues (for example, the locationeblas

In robotic manipulation, much effort has been focused opriors mentioned above) has been shown to improve object
developing control actions for manipulation tasks assgmindetection [12].
complete knowledge of the environment in the form of an
accurate 3d model of an object, including its position and I1l. APPROACH
orientation ([1], [2], [3]). Nagatani and Yuta [6] designed To open a door, we must first locate the door handle and
a door opening control strategy for a mobile robot on &fer how to manipulate it. We approach the task of door
single door; however they provide the robot with the handlepening by using vision and machine learning to identify
location in advance. Petersson et al. [7] looked at devetppi the door handle and its type (whether it turns clockwise or
compliant control actions and performing online estimmatio anti-clockwise), and to identify a small set of 3d features
of the center of rotation and radius for a single doomvhich map straightforwardly to a trajectory for the arm.
Schmid et al. [4] demonstrated their manipulator openin§oncretely, to reliably open a door, we identify three 3d
a door without knowledge of the door geometry, using &eatures, comprising two 3d points,p, € %, and a unit-
combination of tactile sensing in the fingers and forcetterq length vectorv; € R (|[v1]| = 1). These are illustrated in
sensing in the wrist. However, in both of these workdigure 2(a). Concretely:

a human positioned the robot end-effector on the handle. The pointp; is the surface location of the handle at
manually. Jain et al. [8] demonstrate their robot opening the axis of rotation (where the keyhole would be, if the
novel doors using a force-sensing manipulator to infer how door has one).

to turn the handle once a human has pointed out the locatione The vectory; indicates the axis of rotation of the door
of the handle. For a fully autonomous system, the perception handle. Furtherp; is usually the normal to the plane



TABLE |

handles can vary significantly in appearance (see Figure 3).
3D FEATURES FOR SEVERAL MANIPULATION TASKS

We use computer vision and a state of the art 2d-sliding
window object detection algorithm due to Torralba et al][13

MANIPULATION TASK DESCRIPTORS .
OPEN A DOOR 1. LOCATION OF ROTATION AXIS and |mp|¢mente_d by [14].
OF HANDLE p1 T_he sl_|d|ng v_vmdow detect_or samples r_ecta_ngular shaped
2. AXIS OF ROTATION v regions in the image, and tries to determine if each rectan-
3. LOCATION ALONG HANDLE AT gular region roughly bounds a door handle. It then outputs
5 T IiNH'CH TO PUSH DOWNp2 the detections with confidence values greater than a spkcifie
RESS AN - COCATION OF BUTTONp, threshold. A cross validation set was used to determine the
ELEVATOR BUTTON 2. DIRECTION TO PRESS; | ifi th hold. B th lidi ind detect
PULL OPEN T. MIDPOINT OF THE HANDLE b classifier threshold. Because the sliding window detector
A DRAWER 2. DIRECTION TO PULL vy uses only the information inside a rectangular image region
TURN A 1. MIDPOINT OF THE KNOBp1 to identify possible door handles, it thus ignores the rest
THERMOSTAT KNOB 2. AXIS OF ROTATION v, of the image outside that rectangle, which may also have
useful “contextual” information for detecting the handle.

| our experiments, simply applying a sliding window detector
(with non-maximal suppression) without considering any
contextual information results in many false positives—
12.2% on the training set and 15.6% on the test set.
To improve performance over this classifier, we incorpo-
rate three additional types of contextual information itite
(@) (b) (c) classifier:
1) Location. E.g., a door handle is most likely to be found
at a certain range of heights above the floor.

Fig. 2. 3d point/vector pairs extracted from the percepélgorithm which,
along with the action classification, define control actitmsnanipulate a

(a)door handle, (b)thermostat knob, (c)drawer. 2) Expected number of handles in the image (at least 1
but no more than 2, the latter in the case of double
doors),

of the door; and the directionrv; usually specifies the  3) Expected relative location of 2 handles (in the case of
direction in which to push the door (see Figure 2(a)). double doors, the two door handles are almost always
o The pointpy is an appropriate location on the door at the same height).

handle to push down on. To incorporate the first contextual cue, each pixel in the

These 3d features can be straightforwardly used to paramgrage is assigned a prior probability of containing a door
terize a trajectory for the arm to open the door. Even if ngandle. This probability distribution is estimated frone th
3d model of the door is available, as long as our algorithfaining data (using maximum  likelihood estimation with
is able to findpy, v1, p2 accurately, we can robustly open aj gplace smoothing). Thus, pixels near the bottom (points
door. Specifically, we map from these 3d features to a seriggar the floor) have a small prior probability of containing a
of waypoints, each consisting of a Cartesian position angoor, whereas points corresponding to approximately waist
orientation of the robot end-effector; we then command oueight are assigned a higher probability of containing a.doo
position-controlled end-effector through these waymint  Thjs |ocation-based prior is used to re-weight the prolitgbil

In our experiments, we consider only doors which opefyr each detection, thus giving us a posterior probability f
away from the robot due to mechanical limitations and lack jmage region containing a door, that takes into account
of sensing in our manipulator gripper. We note that to applcation in the image.
these ideas to doors that open towards the robot, one maygecause the sliding window detector returns many de-
ad_ditionally have to estimate the location of the door hinggctions (see Figure 3; each green rectangle is a separate
axis. detection reported by the sliding window algorithm), weoals

We propose that the idea of extracting control actions frorﬁost-process the detector output using K-means clustering
only a small set of 3d features identified by the perceptiopy these detections. Here, the number of clusteis set to
algorithm can also be extended to other manipulation task® the number of detections remaining after applying non-

(Table 1). For example, to turn a thermostat knob, wenaximal suppression, and each cluster is assigned a weight
typically require knowledge of the position of the center of

the knobp;, and the axis of rotatiom,. (See Figure 2(b).)  The supervised training procedure produces a dictionaryeafures
To pull open a drawer, we need to know the location ofonsisting of localized templates from cropped training neples. The

. . . . relevance of each of these features in identifying whethegect is present
a drawer handlg,, and the direction in which to pum’2 in an image patch is evaluated by computing the normalized craysslation

(Figure 2(c).) of each template with the image patch. A binary classifier isleg by using
) . boosted decision trees to select the set of feature patchish wre most
A. Object Classifier effective at recognizing the object in the training examplese [13] for

| d . | K d fi more details). We then use this classifier within a slidingdew detector
n order to open a previously unknown door, we must II’slli'amework to compute the probability of the presence of thelickate object

detect the door handle. This is challenging, because doeithin each rectangular subwindow of a test image.
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Fig. 3. Test set results with raw classifier output outlinedyieen, and the result of applying context and clusterintjn@d in blue. Notice how the
bounding boxes are very accurately centered on the harigést ¢iewed in color)

proportional to the sum of the confidences of the detectioras described in the next section. Figure 3 shows images of
associated with it. The clustering results in a bounding boseveral doors (some with very cluttered backgrounds) and
that is better localized on the center of the handle. the resulting detections produced by our algorithm. The blu
We explored a number of algorithms for taking into actectangles are the final output of our door handle detection
count the second and third contextual cues described aboagorithm.
The best method turned out to be relatively simple. We .
choose the cluster centroid with the highest weight from KB- Extracting 3d Features
means as the most likely candidate for a handle and searchOnce our perception algorithm has identified the loca-
in the horizontal band containing this detection to locatéon of the handle in an image and classified the action
the next most likely candidate. If a second high-confidencglockwise/anti-clockwise) to perform, the next step is to
detection is found, then we identify that as a second dodnfer the control actions to execute the task. Concretety, w
handle; otherwise, we return only the first detection. Thigill identify the 3d featureg,, v1, po, and use them to infer
incorporates the primary knowledge that we expect at moattrajectory for the arm.
2 door handles, and that if there are 2 handles, they shouldin detail, we use the results from the vision-based classi-
occur at the same height. This characterizes all doublesdodier, along with a 2d laser scan of the door plane to extract
that occured in our training sét. the location of the axis of rotation of the door handle, the
Given the rectangular patch(es) containing a door handliecation to apply force, and the door plane normal. As seen
we use a second trained binary classifier to recognize tlive Figure 3, the object recognizer provides a tight, well-
type of handle (specifically, whether it turns clockwise oicentered bounding box around the handle and a classification
anti-clockwise).? This indicates the desired action — pushfor the direction the handle rotates. Given a bounding box
down and rotate clockwise or push down and rotate antsurrounding the door handle, we determineand p, using
clockwise. The object location and clockwise/anti-clodev a fixed pair of points specified relative to the corners of the
classification provides sufficient information to extract eéounding box. In detall, iz, y) is the top left cornerw is
small set of 3d features sufficient to compute control astionthe width, andh is the height of the bounding box in image
coordinates, the handle rotational axis and location tdyapp
20ne can also envision a more complex algorithm that incredses tforce are approximately located at { ow,y + 3h) and
e owees e ters e cven b e s (1= 71037 01, tespectively, where. 3.  are empitcally
(due to windows, for example) which produce a large number ighbering  CN0sen constants. Since the robot can localize well with
detections along a horizontal band, this approach ovecheased the weight respect to the door and its camera is rigidly mounted, this

of these false positives, and gave poor performance. heuristic performed well in our experiments.
SWe resize the image patches containing the door handle to  sixe Th hod d ibed ab . f 2d di
and train a sliding window classifier. The positive and niegatraining e metho escribed above gives a set o coordinates

examples are the left and right oriented handles, respéctive in the image plane. These 2d coordinates are transformed int



3d coordinates in the world frame using our laser scann€. Mapping to Control Actions

and the approach described in section 1lI-B.1. Specifically Gjyen the 3d features corresponding to the location of the
our robot uses a Hokuyo URG scanner that is mounteghor handle axis of rotatiop;, the location to apply force
horizontally. Using the laser scanner output, we can extrag, and the normal vector to the door plane as well as the
the door plane and normal to the door plane. Making thgction classification (push down and rotate anti-clockwise
assumption that the door is a large vertical plane (and “‘*ﬂ“clockwise), we need to extract 3d waypoints which can be
door handle is a fixed distance offset from the door, usuallysed to plan a path in cartesian space for the end-effector.
about 4cm), we can identify the 3d locationsjafandpz.  For our position-controlled robot to turn the door handle,
Figure 2 shows the 3d points extracted from the locatioghe ropot must establish contact with the handle and push
and action classification for a door handle (and additignalljown on the handle by moving the end-effector along an
a thermostat knob and drawer). The normal of the door plangsc (which is centered on the handle axis of rotation and
extracted from the laser data (and assuming a vertical do,g,qng in the plane normal to this axis) while at the same
plane), is used as;. time rotating the wrist (Figure 5). The 3D features are used
1) Data Fusion:We use a 2d laser scan (in the horizontatg geometrically compute this arc, and the correspondiong
plane) along with a vertical-wall assumption to obtain tde 3rotation of the wrist. The handle axis of rotation provides
location of 2d points in the imagé.Using the vertical-wall the preferred pitch angle for the wrist (aligned with the doo
assumption, we want to find the intersection of the camelgane normal vector). The normal to the door plane and the
ray passing through the door handle with the door plangscation of the handle on the door (left or right side) indésa
If v € R is the unit ray which passes from the camerguhich direction the door will swing (left or right) so the

origin through the predicted location of the door handle iRghot end-effector knows approximately which direction to
the image plane; is the distance from the camera origin topysh the door open.

the door handle, and € R2*3 is a matrix which projects

the camera ray into the plane of the laser, then the camera
ray projected into the laser plane is definedrby ¢(Tyv).

We denote the planar laser readingsias= (z(6;),y(6;))

and the location of the laser relative to the camera in the
horizontal plane ag. We must solve for the location where
the camera ray intersects the door plane.

t =ming Y, || To(tv) — (i + d)|[3 @

where ¥ is a small neighborhood around the ray The
solution provides the location of the handle in the camera
frame, r* = t*(Tyv). Finally, the 3d location in the robot’s
coordinate frame is found by applying the coordinate trans-

form, Ty € R**4, from the camera frame to the robot armFig. 5. An illustration of the end effector trajectory comgxtfor the robot
frame,p = Tyr*. to manipulate a door handle.

We can compute end-effector trajectories for the additiona

- ] tasks we consider (pressing an elevator button, turning a
A VA (0) | knob, and pulling a drawer) in a similar manner as the door

! opening task. For pressing an elevator button, the 3d latati
of the center of the buttom, and the surface normal define
a straight-line trajectory for the robot end-effector tov@o
along (preferably with the wrist aligned along the normal) t
make solid contact in the center of the button. In the case of
pulling out a drawer, the location of the center of the handle
p1 and the surface normal; provide enough information
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e ' 1 to compute a trajectory for the robot end-effector to grasp
8 , i , L] the handle and pull along a straight-line trajectory with th
2 f pe S 2 wrist approximately aligned with the direction of motiorarF

a thermostat knob, the 3d location of the center of the knob
Fig. 4. Example of a 2d laser scan with the camera ray projeatedtiie  p, and the rotation axis; defines the end-effector location
horizontal plane. and wrist orientation for the robot to grasp the knob.
Given the waypoints consisting of 3d cartesian posi-
4 tions and wrist orientations, we transform the trajectory
We do not use a stereo camera because we found that the 3d pomE fi . d Probabilistic RoadM
cloud obtained from the sensor was very noisy and sparsen ofsulting Into configuration space and use a Probabilistic RoadMap

in a large area of erroneous depth values in the center ofahdlé. (PRM) [15] motion planning algorithm to generate smooth



paths which execute the task while avoiding obstacles ambsitioning errors expected from a standard 2d map-based
joint limits. navigation algorithm.
Our robot was able to successfully open the door 31
IV. PERCEPTION RESULTS times out of 34 trials. Notable failures among the test cases
To train and test our algorithm, we use a diverse set of 33hcluded glass doors (erroneous laser readings), doofs wit
images of doors taken with a digital camera. To evaluate theumeric keypads, and very dim/poor lighting conditions.
performance of our vision algorithms, we randomly split the Our experiments discussed above only included doors
data into 270 images for training and 65 images for testingvhere the robot could push the door open. Pulling the door
The door handle training set consisted of 292 positive exspen is much more difficult for our robotic arm because
amples (some images had double doors) and 10,000 negatfethe small effective workspace in which it can exert
examples. Table Il shows the recognition and localizatiosnough torque to open a door and its fairly weak gripper.
accuracies. Recognition is considered correct if the argedditionally, many of our doors are spring-loaded, making
of overlap between the predicted detection bounding bakimpossible for this particular arm to pull open these @oor
and the ground truth bounding box exceeds 50% (whiclihus, we have only performed a single demonstration of our
is standard practice in object recognition [16]). Howeverobot pulling open one door which was light and not spring-
manipulation tasks require higher accuracy in localizing t |loaded.
object to be manipulated. Thus, a door handle was consideredro demonstrate our robot navigating to an unknown door
to be correctly localized if its estimated location was with using a rough map of the building and autonomously opening
2 cm of the correct location, since an error larger thathe door, we integrate a standard 2d navigation system
this would cause our robot arm to fail to grasp the doowith our vision, planning, and control [17]. The navigation
handle and open the door. The accuracy of the classifier thatalized the robot withinl0 cm of the center of the door
distinguishes left-turn from right-turn handles was 97.3% and within+10 degrees of facing the door. Our vision-based
classifiers identify the 3d position of the door handle and
command the robot navigation system to drive up to the
handle. Then the vision-based classifiers infer the desired
3d positions and orientations for the arm to perform the task
RECOGNITION | L OCALIZATION of opening the door. The robot was able to navigate into

TABLE I
DOOR HANDLE CLASSIFICATION ACCURACY.

0,
DOOR HANDLE | 94.5% 93.2% 3 different offices in an uninterupted sequence, by opening
doors not seen in the training set.
V. EXPERIMENTAL RESULTS C. Additional Manipulation Tasks

We demonstrate our perception algorithms on a mobile To demonstrate that our ideas can be easily extended to
robot platform in a number of experiments. In the door opermore manipulation tasks, we tested our algorithms on three
ing experiments, the robot was required to autonomousBdditional tasks—pressing an elevator call button, turring
locate the handle and push the door open in order for thbermostat knob, and pulling out a drawer. From our vision-

trial to be considered a success. based classifiers, we identify a small set of 3d features for
each task (see Table 1) and use these to infer a set of 3d
A. Hardware waypoints to plan a path for the robot end-effectorin

Our robotic platform consists of a Neuronics Katana450 Sexperiments where the robot was commanded to operate
DOF robotic arm, with angle gripper, mounted on a Segwagovel elevator call buttons, the robot succeeded in prgssin
base. Our vision system consists of a pan-tilt-zoom (Sorthe button in 22/24 trials. In single demonstrations, thH#to
DV100) camera with a 2d laser scanner (Hokuyo). We useas also able to sucessfully turn the knob and pull out the
the ROS software framework to integrate all the software ardfrawer.
hardware components of our system [17]. See Figure 6 for snapshots of the robot experiments.

_ Videos of these experiments are available at:
B. Door Opening ]
. . http://www.stanford.edu/~ellenrk7/OpeningNewDoors
We tested our algorithm by having the robot autonomously

open doors in two different buildings on a total of five VI. CONCLUSION
different floors (approximately 20 different doors). In the

: : To navigate and perform tasks in unstructured environ-
experiments, our robot saw all of the test locations for the . ; .
o Lo - . ments, robots must be able to perceive their environments
first time. The training images for our vision-based leagnin, . . . i

. . -~ 'to identify what objects to manipulate and how they can
algorithm were collected in completely separate buildings
with different doors and door handle shapes, structur&y-dec stpe glevator call button training set consisted of approséiyad00
ration, and ambient lighting. Test cases were run with thgositive and 1500 negative samples. Due to difficulty in atitey sufficient

robot placed within reach of the handle and at differenfaining data, the image-based classifiers for the drawetrenchostat knob
ere trained and tested on the same objects but the robotcantwrsly

angles with re.SpeCt to the.door: (typically between +./' zq-gcated the object, classified the appropriate action, dmhed the path to
degrees of facing the door) in order to be robust to maximumanipulate it.



TABLE Il
ERROR RATES FOR ROBOT OPENING DOORS IN TOTAL 084 TRIALS.

HANDLE TYPE NUMBER OF TRIALS | LOCALIZATION (%) | TYPE CLASSIFICATION (%) | SUCCESSRATE
ANTI-CLOCKWISE 19 89.5% 94.7% 84.2%
CLOCKWISE 15 100% 100% 100%
TOTAL 34 94.1% 97.1% 91.2%

Fig. 6. Snapshots of our robot opening doors and performimgrakother manipulation tasks.
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