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Abstract— We consider the problem of enabling a robot
to autonomously open doors, including novel ones that the
robot has not previously seen. Given the large variation in the
appearances and locations of doors and door handles, this is a
challenging perception and control problem; but this capability
will significantly enlarge the range of environments that our
robots can autonomously navigate through. In this paper, we
focus on the case of doors with door handles. We propose an
approach that, rather than trying to build a full 3d model of the
door/door handle—which is challenging because of occlusion,
specularity of many door handles, and the limited accuracy
of our 3d sensors—instead uses computer vision to choose a
manipulation strategy. Specifically, it uses an image of the door
handle to identify a small number of “3d key locations,” such
as the axis of rotation of the door handle, and the location
of the end-point of the door-handle. These key locations then
completely define a trajectory for the robot end-effector (hand)
that successfully turns the door handle and opens the door.
Evaluated on a large set of doors that the robot had not
previously seen, it successfully opened 31 out of 34 doors.
We also show that this approach of using vision to identify
a small number of key locations also generalizes to a range of
other tasks, including turning a thermostat knob, pulling open
a drawer, and pushing elevator buttons.

I. INTRODUCTION

There is growing interest in using robots not only in
controlled factory environments, but also in unstructured
home and office environments. Although robots are able to
successfully navigate open spaces even of novel environ-
ments, it is desirable that robots also be able to manipulate
their environment to gain access to new spaces. In this paper,
we propose an algorithm that enables a robot to open and
navigate through doors, even ones that it has not previously
seen.

Because of the wide range of variation in the shapes and
appearances of doors, door handles, etc., it is a challenging
perception and control problem to open a novel door. Further,
because a door handle almost invariably occludes part of
itself or part of the door (and is often specular or has little
texture) using our robot’s sensors to build a full 3d model of
the door also proves challenging. Rather than build a full 3d
model, we instead proposes an approach that uses computer
vision to identify a small number of “3d key locations”
or “3d features,” that completely define a trajectory for
the robot arm to open the door. More formally, these 3d
features comprise some number of points in 3d (such as the
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Fig. 1. STAIR robot opening a novel door and images of the typesof
doors used in our experiments.

location of the endpoint of the handle) as well as some vector
directions (such as the direction in which to push the handle).
We can then straightforwardly map from the 3d features to
an arm trajectory.

Our robot identifies 3d locations on a door handle using
computer vision and supervised learning. Specifically, we
train an object detection algorithm to accurately place a
bounding box around door handles. By incorporating an
appropriate Bayesian prior into the system, our object de-
tection algorithm also takes into account usefulcontextual
information, such as that door handles are most likely found
at a certain height. And further, the information that there
are usually 1-2 door handles per door, and that pairs of door
handles (as in a pair of double doors) are usually at the same
height.

Because of mechanical limitations of our robot (limited
strength of the arm), our work focuses primarily on doors
with door handles (i.e., similar to the ones shown in Figure
1), and that open away from the robot. Our approach results
in our robot robustly opening a wide range of doors, even
ones very different from the training set. Tested on a large
set of novel doors, our robot successfully opens 31 out of 34
doors. In addition, we show that our approach of identifying
3d features also generalizes to a range of other manipulation
tasks, ones where a full 3d model of the object may not
be available, but where a small number of 3d points (or
vector directions) suffices to define a complete manipulation



trajectory. Specifically, we show that by using computer
vision to identify 3d features, we can also carry out such
tasks as turn a thermostat knob, push an elevator button, or
pull open a drawer.

Much prior work in manipulation tasks such as grasping
and door opening assumes that an accurate 3d model of
the object is available and focuses more on developing the
control actions required to manipulate the single known
object ([1], [2], [3]). Recently some researchers have de-
veloped control strategies that allow a robot to manipulate
unknown doors [4], but these assume the robot has already
accurately located the unknown door handle and established
an appropriate grasp. When entering a novel building, a robot
must rely on only its sensors to perform manipulation, but
many modern 3d imaging sensors (such as a laser range
finder, time-of-flight depth camera, or stereo camera) often
provide sparse and noisy point clouds.

In this paper, we focus on the problem of manipulation in
novel environments where an accurate 3d model of the object
is not available and its location is unknown. Some recent
efforts in grasping [5] use learning to address this problem.
However, their system identifies only a single grasp point,
which is not sufficient information for the more complex
task of opening a door, where the appropriate grasp and
subsequent control actions depend on the type of object and
the task to be performed.

We use a mobile manipulation platform, where we inte-
grate vision, navigation, planning, and control, to perform
the task of opening the door. We validate our perception
algorithms in a set of experiments, where the robot was
able to autonomously open novel doors in 31/34 trials. We
also evaluate the extensibility of our algorithms by applying
the perception algorithms, trained on a different data sets
for each task to enable our robot to perform the additional
manipulation tasks of pressing an elevator call button, pulling
out a drawer, and turning a thermostat knob.

II. RELATED WORK

In robotic manipulation, much effort has been focused on
developing control actions for manipulation tasks assuming
complete knowledge of the environment in the form of an
accurate 3d model of an object, including its position and
orientation ([1], [2], [3]). Nagatani and Yuta [6] designed
a door opening control strategy for a mobile robot on a
single door; however they provide the robot with the handle
location in advance. Petersson et al. [7] looked at developing
compliant control actions and performing online estimation
of the center of rotation and radius for a single door.
Schmid et al. [4] demonstrated their manipulator opening
a door without knowledge of the door geometry, using a
combination of tactile sensing in the fingers and force/torque
sensing in the wrist. However, in both of these works
a human positioned the robot end-effector on the handle
manually. Jain et al. [8] demonstrate their robot opening
novel doors using a force-sensing manipulator to infer how
to turn the handle once a human has pointed out the location
of the handle. For a fully autonomous system, the perception

system must be capable of locating the object and inferring
some additional information, since a push-bar or spherical
door knob must be manipulated much differently than a turn
lever door handle.

Some researchers address the problem of identifying the
3d location of an object through human assistance. Kemp
et al. [9] consider having a human use a laser pointer to
specify the 3d position of objects for the robot to grasp.
Other researchers have recently considered using vision-
based learning techniques to enable robots to grasp unknown
objects [10]. However, since only a single grasp point is
identified, these algorithms are insufficient for more complex
manipulation tasks, such as opening a door, where the
appropriate grasp and subsequent control actions depend on
the type of object and the task to be performed.

In contrast to many of these previous endeavors, our work
does not assume the existence of a known, 3d model of the
door handle or knowledge of its location. However we do
assume that the robot is provided with a rough 2d map of
the building which allows it to navigate to a door (with an
error of standard navigation algorithms). We focus on the
problem of autonomous manipulation in novel environments
where the robot must rely on its onboard sensor data only.
We do not attempt to reconstruct a 3d model of the object,
but instead recognize the object and identify only the small
set of 3d features sufficient to compute the required control
actions.

The difficult task of recognizing objects in an image is a
large area of ongoing research. A number of algorithms have
been developed that achieve good performance on object
recognition [11]. However, since scenes are often cluttered
with objects (or portions of objects) that look very similarto
the object of interest, these 2d image based vision algorithms
tend to have lots of false positives. To locate objects in the
world, a human often uses prior knowledge about where
certain objects tend to be located. For example, a door handle
usually lies on a vertical plane at some distance above the
floor. Using contextual cues (for example, the location-based
priors mentioned above) has been shown to improve object
detection [12].

III. APPROACH

To open a door, we must first locate the door handle and
infer how to manipulate it. We approach the task of door
opening by using vision and machine learning to identify
the door handle and its type (whether it turns clockwise or
anti-clockwise), and to identify a small set of 3d features
which map straightforwardly to a trajectory for the arm.
Concretely, to reliably open a door, we identify three 3d
features, comprising two 3d pointsp1, p2 ∈ ℜ3, and a unit-
length vectorv1 ∈ ℜ3 (||v1|| = 1). These are illustrated in
Figure 2(a). Concretely:

• The point p1 is the surface location of the handle at
the axis of rotation (where the keyhole would be, if the
door has one).

• The vectorv1 indicates the axis of rotation of the door
handle. Further,v1 is usually the normal to the plane



TABLE I

3D FEATURES FOR SEVERAL MANIPULATION TASKS.

MANIPULATION TASK DESCRIPTORS

OPEN A DOOR 1. LOCATION OF ROTATION AXIS
OF HANDLE p1

2. AXIS OF ROTATIONv1

3. LOCATION ALONG HANDLE AT
WHICH TO PUSH DOWNp2

PRESS AN 1. LOCATION OF BUTTONp1

ELEVATOR BUTTON 2. DIRECTION TO PRESSv1

PULL OPEN 1. MIDPOINT OF THE HANDLEp1

A DRAWER 2. DIRECTION TO PULLv1

TURN A 1. MIDPOINT OF THE KNOBp1

THERMOSTAT KNOB 2. AXIS OF ROTATIONv1

Fig. 2. 3d point/vector pairs extracted from the perceptionalgorithm which,
along with the action classification, define control actionsto manipulate a
(a)door handle, (b)thermostat knob, (c)drawer.

of the door; and the direction−v1 usually specifies the
direction in which to push the door (see Figure 2(a)).

• The point p2 is an appropriate location on the door
handle to push down on.

These 3d features can be straightforwardly used to parame-
terize a trajectory for the arm to open the door. Even if no
3d model of the door is available, as long as our algorithm
is able to findp1, v1, p2 accurately, we can robustly open a
door. Specifically, we map from these 3d features to a series
of waypoints, each consisting of a Cartesian position and
orientation of the robot end-effector; we then command our
position-controlled end-effector through these waypoints.

In our experiments, we consider only doors which open
away from the robot due to mechanical limitations and lack
of sensing in our manipulator gripper. We note that to apply
these ideas to doors that open towards the robot, one may
additionally have to estimate the location of the door hinge
axis.

We propose that the idea of extracting control actions from
only a small set of 3d features identified by the perception
algorithm can also be extended to other manipulation tasks
(Table I). For example, to turn a thermostat knob, we
typically require knowledge of the position of the center of
the knobp1, and the axis of rotationv1. (See Figure 2(b).)
To pull open a drawer, we need to know the location of
a drawer handlep1, and the direction in which to pullv2

(Figure 2(c).)

A. Object Classifier

In order to open a previously unknown door, we must first
detect the door handle. This is challenging, because door

handles can vary significantly in appearance (see Figure 3).
We use computer vision and a state of the art 2d-sliding
window object detection algorithm due to Torralba et al. [13]
and implemented by [14].1

The sliding window detector samples rectangular shaped
regions in the image, and tries to determine if each rectan-
gular region roughly bounds a door handle. It then outputs
the detections with confidence values greater than a specified
threshold. A cross validation set was used to determine the
classifier threshold. Because the sliding window detector
uses only the information inside a rectangular image region
to identify possible door handles, it thus ignores the rest
of the image outside that rectangle, which may also have
useful “contextual” information for detecting the handle.In
our experiments, simply applying a sliding window detector
(with non-maximal suppression) without considering any
contextual information results in many false positives—
12.2% on the training set and 15.6% on the test set.

To improve performance over this classifier, we incorpo-
rate three additional types of contextual information intothe
classifier:

1) Location. E.g., a door handle is most likely to be found
at a certain range of heights above the floor.

2) Expected number of handles in the image (at least 1
but no more than 2, the latter in the case of double
doors),

3) Expected relative location of 2 handles (in the case of
double doors, the two door handles are almost always
at the same height).

To incorporate the first contextual cue, each pixel in the
image is assigned a prior probability of containing a door
handle. This probability distribution is estimated from the
training data (using maximum likelihood estimation with
Laplace smoothing). Thus, pixels near the bottom (points
near the floor) have a small prior probability of containing a
door, whereas points corresponding to approximately waist
height are assigned a higher probability of containing a door.
This location-based prior is used to re-weight the probability
for each detection, thus giving us a posterior probability for
an image region containing a door, that takes into account
location in the image.

Because the sliding window detector returns many de-
tections (see Figure 3; each green rectangle is a separate
detection reported by the sliding window algorithm), we also
post-process the detector output using K-means clustering
on these detections. Here, the number of clustersk is set to
be the number of detections remaining after applying non-
maximal suppression, and each cluster is assigned a weight

1The supervised training procedure produces a dictionary offeatures
consisting of localized templates from cropped training examples. The
relevance of each of these features in identifying whether an object is present
in an image patch is evaluated by computing the normalized crosscorrelation
of each template with the image patch. A binary classifier is learned by using
boosted decision trees to select the set of feature patches which are most
effective at recognizing the object in the training examples(see [13] for
more details). We then use this classifier within a sliding-window detector
framework to compute the probability of the presence of the candidate object
within each rectangular subwindow of a test image.



Fig. 3. Test set results with raw classifier output outlined in green, and the result of applying context and clustering outlined in blue. Notice how the
bounding boxes are very accurately centered on the handle. (Best viewed in color)

proportional to the sum of the confidences of the detections
associated with it. The clustering results in a bounding box
that is better localized on the center of the handle.

We explored a number of algorithms for taking into ac-
count the second and third contextual cues described above.
The best method turned out to be relatively simple. We
choose the cluster centroid with the highest weight from K-
means as the most likely candidate for a handle and search
in the horizontal band containing this detection to locate
the next most likely candidate. If a second high-confidence
detection is found, then we identify that as a second door
handle; otherwise, we return only the first detection. This
incorporates the primary knowledge that we expect at most
2 door handles, and that if there are 2 handles, they should
occur at the same height. This characterizes all double doors
that occured in our training set.2

Given the rectangular patch(es) containing a door handle,
we use a second trained binary classifier to recognize the
type of handle (specifically, whether it turns clockwise or
anti-clockwise).3 This indicates the desired action — push
down and rotate clockwise or push down and rotate anti-
clockwise. The object location and clockwise/anti-clockwise
classification provides sufficient information to extract a
small set of 3d features sufficient to compute control actions,

2One can also envision a more complex algorithm that increases the
confidence of detections which lie in close proximity to the left or right of
each other. However, since there are often horizontal edge features on doors
(due to windows, for example) which produce a large number of neighboring
detections along a horizontal band, this approach overly increased the weight
of these false positives, and gave poor performance.

3We resize the image patches containing the door handle to a fixed size
and train a sliding window classifier. The positive and negative training
examples are the left and right oriented handles, respectively.

as described in the next section. Figure 3 shows images of
several doors (some with very cluttered backgrounds) and
the resulting detections produced by our algorithm. The blue
rectangles are the final output of our door handle detection
algorithm.

B. Extracting 3d Features

Once our perception algorithm has identified the loca-
tion of the handle in an image and classified the action
(clockwise/anti-clockwise) to perform, the next step is to
infer the control actions to execute the task. Concretely, we
will identify the 3d featuresp1, v1, p2, and use them to infer
a trajectory for the arm.

In detail, we use the results from the vision-based classi-
fier, along with a 2d laser scan of the door plane to extract
the location of the axis of rotation of the door handle, the
location to apply force, and the door plane normal. As seen
in Figure 3, the object recognizer provides a tight, well-
centered bounding box around the handle and a classification
for the direction the handle rotates. Given a bounding box
surrounding the door handle, we determinep1 andp2 using
a fixed pair of points specified relative to the corners of the
bounding box. In detail, if(x, y) is the top left corner,w is
the width, andh is the height of the bounding box in image
coordinates, the handle rotational axis and location to apply
force are approximately located at (x + αw, y + βh) and
(x+γw, y +βh), respectively, whereα, β, γ are empirically
chosen constants. Since the robot can localize well with
respect to the door and its camera is rigidly mounted, this
heuristic performed well in our experiments.

The method described above gives a set of 2d coordinates
in the image plane. These 2d coordinates are transformed into



3d coordinates in the world frame using our laser scanner
and the approach described in section III-B.1. Specifically,
our robot uses a Hokuyo URG scanner that is mounted
horizontally. Using the laser scanner output, we can extract
the door plane and normal to the door plane. Making the
assumption that the door is a large vertical plane (and that the
door handle is a fixed distance offset from the door, usually
about 4cm), we can identify the 3d locations ofp1 and p2.
Figure 2 shows the 3d points extracted from the location
and action classification for a door handle (and additionally
a thermostat knob and drawer). The normal of the door plane,
extracted from the laser data (and assuming a vertical door
plane), is used asv1.

1) Data Fusion:We use a 2d laser scan (in the horizontal
plane) along with a vertical-wall assumption to obtain the 3d
location of 2d points in the image.4 Using the vertical-wall
assumption, we want to find the intersection of the camera
ray passing through the door handle with the door plane.
If v ∈ ℜ3 is the unit ray which passes from the camera
origin through the predicted location of the door handle in
the image plane,t is the distance from the camera origin to
the door handle, andT0 ∈ ℜ2×3 is a matrix which projects
the camera ray into the plane of the laser, then the camera
ray projected into the laser plane is defined byr = t(T0v).
We denote the planar laser readings asli = (x(θi), y(θi))
and the location of the laser relative to the camera in the
horizontal plane asd. We must solve for the location where
the camera ray intersects the door plane.

t∗ = mint

∑
i∈Ψ

||T0(tv) − (li + d)||2
2

(1)

where Ψ is a small neighborhood around the rayr. The
solution provides the location of the handle in the camera
frame,r∗ = t∗(T0v). Finally, the 3d location in the robot’s
coordinate frame is found by applying the coordinate trans-
form, T1 ∈ ℜ4×4, from the camera frame to the robot arm
frame,p = T1r

∗.

Fig. 4. Example of a 2d laser scan with the camera ray projected into the
horizontal plane.

4We do not use a stereo camera because we found that the 3d point
cloud obtained from the sensor was very noisy and sparse, often resulting
in a large area of erroneous depth values in the center of the handle.

C. Mapping to Control Actions

Given the 3d features corresponding to the location of the
door handle axis of rotationp1, the location to apply force
p2, and the normal vector to the door planev1, as well as the
action classification (push down and rotate anti-clockwiseor
clockwise), we need to extract 3d waypoints which can be
used to plan a path in cartesian space for the end-effector.
For our position-controlled robot to turn the door handle,
the robot must establish contact with the handle and push
down on the handle by moving the end-effector along an
arc (which is centered on the handle axis of rotation and
lying in the plane normal to this axis) while at the same
time rotating the wrist (Figure 5). The 3D features are used
to geometrically compute this arc, and the correspondiong
rotation of the wrist. The handle axis of rotation provides
the preferred pitch angle for the wrist (aligned with the door
plane normal vector). The normal to the door plane and the
location of the handle on the door (left or right side) indicates
which direction the door will swing (left or right) so the
robot end-effector knows approximately which direction to
push the door open.

Fig. 5. An illustration of the end effector trajectory computed for the robot
to manipulate a door handle.

We can compute end-effector trajectories for the additional
tasks we consider (pressing an elevator button, turning a
knob, and pulling a drawer) in a similar manner as the door
opening task. For pressing an elevator button, the 3d location
of the center of the buttonp1 and the surface normalv1 define
a straight-line trajectory for the robot end-effector to move
along (preferably with the wrist aligned along the normal) to
make solid contact in the center of the button. In the case of
pulling out a drawer, the location of the center of the handle
p1 and the surface normalv1 provide enough information
to compute a trajectory for the robot end-effector to grasp
the handle and pull along a straight-line trajectory with the
wrist approximately aligned with the direction of motion. For
a thermostat knob, the 3d location of the center of the knob
p1 and the rotation axisv1 defines the end-effector location
and wrist orientation for the robot to grasp the knob.

Given the waypoints consisting of 3d cartesian posi-
tions and wrist orientations, we transform the trajectory
into configuration space and use a Probabilistic RoadMap
(PRM) [15] motion planning algorithm to generate smooth



paths which execute the task while avoiding obstacles and
joint limits.

IV. PERCEPTION RESULTS

To train and test our algorithm, we use a diverse set of 335
images of doors taken with a digital camera. To evaluate the
performance of our vision algorithms, we randomly split the
data into 270 images for training and 65 images for testing.

The door handle training set consisted of 292 positive ex-
amples (some images had double doors) and 10,000 negative
examples. Table II shows the recognition and localization
accuracies. Recognition is considered correct if the area
of overlap between the predicted detection bounding box
and the ground truth bounding box exceeds 50% (which
is standard practice in object recognition [16]). However,
manipulation tasks require higher accuracy in localizing the
object to be manipulated. Thus, a door handle was considered
to be correctly localized if its estimated location was within
2 cm of the correct location, since an error larger than
this would cause our robot arm to fail to grasp the door
handle and open the door. The accuracy of the classifier that
distinguishes left-turn from right-turn handles was 97.3%.

TABLE II

DOOR HANDLE CLASSIFICATION ACCURACY.

RECOGNITION LOCALIZATION

DOOR HANDLE 94.5% 93.2%

V. EXPERIMENTAL RESULTS

We demonstrate our perception algorithms on a mobile
robot platform in a number of experiments. In the door open-
ing experiments, the robot was required to autonomously
locate the handle and push the door open in order for the
trial to be considered a success.

A. Hardware

Our robotic platform consists of a Neuronics Katana450 5-
DOF robotic arm, with angle gripper, mounted on a Segway
base. Our vision system consists of a pan-tilt-zoom (Sony
DV100) camera with a 2d laser scanner (Hokuyo). We use
the ROS software framework to integrate all the software and
hardware components of our system [17].

B. Door Opening

We tested our algorithm by having the robot autonomously
open doors in two different buildings on a total of five
different floors (approximately 20 different doors). In the
experiments, our robot saw all of the test locations for the
first time. The training images for our vision-based learning
algorithm were collected in completely separate buildings,
with different doors and door handle shapes, structure, deco-
ration, and ambient lighting. Test cases were run with the
robot placed within reach of the handle and at different
angles with respect to the door, (typically between +/- 20
degrees of facing the door) in order to be robust to maximum

positioning errors expected from a standard 2d map-based
navigation algorithm.

Our robot was able to successfully open the door 31
times out of 34 trials. Notable failures among the test cases
included glass doors (erroneous laser readings), doors with
numeric keypads, and very dim/poor lighting conditions.

Our experiments discussed above only included doors
where the robot could push the door open. Pulling the door
open is much more difficult for our robotic arm because
of the small effective workspace in which it can exert
enough torque to open a door and its fairly weak gripper.
Additionally, many of our doors are spring-loaded, making
it impossible for this particular arm to pull open these doors.
Thus, we have only performed a single demonstration of our
robot pulling open one door which was light and not spring-
loaded.

To demonstrate our robot navigating to an unknown door
using a rough map of the building and autonomously opening
the door, we integrate a standard 2d navigation system
with our vision, planning, and control [17]. The navigation
localized the robot within10 cm of the center of the door
and within±10 degrees of facing the door. Our vision-based
classifiers identify the 3d position of the door handle and
command the robot navigation system to drive up to the
handle. Then the vision-based classifiers infer the desired
3d positions and orientations for the arm to perform the task
of opening the door. The robot was able to navigate into
3 different offices in an uninterupted sequence, by opening
doors not seen in the training set.

C. Additional Manipulation Tasks

To demonstrate that our ideas can be easily extended to
more manipulation tasks, we tested our algorithms on three
additional tasks—pressing an elevator call button, turninga
thermostat knob, and pulling out a drawer. From our vision-
based classifiers, we identify a small set of 3d features for
each task (see Table I) and use these to infer a set of 3d
waypoints to plan a path for the robot end-effector.5 In
experiments where the robot was commanded to operate
novel elevator call buttons, the robot succeeded in pressing
the button in 22/24 trials. In single demonstrations, the robot
was also able to sucessfully turn the knob and pull out the
drawer.

See Figure 6 for snapshots of the robot experiments.
Videos of these experiments are available at:

http://www.stanford.edu/∼ellenrk7/OpeningNewDoors

VI. CONCLUSION

To navigate and perform tasks in unstructured environ-
ments, robots must be able to perceive their environments
to identify what objects to manipulate and how they can

5The elevator call button training set consisted of approximately 400
positive and 1500 negative samples. Due to difficulty in collecting sufficient
training data, the image-based classifiers for the drawer andthermostat knob
were trained and tested on the same objects but the robot autonomously
located the object, classified the appropriate action, and planned the path to
manipulate it.



TABLE III

ERROR RATES FOR ROBOT OPENING DOORS IN TOTAL OF34 TRIALS.

HANDLE TYPE NUMBER OF TRIALS LOCALIZATION (%) TYPE CLASSIFICATION (%) SUCCESS-RATE

ANTI-CLOCKWISE 19 89.5% 94.7% 84.2%
CLOCKWISE 15 100% 100% 100%
TOTAL 34 94.1% 97.1% 91.2%

Fig. 6. Snapshots of our robot opening doors and performing several other manipulation tasks.

be manipulated to perform the desired tasks. We present
an approach that uses state of the art computer vision and
supervised learning to identify a small number of 3d features
that are sufficient to compute a trajectory for the robot
end-effector to turn the handle and open the door. This
strategy enabled our robot to navigate to unexplored locations
in an unfamiliar building by opening 31/34 doors it had
not seen before. Our robot was also able to demonstrate
the application of this approach to perform several other
manipulation tasks.

We believe our approach is complementary to those which
focus more on developing compliant controllers with force
feedback to deal with uncertainty. Tactile sensors in the
gripper or a wrist-mounted force sensor could provide sup-
plementary information to better estimate some of the 3D
features once the robot has made contact with the object to
be manipulated.
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