
Autonomous MAV Flight in Indoor Environments using
Single Image Perspective Cues

Cooper Bills, Joyce Chen, and Ashutosh Saxena

Abstract— We consider the problem of autonomously flying
Miniature Aerial Vehicles (MAVs) in indoor environments such
as home and office buildings. The primary long range sensor in
these MAVs is a miniature camera. While previous approaches
first try to build a 3D model in order to do planning and
control, our method neither attempts to build nor requires a
3D model. Instead, our method first classifies the type of indoor
environment the MAV is in, and then uses vision algorithms
based on perspective cues to estimate the desired direction to fly.
We test our method on two MAV platforms: a co-axial miniature
helicopter and a toy quadrotor. Our experiments show that our
vision algorithms are quite reliable, and they enable our MAVs
to fly in a variety of corridors and staircases.

I. INTRODUCTION

We consider flying a Miniature Aerial Vehicle (MAV) such
as a quadrotor equipped with a camera (Figure 1) in indoor
environments such as corridors and stairs (Figure 2).

Miniature aerial vehicles (MAVs) that can fly au-
tonomously in unstructured indoor GPS-denied environments
such as homes and offices would be useful for exploration,
rescue, surveillance and entertainment. These aerial vehicles
need to be small and lightweight, so a passive, low-power
long-range sensor is more suitable than power-hungry sen-
sors such as LIDAR [1]. Our solution is to use a small camera
as the primary long-range sensor.

However, the 2D visual information from a camera is
difficult to use for navigation in a 3D world. Some algorithms
(such as visual SLAM [2]) attempt to infer 3D structure
from multiple images. This is challenging because reliable
odometry is not available for aerial robots and building a 3D
model of the environment takes considerable computation
power [3]. Furthermore, the constructed 3D model often has
holes for textureless surfaces such as walls. In our work, we
instead rely on perspective cues from a single image, which
require very little computational power and can be used by
a controller directly without building a 3D model.

In the past, vision-based algorithms have been shown to
fly in simple environments such as corridors [4]. The ability
to travel between different floors is a big advantage for
aerial robots over ground-based robots. To the best of our
knowledge, our work is the first one that considers flying in
previously unseen staircase environments using vision.

We can categorize almost all indoor environments as
belonging to one of the following categories: long-narrow
spaces (e.g. corridors), areas with non-uniform height (e.g.
stairs), open spaces (e.g. atriums), small enclosed spaces (e.g.

Cooper Bills, Joyce Chen and Ashutosh Saxena are with
the Department of Computer Science, Cornell University, USA.
csb88@cornell.edu,{yuhsin,asaxena}@cs.cornell.edu

Fig. 1. Our indoor quadrotor Parrot AR Drone.

Fig. 2. An example of an environment where we want to fly the MAV in.
(Left) Picture of a staircase. (Right) Overhead map of the staircase. Note
narrow spaces, unknown terrain, and turns at the end of the staircase.

offices). For each of these environments, there are certain
perspective cues that give us information about the 3D struc-
ture, and hence depths in different directions. Previously,
such single image cues [5] have been successfully used in
obstacle avoidance for ground robots [6]. In our work, we
first classify the type of environment the MAV is in, and for
each case we compute the perspective cues. These cues are
then used to navigate the MAV within the environment.

We test our approach in several buildings, including areas
never seen before by our algorithms. The testing environ-
ments included several corridors and staircases, which often
involved turns; for example, a turn may connect two corridors
or two flights of stairs.

II. RELATED WORK

Previous work on aerial robots can be arranged as follows:
non-vision vs. vision sensors, with a focus on stabilization
or navigation, in both outdoor and indoor environments. In
indoor environments, the perception and navigation problem
is more important because they are GPS denied and more
constrained; while in outdoor environments, the focus has
been on designing control algorithms [7], [8], [9], [10].
Non-vision sensors: There is extensive work on autonomous
quad-rotor navigation using active sensors such as laser range

scanners, sonar, and infra-red. Roberts et al. [11] used infra-
red and ultrasonic sensors to fly a quad-rotor indoor in a large
(7×6m) room, but it cannot do long-range sensing. Achtelik
et al. [1] used a laser rangefinder and a stereo camera for
quadrotor navigation, with the eventual goal of combining
the two complementary sensors. Custom-built quadrotors are
used in order to support heavy sensors or additional battery
weight necessary to support active, power-hungry sensors;
however, most miniature MAVs can carry only a light-weight
and low-power sensor such as a camera.
Vision sensors: Recently, there is an interest in building
MAVs that use vision to fly in common indoor environments,
particularly because vision offers long-range sensing with
low power and less weight, allowing smaller aerial robots to
be built. Nicoud et al. [12] discussed the tradeoffs of design-
ing indoor helicopters while Schafroth et al. [13] designed
various test benches for micro helicopters and designed
a dual-rotor single-axis helicopter with an omnidirectional
camera. Mejias et al. [14] used vision to land a helicopter
while avoiding power lines. Zingg et al. [4] presented optical
flow based algorithms for navigating an MAV in corridors.
Stabilization and Control: Research that used purely
vision-based algorithms for stabilization and pose estimation
of quad-rotors include using specialized cameras that can be
programmed to refocus at certain depths or heavier stereo
cameras. E.g., Moore et al. [15] used stereo cameras for
autonomous flight. Johnson [16] used vision to make a quad-
rotor hover stably indoors. Among the most recent work on
UAV flight, work involving vision-based stabilization and
pose estimation of the aerial vehicle include [17], [18], [19],
but these works consider only stabilization, not navigation.
Navigation: Even when simple lightweight cameras are
used, work on navigation often depends on known patterns or
environments. For example, Tournier et al. [20] used Moire
patterns pasted in the environment to estimate the attitude
and position of quad-rotor vehicles. Soundararaj, Prasanth
and Saxena [21] and Courbon et al. [22]) used vision to fly in
known environments; however their method does not apply to
scenarios where full visual databases are not available. Mori
et al. [23] used markers to stably hover a co-axial helicopter
and go from one marker to another.
Other Related Works: In other related work on indoor
navigation, Michels, Saxena and Ng [6] used an on-board
camera for autonomous obstacle avoidance in a small RC
car driving at high speeds. They compute image features that
capture single image distance cues (Make3D, [5], [24], [25])
to predict distances to obstacles. Our work is motivated by
this work; however their obstacle avoidance algorithms for
a ground robots do not directly apply to obstacle detection
for MAVs.

One can also build a map of the environment using Visual
SLAM (e.g., [26], [27], [28]), in which the map is built
using images captured from a camera. Ribnick et al. [29]
estimate positions and velocities from monocular views.
Such methods for estimating position/location from visual
landmarks have been used in many robots which navigate
on 2D ground. Celik et al. [2] use vision to reconstruct 3D

Fig. 3. Our co-axial indoor platform (inset shows the camera used).

properties of the environment for UAV path-planning; this
technique only applies to situations where there are strong
feature points that could be tracked from frame to frame,
and would not apply in many indoor environments that are
devoid of trackable features (e.g., walls). Our approach does
not explicitly perform 3D reconstruction and hence is less
computationally intensive.

Our vision-based algorithm does not require high-
resolution cameras; in fact, our algorithm is robust enough
that a camera resolution of 128×128 pixels suffices, making
our algorithm attractive for even smaller aerial robots. For
example, extremely small robots such as 25mm long micro-
mechanical flying insects [30] can use miniature cameras.
Most flying platforms have a camera installed (e.g., [31]),
and therefore our algorithms could also be used on them.

III. HARDWARE PLATFORM

Our primary platform is the Parrot AR.Drone quadrotor
(Figure 1). This inexpensive toy, currently available to the
general public and contains two cameras (one facing forward,
the other horizontally downwards), a sonar height sensor, and
an onboard computer running proprietary software for com-
munication and command handling. Commands and images
are exchanged via a WiFi ad-hoc connection between our
host machine and the AR.Drone. Our algorithms run on the
host machine—a 2010 Apple Macbook Pro (2.66GHz Intel
Core i7, 4GB RAM), running Ubuntu 10.04.

We get an image of resolution of 320×240 pixels from the
AR.Drone’s forward-facing camera, and get 88 × 72 pixels
form the downward-facing camera. Due to the limitations
of the proprietary software on the drone, the only way to
receive both images is to overlay one on top of the other.
Therefore, we cannot use the full image data on the front
camera, as we extract the bottom camera’s image from it.

As a secondary platform, a co-axial hobby helicopter was
used (The Blade CX2 Coaxial Micro Helicopter, shown in
Figure 3) with a Spectrum DX6i 2.4GHz transmitter to
communicate. The camera on this platform is a miniature on-
board KX141 camera, with a 795×596 resolution. However,
we choose to use the AR.Drone as our primary platform for
it’s stability and previously developed API.

On both platforms, three sonars (LV MaxSonar-EZ0) are
used for proximity detection on the sides and front of the
MAV, and one additional sonar sensor for height detection.
We transmit the short-range sensor data back to the host com-
puter using an XBee transmitter module. These inexpensive
MAV platforms are less stable (i.e., they drift quite a lot)
and are not capable of performing acrobatic maneuvers.

IV. APPROACH

One possible approach to navigation is to create a 3D
model of the environment from camera images (using tech-
niques such as structure-from-motion [2]) and then per-
form path-planning. Such an approach requires high camera
resolution and often constructs incomplete models of the
environment [3], [32]. Furthermore, even if complete models
of the environment could be created, creating these models is
computationally expensive. This causes unacceptable delays
between the perception and the action of the MAV, thus
severely limiting the MAV’s autonomous abilities.

We note that a tight connection between perception and
action is crucial in attaining the quick real-time responses
required to navigate in constrained indoor environments. Our
approach is also motivated by the studies on insect flight
that demonstrate houseflies do not explicitly comprehend
the 3D structure of their surroundings, but rather react to
basic stimuli such as optical flow [33]. Therefore in our
approach, the vision algorithms are closely coupled to the
control, minimizing delay.

We surveyed the types of indoor environments found
in common home and office buildings. We found that the
majority of the indoor environments belong to the following
categories: long spaces (e.g., corridors), staircases, and other
(such as rooms and corners). Each type of environment has a
certain structure that lends itself to simple navigation rules.
For example, in order to fly in a corridor, we only need
to figure out the distance from the ground/walls and the
direction of the end of the corridor (Figure 4). When facing
a staircase, we only need to know the center of the staircase
and which direction to fly in (Figure 5).

Given images of the current environment, our classifier
detects the environment type. Depending on the classifier
result, the MAV follows different strategies: for corridors
and stairs, it relies on perspective cues to navigate; and for
corners, it instead relies on short-range sensors to navigate.
In the future, this setup can be augmented with additional
algorithms for new environments and thus expanded beyond
the scope of this work.

V. ALGORITHMS

Indoor environments are comprised of long straight paral-
lel lines, and from the MAV’s perspective each environment
type has unique visual cues. Our algorithms are designed
to take advantage of these perspective cues to navigate the
MAV though the environment.

A. Corridor

When in a corridor, the goal of the MAV is usually to
fly to one end of the corridor. The ends of the corridor can
be observed as vanishing points in images from the MAV’s
camera. Vanishing points have been used successfully for
estimating 3D structure from a single image [34]. In indoor
environments, vanishing points can be found consistently and
therefore we use them to locate the end of the corridor.

In detail, we first compute the edges of the image using the
Canny edge detector, and then use the probabilistic Hough
transform to find long lines. In a corridor environment, the
long lines along the corridor converge towards a vanishing
point at the end of the corridor. Because of errors, all the
lines do not intersect at exactly one point, so we look for
the region in the image which has the highest density of pair-
wise line intersections (Figure 4). To do this, we divide the
image plane into a 11×11 grid G and count how many line
intersections fall into each grid element. Let (a∗, b∗) be the
grid element that has the highest number of intersections.

More formally, let
• `l: a line in the image, discovered via Hough transform.

Let L be the number of lines found in the image, and
l ∈ [0, L). The line `l can be represented by parameters
ml, bl as y = mlx+ bl.

• (xk, yk) ∈ R2
+: the coordinates of the intersection of

two lines. There are K total intersections. In detail,
if the lines `i and `j do not intersect, let (xk, yk) =
(∞,∞). If they do, then we get them by solving
yk = mixk + bi = mjxk + bj .

• G: The n × n grid that tiles the image plane (n = 11
in our experiments). Ga,b represents the number of line
intersections falling in the grid element (a, b). (a, b ∈
[0, n) are integers.). I.e.,

Ga,b =
K∑

k=1

1{a ≤ nxk

w
< a+ 1, b ≤ nyk

h
< b+ 1}

where w is the width of the image, and h is the height
of the image.

The grid with the maximum number of intersections is:

(a∗, b∗) = arg max
(a,b)

Ga,b

Therefore the initial estimate of the vanishing point is:

(x∗, y∗) =
(
w

n
(a∗ + 0.5),

h

n
(b∗ + 0.5)

)
However this estimate is noisy, and therefore we average
the actual location of the intersections lying near (x∗, y∗)
in order to accurately estimate the vanishing point. N
represents the set of points lying close to (x∗, y∗):

N = {s ∈ [0,K) : ||(xs, ys)− (x∗, y∗))||2 ≤ δ}

where δ is a distance threshold. We then compute the new
estimate of the vanishing point as:

(x̄, ȳ) =
1
|N |

∑
s∈N

(xs, ys)

Fig. 4. (Top) Original corridor images. (Bottom) Corridor processed with Canny edge detector and Hough transform to find vanishing point using our
grid-based approach. The vanishing point is marked with a blue circle. Note that in the rightmost image, the confidence of the vanishing point estimate
would be low because the variance σ2 would be high (see text).

If the pair-wise intersections are closely concentrated, then
it indicates a high confidence in the estimate of the vanishing
point; therefore we compute the variance:

σ2 =
1
|N |

∑
s∈N
||(xs, ys)− (x̄, ȳ)||22 (1)

It is important that the algorithm has low false positive rate
(i.e. it does not report a vanishing point when none is actually
present) because the MAV requires precision control. We use
the number of pair-wise intersections found (i.e., Ga∗,b∗), the
variance (σ2) and the presence/absence of vanishing point
in the previous frame in order to compute the probability
that there is a vanishing point in the current frame. If the
previous frames in the video sequence had strong vanishing
points, the current frame is likely to have a vanishing point.
Furthermore, the current frame’s vanishing point is likely
to be close to those of the previous frames. We construct
a probability model with Gaussians to model the noise in
the location of the vanishing point. The probability of the
location of the vanishing point Xt is given by the product
of two conditional probabilities: P (Xt|Xt+1) and P (Xt|I),
i.e., we model it as a Markov Model, and solve it using
standard Viterbi algorithm [35].

B. Staircase

In order to fly up a staircase, the MAV needs to advance
and ascend carefully without hitting the stairs, and remain
in the center of the staircase.

Our goal is to find the center of the staircase, so the
MAV can follow the staircase using its low-level controller.

We start by detecting the horizontal lines that form the
staircase with the Canny edge detector and probabilistic
Hough transform to acquire line segments. Typically, an
image has many horizontal lines in an image, and therefore
we need to specifically look for a sequence of horizontal
lines that represent the staircase. We do so by classifying the
line segments as horizontal or vertical and looking for the
largest horizontal-line cluster in the Hough transform space.
Our estimate of finding the stairs is based on the number of
lines found in the cluster. Once the cluster of horizontal lines
is detected, we take the mean of the lines’ endpoints; this
gives the desired direction the quadrotor should go to—we
show this by the red vertical line in Figure 5.

When an MAV, flying upwards, reaches the top of a flight
of stairs, the forward-facing camera of the MAV can no
longer see the stairs; the stairs are underneath the MAV,
out of view. In order to detect that the MAV is above a
flight of stairs and to increase its navigational accuracy, we
use the downward-facing camera on the MAV. Again, using
a Hough transform, we extract the long lines in the image,
then filter them. The filter picks out lines within 45 degrees of
horizontal (perpendicular to the MAV’s direction of travel).
Two examples are shown in Figure 6.

Because most detectable lines in indoor environments are
at right angles, the slopes of the resulting lines are used to
fine-tune the MAV’s heading, with the goal to make the lines
detected perpendicular to the MAV’s direction. The location
of the detected lines is also used to help center the MAV on
a desired path. This fine-tuning helps the MAV return to a
desired path if it drifts off course.

Fig. 5. (Top) Original images of staircases. (Bottom) Image with bold red line marking location of staircase. Green line marks center of image for
reference. For example, if the red line is to left of green line, the MAV should turn left.

Fig. 6. (Top) Original images from bottom camera. (Bottom) Detected
lines with filter applied. Accepted lines are green, rejected are red. The left
set shows the MAV in a situation needing yaw correction, the right needing
drift correction.

There are two major components to control the MAV’s
heading: Yaw and Drift. Yaw is the adjustment to the
rotational direction of the MAV. We compute the average
slope of the filtered lines from the downward facing camera
(and call it Slope). Let Pos be the distance of the desired
direction (i.e., the red vertical line in Figure 5) from the
center of the image in the front-facing stair algorithm. We
adjust the Yaw as:

∆Yaw = α1 ∗ Slope+ α2 ∗ Pos

where α1, α2 are the gain parameters.
Drift is the side-to-side movement of the MAV. Finding

the drift adjustment using the bottom image is a little more
difficult, as we only want the MAV to drift if it is properly
oriented. We thus reintroduce the average slope from above,
combined with the average offset (from center) of the line
midpoints in the downward-facing camera. Using these, and

a similar scaling parameter β, we obtain the following:

∆Drift = β ∗ offset
1− |slope|

Because we are dividing offset by 1−|slope|, ∆Drift will
approach 0 as slope approaches 1 or −1 (45 degrees from
horizontal), and will peak when slope is 0. This reduces
the drift correction in situations when the MAV is not
properly oriented. The drift correction is especially useful for
returning to the desired path when the close range sensors
cannot detect anything (i.e. stairs with an open railing).

C. Environment Classifier

We used two algorithms for classifying which environment
the MAV is currently in. The first one uses GIST features
with a learning algorithm, and the second uses “confidence”
values generated by the algorithms described above.
GIST Classifier: We first extract the GIST descriptor [36]
of each image by shrinking the input image down to 128×
128. We then use SVM [37] for classifying indoor images
into these three categories: (1) corridor, (2) stairway, (3)
room (neither). GIST descriptors are well-suited for this
task because they directly measure the global distribution of
oriented line segments in an image, which takes advantage
of the long lines found in indoor images. This classifier is
used with the helicopter platform, but the quadrotor uses our
second algorithm below.
“Confidence” Classifier: In this classifier, “confidence”
estimates are gathered from the stair and corridor vision
algorithms. These confidences are based on the number of
lines found in the respective cluster. The confidence values
are then compared, and the highest (above a threshold) is
deemed the current environment the MAV is in. For example,

in the corridor algorithm, if 80% of the lines cross the
vanishing point, the algorithm will return a high confidence.
Where as if only 20% of the lines cross the vanishing
point, it will have a low confidence. If all of the vision
algorithms return a confidence below a threshold, then the
current environment is classified as unknown.

D. Corners and Unknown Environments

Connecting stairs and corridors are corners and rooms
where our vision algorithms would not be able to reliably
find perspective cues. This is often because only a blank
empty wall is visible by the front-facing camera. In such
areas, the MAV’s goal is to explore the area to find adjacent
environments to fly to where the vision algorithms may work.

In these areas, the system falls back to an exploration
algorithm as follows. When the MAV first enters a corner, it
keeps on moving forward until the front-facing short-range
sensor reports proximity to a wall. Then, it uses the side
short-range sensors to turn to the most open area. While
turning, it checks the front short-range sensors, and will
continue moving if there is enough space. If it does not find
an open space, it turns back in the other direction while still
looking for an open space. This avoids the MAV turning
completely around, unless it has actually reached a closed
corner. If at any time another environment is detected, the
corner algorithm will give control to the respective vision
algorithm(s). We found this approach to work surprisingly
well in most situations.

VI. CONTROL

Our control algorithm is a set of low-level proportional-
derivative controllers that adjust the MAV’s throttle, yaw,
pitch, and roll. The low-level controllers work together to
stabilize the helicopter. (The quadrotor has some stabilization
in its proprietary low-level controllers.)
Navigation to reach Goal: The corridor and staircase vision
algorithms give a value in the range [−1, 1]; a value closer
to −1 indicates that the goal is to the left of the MAV, and a
value closer to 1 indicates the goal is to the right. (A value
of 0 means the goal is exactly in the center.) This was used
to control the yaw, pitch and drift of the MAVs. (Similar to
Section V-B.)
Height Control: In most situations, there is a ε-margin
within which it is fine to fly the MAV. (I.e., we don’t care if
the MAV flies closer or farther from the ground, just as long
as it does not get too close or far from it.) For our helicopter,
we use a PD controller with a non-linear response (flat within
the ε-margin). For our quadrotor, we provided the output of
the sonar height estimator to low-level controllers using a
P -controller with similar response.
Short-range proximity sensors: The short-range sonar
range sensors work reliably for upto approximately 1.5m.
If any of the front or side sensors detects a proximity to an
obstacle for more than a few milliseconds, then the low-level
controllers move the MAV in the opposite direction of the
detected obstacle, until a threshold distance is reached. The
proximity sensors take priority over the vision algorithms.

TABLE I. Performance of the GIST classifier for different environments.
Environment Number of test images False positive False negative
Corridor 314 1.3% 8.9%
Staircase 269 9.7% 0.7%
Room 414 8.9% 1.0%

VII. EXPERIMENTS

A. GIST Classification Experiments

We use our GIST classifier to classify which environment
the MAV is currently in. We trained our GIST classifier on
training images of 464 corridors, 339 stairs, and 484 rooms
in a building (Upson Hall at Cornell University). We used
a one-against-all method of training/testing. We then tested
the GIST classifier on images taken in a different building
(Phillips Hall at Cornell University). For testing, we had 314
corridor images, 269 staircase images and 414 room images.
Table I shows the performance of the classifier.

Note that even though the GIST classifier makes some
errors, in practice, other parts of the algorithm correct for
them because of the two following reasons. First, our corridor
and stair classifiers also report the confidence in their goal-
predictions (see Section V-A). Second, we get a series of
images over time and one mistake by the classifier will not
be detrimental for the MAV’s navigation overall.

B. Testing Environments and Conditions

Our tests were conducted in a variety of indoor environ-
ments, shown in Figure 7. For a corridor test to be considered
successful, the MAV must progress at least 100ft (many
tests progressed further). For a stairs test to be considered
successful, the MAV must start behind the first step of the
staircase and go up the stairs beyond the final step.1

C. Helicopter Experiments

Our first platform was a co-axial helicopter. In our exper-
iments, we tested two different corridors and two different
stairs (in different buildings). Table II shows the quantitative
results and Figure 8 shows some screenshots. While our
experiments demonstrate that our vision algorithms are quite
robust and work on multiple platforms, this platform suffered
from severe drift problems. Therefore we performed our full
experiments on the quadrotor platform.

D. Quadrotor Experiments

Our second platform was a AR Drone quadrotor. Table III
shows our experimental results of flying the quadrotor in
three different corridors and three different stairs, in a total
of 41 experiments. These environments were quite varied in
appearance.
Corridors: We achieve an overall success rate of 92% on
the quadrotor platform. Furthermore, we found our corridor
algorithm to consistently detect the vanishing point 100% of

1The Parrot AR.Drone has an automated take-off procedure, however
we found it to be unreliable in constrained indoor environments. Due to
this, about half of our experiments began with manual take-off by the
experimenter, and after the quadrotor reached a height of more than 2ft,
the control was given to the vision algorithm.

TABLE II. Co-axial Helicopter: Experimental Performance.
Environment No. of Vision Success rate

experiments success rate (full flight)
Corridors (2 different) 4 100% 75%
Staircases (2 different) 10 70% 50%

*Note that this platform suffers significantly from stability problems and
does not have downward facing camera.

TABLE III. Quadrotor: Experimental Performance.
Environment No. of Vision Success rate Success rate

experiments success rate (no contact) (full flight)
Corridor 1 9 100% 78% 100%
Corridor 2 7 100% 42% 86%
Corridor 3 10 90% 20%* 90%

Corr. Total 26 96% 46% 92%

Staircase 1 5 80% 80% 80%
Staircase 2 6 83% 67% 83%
Staircase 3 4 100% 60% 100%

Stair Total 15 87% 67% 87%

*This corridor was very narrow - barely 3x the quadrotor’s width.
Furthermore, there was strong air currents because of air conditioning.

the time in corridor 1 and corridor 2, but only 90% of the
time in the corridor 3, as it was dimly lit with little contrast.
Flying in a corridor is challenging because the wind from the
quadrotor’s blades creates turbulence. Because of this, gentle
contact with the wall was made in a few tests (especially in
corridor 3 which was very narrow). This situation could be
fixed using a more robust short-range sensor system. Results
for all quadrotor experiments are given for both contact and
non-contact outcomes.
Staircases: Flying in a staircase is more challenging than
flying in a corridor. First, the turbulence is significantly
greater, thereby affecting stability. Second, staircases are
much narrower giving less margin for error in the controller.
Lastly, the quadrotor changes its pitch in order to go up the
stairs which changes the angle of the front-facing camera.
In our experiments, the quadrotor can traverse a full flight
of stairs successfully 87% of the time. Some of the stairs
included two flights of stairs, where the quadrotor had to
turn—once reaching on the middle level, it turned using
“unknown environment” mode, until it saw the next set of
stairs to go up.

The video showing some of these test flights is available
at:
http://www.cs.cornell.edu/˜asaxena/MAV

VIII. CONCLUSIONS

We presented a set of vision algorithms to autonomously
fly a Miniature Aerial Vehicle (MAV) in common indoor
environments based on single image perspective cues. We use
classification algorithms to detect the type of environment,
and then for each environment we extract perspective cues
for estimating the desired direction for the MAV to fly. These
vision algorithms are shown to be robust and can be applied
to many different types of MAVs, enabling them to traverse
corridors, stairs, and corners they have never seen before.
Our method requires only a small, light-weight camera and

therefore it is a good solution for MAVs with payload and
power restrictions. Furthermore, these algorithms require
significantly less computational power, enabling the MAV
to quickly react and navigate new indoor environments.

ACKNOWLEDGMENTS

We thank Tung S. Leung, Arjun Prakash and Henry Chan
for their help.

REFERENCES

[1] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, “Stereo
vision and laser odometry for autonomous helicopters in gps-denied
indoor environments,” in SPIE Unmanned Systems Technology XI,
2009.

[2] K. Celik, S.-J. Chung, M. Clausman, and A. K. Somani, “Monocular
vision slam for indoor aerial vehicles,” in IROS, 2009.

[3] M. Goesele, N. Snavely, B. Curless, S. M. Seitz, and H. Hoppe, “Multi-
view stereo for community photo collections,” in ICCV, 2007.

[4] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart, “Mav navigation
through indoor corridors using optical flow,” in ICRA, 2010.

[5] A. Saxena, S. Chung, and A. Ng, “Learning depth from single
monocular images,” in NIPS, 2005.

[6] J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance
using monocular vision and reinforcement learning,” in ICML, 2005.

[7] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in NIPS, 2006.

[8] E. Feron and S. Bayraktar, “Aggressive landing maneuvers for un-
manned aerial vehicles,” in AIAA GN&C, 2006.

[9] V. Gavrilets, I. Martinos, B. Mettler, and E. Feron, “Control logic for
automated aerobatic flight of miniature helicopter,” in AIAA GN&C,
2002.

[10] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from
multiple demonstrations,” in ICML, 2008.

[11] J. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano, “Quadrotor
using minimal sensing for autonomous indoor flight,” in EMAV, 2007.

[12] J.-D. Nicoud and J.-C. Zufferey, “Toward indoor flying robots,” in
IROS, 2002.

[13] D. Schafroth, S. Bouabdallah, C. Bermes, and R. Siegwart, “From the
test benches to the first prototype of the mufly micro helicopter,” JIRS,
vol. 54, pp. 245–260, 2009.

[14] L. Mejias, J. Roberts, K. Usher, P. Corke, and P. Campoy, “Two
seconds to touchdown vision-based controlled forced landing,” in
IROS, 2006.

[15] R. J. D. Moore, S. Thurrowgood, D. P. Bland, D. Soccol, and
M. Srinivasan, “A stereo vision system for uav guidance,” in IROS,
2009.

[16] N. Johnson, “Vision-assisted control of a hovering air vehicle in an
indoor setting,” Ph.D. dissertation, Bringham Young University, 2008.

[17] F. Kendoul and K. Nonami, “A visual navigation system for au-
tonomous flight of micro air vehicles,” in IROS, 2009.

[18] A. Cherian, J. Andersh, V. Morellas, N. Papanikolopoulos, and B. Met-
tler, “Autonomous altitude estimation of a uav using a single onboard
camera,” in IROS, 2009.

[19] C. Fan, S. Baoquan, X. Cai, and Y. Liu, “Dynamic visual servoing of
a small scale autonomous helicopter in uncalibrated environments,” in
IROS, 2009.

[20] G. Tournier, M. Valenti, and J. P. How, “Estimation and control of
a quadrotor vehicle using monocular vision and moirre patterns,” in
AIAA GN&C, 2006.

[21] S. Soundararaj, A. Sujeeth, and A. Saxena, “Autonomous indoor
helicopter flight using a single onboard camera,” in IROS, 2009.

[22] J. Courbon, Y. Mezouar, N. Guenard, and P. Martinet, “Visual navi-
gation of a quadrotor aerial vehicle,” in IROS, 2009.

[23] R. Mori, K. Hirata, and T. Kinoshita, “Vision-based guidance control
of a small-scale unmanned helicopter,” in IROS, 2007.

[24] A. Saxena, S. Chung, and A. Ng, “3-d depth reconstruction from a
single still image,” in IJCV, vol. 76, no. 1, 2008, pp. 53–69.

[25] A. Saxena, M. Sun, and A. Ng, “Make3d: Learning 3D Scene Structure
from a Single Still Image,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 824–840, 2008.

[26] B. Williams, M. Cummins, J. Neira, P. Newmann, I. Reid, and
J. Tardos, “An image-to-map loop closing method for monocular
slam,” in IROS, 2008.

Fig. 7. Corridor and stair environments tested. (Top row) Corridors, (Bottom row) staircases. Note the variations in their appearance.

Fig. 8. Screenshots of our MAVs flying in different environments. First and last image show co-axial helicopter and the others show our quadrotor
platform.

[27] M. Cummins and P. Newmann, “Fab-map: Probabilistic localisation
and mapping in the space of appearance,” International Journal of
Robotics Research, vol. 27, no. 6, pp. 647–665, 2008.

[28] B. Steder, G. Grisetti, C. Stachniss, and W. Burgard, “Visual slam for
flying vehicles,” IEEE Transactions on Robotics, vol. 24, no. 5, pp.
1088–1093, 2008.

[29] E. Ribnick, S. Atev, and N. Papanikolopoulos, “Estimating 3d posi-
tions and velocities of projectiles from monocular views,” in TPAMI,
vol. 31, no. 5, 2008, pp. 938–944.

[30] X. Deng, L. Schenato, W.-C. Wu, and S. Sastry, “Flapping flight
for biomimetic robotic insects: Part ii- flight control design,” IEEE
Transactions on Robotics, vol. 22, no. 4, pp. 789–803, 2006.

[31] Parrot, “Ar.drone,” http://ardrone.parrot.com/, 2010.

[32] A. Saxena, J. Schulte, and A. Y. Ng, “Depth estimation using monoc-
ular and stereo cues,” in IJCAI, 2007.

[33] D. Marr, S. Ullman, and T. Poggio, Vision: a computational in-
vestigation into the human representation and processing of visual
information. W.H. Freeman, 1982.

[34] A. Criminisi and A. Zisserman, “Single view metrology,” in IJCV,
vol. 40, no. 2, 2000, pp. 123–148.

[35] C. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[36] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” IJCV, vol. 42, pp. 145–175,
2001.

[37] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support
vector learning for interdependent and structured output spaces,” in
ICML, 2004.

