

Linear and Multilinear Algebra

ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage: http://www.tandfonline.com/loi/glma20

On the uniqueness of the -eigenvector of transition probability tensors

J. Culp, K. Pearson & T. Zhang

To cite this article: J. Culp, K. Pearson & T. Zhang (2017) On the uniqueness of the - eigenvector of transition probability tensors, Linear and Multilinear Algebra, 65:5, 891-896, DOI: 10.1080/03081087.2016.1211130

To link to this article: https://doi.org/10.1080/03081087.2016.1211130

On the uniqueness of the Z_1 -eigenvector of transition probability tensors

J. Culp, K. Pearson and T. Zhang

Department of Mathematics & Statistics, Murray State University, Murray, KY, USA

ABSTRACT

Transition probability tensors of order 3 in dimension 3 and of order 4 in dimension 2 are studied. In both cases, we prove that an irreducible symmetric transition probability tensor has a unique positive Z_1 -eigenvector.

ARTICLE HISTORY

Received 29 January 2016 Accepted 5 July 2016

COMMUNICATED BY

J. Y. Shao

KEYWORDS

Transition probability tensor; eigenvalues for tensors

AMS SUBJECT CLASSIFICATIONS

15A18; 15A69; 60J10; 60J22; 65F15

1. Introduction

Transition probability tensors and their associated Z_1 -eigenvalues have been studied in the literature. [1–6] Of particular note, the uniqueness of the positive eigenvector corresponding to the unique Z_1 -eigenvalue is in general unknown. Chang and Zhang [2] studied various techniques of contraction mapping, monotone operator method and index method. In [2], it was shown that an irreducible transition probability tensors of order 3 in dimension 2 have a unique Z_1 -eigenvector corresponding to the unique Z_1 -eigenvalue. In this paper, we focus on symmetric irreducible transition probability tensors of order 4 in dimension 2 and of order 3 in dimension 3. We are able to prove that a symmetric irreducible transition probability tensor in these orders and dimensions has a unique Z_1 -eigenvector. The methods employed are direct, using Gröbner bases with the aid of CoCoA [7] and the computational software Mathematica. [8]

2. Notation

Let \mathbb{R} be the real field; we consider an *m*-order *n* dimensional tensor \mathcal{A} consisting of n^m entries in \mathbb{R} :

$$\mathcal{A} = (a_{i_1 \cdots i_m}), \quad a_{i_1 \cdots i_m} \in \mathbb{R}, \quad 1 \leq i_1, \dots, i_m \leq n.$$

A real *m*-order *n* dimensional tensor $\mathcal{A}=(a_{i_1\cdots i_m})$ is said to be nonnegative if each entry $a_{i_1\cdots i_m}\geq 0$.

To an *n*-vector $x = (x_1, \dots, x_n)$, real or complex, we define a *n*-vector:

$$Ax^{m-1} := \left(\sum_{i_2,\dots,i_m=1}^n a_{ii_2\dots i_m} x_{i_2} \cdots x_{i_m}\right)_{1 \le i \le n}.$$

We denote the set of all *m*-order *n* dimensional real tensors via $\mathbb{R}^{[m,n]}$ and the set of all *m*-order *n* dimensional nonnegative tensors via $\mathbb{R}^{[m,n]}_+$.

Definition 2.1: A tensor $A \in \mathbb{R}^{[m,n]}$ is called *symmetric* if $a_{i_1 \cdots i_m} = a_{\sigma(i_1 \cdots i_m)}$ for all σ in the symmetric group on m indices.

The following definition of eigenvalues of tensors due to Qi [9] and Lim [10] have since become a standard terminology. The notion of the Z_1 -eigenvalue in particular was introduced in [2].

Definition 2.2: Let $A \in \mathbb{R}^{[m,n]}$ be a nonzero tensor. A pair $(\lambda, x) \in \mathbb{R} \times (\mathbb{R}^n \setminus \{0\})$ is called a Z_1 -eigenvalue and Z_1 -eigenvector (or simply Z_1 -eigenpair) of A if they satisfy the equation

$$\begin{cases} \mathcal{A}x^{m-1} = \lambda x, \\ \sum_{i=1}^{n} x_i = 1. \end{cases}$$
 (2)

The following notion of reducibility was introduced in [10,11].

Definition 2.3: A tensor $\mathcal{A} = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ is called *reducible*, if there exists a nonempty proper index subset $I \subset \{1, \ldots, n\}$ such that

$$a_{i_1\cdots i_m}=0, \quad \forall i_1\in I, \quad \forall i_2,\ldots,i_m\notin I.$$

If A is not reducible, then we call A *irreducible*.

The notion of transition probability tensor was introduced in [4]:

Definition 2.4: A nonnegative tensor $\mathcal{P} \in \mathbb{R}^{[m,n]}_+$ is called a transition probability tensor if $\mathcal{P} = (p_{i_1 \cdots i_m})$ satisfies

$$\sum_{i=1}^{n} p_{ii_2\cdots i_m} = 1, \quad 1 \le i_2, \cdots, i_m \le n,$$

$$p_{i_1 i_2 \cdots i_m} \geq 0, \quad 1 \leq i_1, \cdots, i_m \leq n.$$

3. Symmetric irreducible transition probability tensors in $\mathbb{R}^{[4,2]}_{\perp}$

In this section, we prove that a symmetric irreducible transition probability tensor in $\mathbb{R}^{[4,2]}_+$ has a unique Z_1 -eigenvector. We note that an example was given in [2] of a positive tensor in $\mathbb{R}^{[4,2]}_+$ which lacked symmetry and had two Z_1 -eigenvectors corresponding to a Z_1 -eigenvalue of 1.

Theorem 3.1: Let $\mathcal{P} \in \mathbb{R}^{[m,n]}_+$ be a symmetric transition probability tensor, then $x = (\frac{1}{n}, \dots, \frac{1}{n})$ is a Z_1 -eigenvector with a Z_1 -eigenvalue of 1.

Proof: Let $\mathcal{P} \in \mathbb{R}^{[m,n]}_+$ be a symmetric transition probability tensor, and let $x = (\frac{1}{n}, \dots, \frac{1}{n})$. We have

$$(\mathcal{P}x^{m-1})_1 = \sum_{i_2 \cdots i_m = 1}^n p_{1i_2i_3 \cdots i_m} x_{i_2} \cdots x_{i_m}$$
$$= \sum_{i_2 \cdots i_m = 1}^n p_{1i_2i_3 \cdots i_m} \left(\frac{1}{n}\right)^{m-1}.$$

We now rearrange the terms of $p_{1i_2i_3\cdots i_m}$ and using symmetry and the fact that \mathcal{P} is a transition probability tensor, we arrive at our desired conclusion.

We consider each $p_{11i_3\cdots i_m}$. Since $\mathcal P$ is a transition probability tensor, we have $p_{11i_3\cdots i_m}+$ $p_{21i_3\cdots i_m}+\cdots+p_{n1i_3\cdots i_m}=1$. By symmetry, we note that $p_{k1i_3\cdots i_m}=p_{1ki_3\cdots i_m}$ for each $1 < k \le n$.

It is now merely a counting argument. There are n^{m-2} possibilities for $i_3 \cdots i_m$. There are *n* elements in the list of $p_{1ki_3\cdots i_m}$ as $1 \le k \le n$. This gives n^{m-1} unique elements. Hence, $(\mathcal{P}x^{m-1})_1 = n^{m-2}(\frac{1}{n})^{m-1} = \frac{1}{n}$ as required. A similar argument shows $(\mathcal{P}x^{m-1})_i = \frac{1}{n}$ for all $1 \le i \le n$.

Theorem 3.2: Let $\mathcal{P} \in \mathbb{R}^{[4,2]}_+$ be a symmetric irreducible transition probability tensor. Then \mathcal{P} has a unique Z_1 -eigenvector corresponding to 1.

Proof: From the Theorem 3.1, we know $(\frac{1}{2},\frac{1}{2})$ is a Z_1 -eigenvector. Let $\mathcal{P}\in\mathbb{R}^{[4,2]}_+$ be a symmetric irreducible transition probability tensor, and let x be a Z_1 -eigenvector. Then \mathcal{P} and x must satisfy the following properties

$$\sum_{i_2,i_3,i_4=1}^2 p_{ii_2i_3i_4} x_{i_2} x_{i_3} x_{i_4} = x_i, \ 1 \le i \le 2.$$
$$x_1 + x_2 = 1.$$

Given that \mathcal{P} is a symmetric transition probability tensor, we make the following substitutions: We set $p_{1111} = a$, $p_{1112} = b$, $p_{1122} = c$, $p_{1222} = d$, and $p_{2222} = e$. For ease of notation, we also designate $x := x_1$ and $y := x_2$.

This gives

$$ax^{3} + 3bx^{2}y + 3cxy^{2} + dy^{3} = x$$

 $bx^{3} + 3cx^{2}y + 3dxy^{2} + ey^{3} = y$
 $x + y = 1$

We now note that a + b = 1, d + e = 1, b + c = 1 and c + d = 1 since \mathcal{P} is a transition probability tensor. This gives a = c and d = e. This transforms our system into

$$ax^{3} + 3(1 - a)x^{2}y + 3axy^{2} + (1 - a)y^{3} = x$$
$$(1 - a)x^{3} + 3ax^{2}y + 3(1 - a)xy^{2} + ay^{3} = y$$
$$x + y = 1$$

By setting y=1-x and solving the first equation above, we have $(2x-1)((4a-2)x^2+(2-4a)x+a-1)=0$. We suppose $x\neq \frac{1}{2}$. Then $(4a-2)x^2+(2-4a)x+a-1=0$. If $a=\frac{1}{2}$, then this equation becomes $-\frac{1}{2}=0$, a contradiction. Hence, $2a-1\neq 0$. This implies $x=\frac{2a-1\pm\sqrt{2a-1}}{2(2a-1)}$. Since $0\leq a\leq 1$, we have $2a-1\leq 1$. Hence, $2a-1\leq \sqrt{2a-1}$. We then have $\frac{2a-1-\sqrt{2a-1}}{2(2a-1)}<0$ and $\frac{2a-1+\sqrt{2a-1}}{2(2a-1)}>1$. This is a contradiction since $0\leq x\leq 1$.

4. Symmetric irreducible transition probability tensors in $\mathbb{R}^{[3,3]}_+$

In this section, we prove that a symmetric irreducible transition probability tensor in $\mathbb{R}^{[3,3]}_+$ has a unique Z_1 -eigenvector.

Theorem 4.1: Let $\mathcal{P} \in \mathbb{R}^{[3,3]}_+$ be an symmetric transition probability tensor, then $x = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is a Z_1 -eigenvector with a Z_1 -eigenvalue of 1.

Proof: This follows from Theorem 3.1.

Let $\mathcal{P} \in \mathbb{R}^{[3,3]}_+$ be a symmetric irreducible transition probability tensor, and let x be a Z_1 -eigenvector. Then \mathcal{P} and x must satisfy the following properties

$$\sum_{i_2,i_3=1}^{3} p_{ii_2i_3} x_{i_2} x_{i_3} = x_i, \ 1 \le i \le 3.$$

$$\sum_{k=1}^{3} x_k = 1.$$

Given that \mathcal{P} is a symmetric transition probability tensor, we make the following substitutions: We set $p_{111}=a$, $p_{112}=b$, $p_{122}=c$, and $p_{222}=d$. We have the following inequalities

(1)
$$p_{113} = p_{131} = p_{311} = 1 - p_{111} - p_{211} = 1 - a - b \ge 0$$

(2)
$$p_{123} = p_{132} = p_{213} = p_{231} = p_{321} = p_{312} = 1 - p_{112} - p_{212} = 1 - b - c \ge 0$$

(3)
$$p_{133} = p_{313} = p_{331} = 1 - p_{113} - p_{213} = a + 2b + c - 1 \ge 0$$

(4)
$$p_{223} = p_{232} = p_{322} = 1 - p_{122} - p_{222} = 1 - c - d \ge 0$$

(5)
$$p_{233} = p_{323} = p_{332} = 1 - p_{123} - p_{223} = b + 2c + d - 1 \ge 0$$

(6)
$$p_{333} = 3(1 - b - c) - a - d \ge 0$$

Using the above substitutions together with $x_3 = 1 - x_1 - x_2$, $x := x_1$, and $y := x_2$, we obtain the following system of polynomials to solve:

$$p := ax^{2} + 2bxy + cy^{2} + 2(1 - a - b)x(1 - x - y) + (a + 2b + c - 1)(1 - x - y)^{2}$$

$$+ 2(1 - b - c)y(1 - x - y) - x = 0$$

$$q := bx^{2} + 2cxy + dy^{2} + 2(1 - b - c)x(1 - x - y) + (b + 2c + d - 1)(1 - x - y)^{2}$$

$$+ 2(1 - c - d)y(1 - x - y) - y = 0$$

$$r := (1 - a - b)x^{2} + 2(1 - b - c)xy + (1 - c - d)y^{2} + 2(a + 2b + c - 1)x(1 - x - y)$$

$$+ (3(1 - b - c) - a - d)(1 - x - y)^{2} + 2(b + 2c + d - 1)y(1 - x - y)$$

$$- (1 - x - y) = 0$$

Lemma 4.2: Let $\mathcal{P} \in \mathbb{R}^{[3,3]}_+$ be a symmetric irreducible transition probability tensor. Suppose x is a Z_1 -eigenvector with $x_2 = \frac{1}{3}$. Then $x_1 = x_2 = x_3 = \frac{1}{3}$.

Proof: Using CoCoA [7], we form the ideal generated by the polynomials p, q, r together with the polynomial $3x_2 - 1$ in the ring $\mathbb{Q}[a, b, c, d, x_1, x_2]$. We obtain the second element of its Gröbner basis is $(3x_1 - 1)(4b + 4c + d - 3)$ and the third element is $(3x_1 - 1)(12ax_1 9cx_1 - 3dx_1 - 4a + 3c + d - 3$). If $x_1 \neq \frac{1}{3}$, then both 4b + 4c + d - 3 = 0 and $12ax_1 - 9cx_1 - 3dx_1 - 4a + 3c + d - 3 = 0$. Using Mathematica [8], there is no solution to this system of equations when considering the inequalities (1)–(6). Hence, we must have that $x_1 = \frac{1}{3}$ as required.

Theorem 4.3: Let $\mathcal{P} \in \mathbb{R}^{[3,3]}_+$ be a symmetric irreducible transition probability tensor. Then \mathcal{P} has a unique Z_1 -eigenvector corresponding to 1.

Proof: Using CoCoA [7], we form the ideal generated by the polynomials p, q, r and consider its Gröbner basis. The fourth element of the Gröbner basis is:

$$(3x_2 - 1)(-6bcx_1x_2 - 6c^2x_1x_2 + 6adx_1x_2 + 6bdx_1x_2 - 3bcx_2^2 - 12c^2x_2^2 + 3adx_2^2 + 12bdx_2^2 + 2bcx_1 + 2c^2x_1 - 2adx_1 - 2bdx_1 + 4bcx_2 + 10c^2x_2 - 4adx_2 - 10bdx_2 - 2ax_1x_2 + 6cx_1x_2 - 4dx_1x_2 - ax_2^2 - 3bx_2^2 + 9cx_2^2 - 5dx_2^2 - bc - 2c^2 + ad + 2bd - 2ax_1 - 4bx_1 - 4cx_1 + dx_1 - 4bx_2 - 13cx_2 + 2dx_2 + a + 3b + 4c + 3x_1 + 5x_2 - 2)$$

Define the polynomial f to be the second factor above. If $3x_2 - 1 = 0$, then by the previous lemma, we are done. We assume $3x_2 - 1 \neq 0$; this implies f = 0. We form the ideal generated by p, q, r, f and eliminate x_1 to obtain a polynomial cubic in x_2 :

$$g := 81b^2c^2x_2^3 - 108ac^3x_2^3 - 108b^3dx_2^3 + 162abcdx_2^3 - 27a^2d^2x_2^3 - 81b^2c^2x_2^2 \\ + 108ac^3x_2^2 + 108b^3dx_2^2 - 162abcdx_2^2 + 27a^2d^2x_2^2 + 36b^3x_2^3 - 54abcx_2^3 \\ - 54b^2cx_2^3 + 108ac^2x_2^3 - 54bc^2x_2^3 + 36c^3x_2^3 + 18a^2dx_2^3 - 54abdx_2^3 + 108b^2dx_2^3 \\ - 54acdx_2^3 - 54bcdx_2^3 + 18ad^2x_2^3 + 27b^2c^2x_2 - 36ac^3x_2 - 36b^3dx_2 + 54abcdx_2 \\ - 9a^2d^2x_2 + 12b^3x_2^2 - 18abcx_2^2 + 90b^2cx_2^2 - 180ac^2x_2^2 + 18bc^2x_2^2 - 60c^3x_2^2 \\ + 6a^2dx_2^2 + 90abdx_2^2 - 36b^2dx_2^2 + 18acdx_2^2 + 90bcdx_2^2 - 30ad^2x_2^2 - 3a^2x_2^3 \\ + 18abx_2^3 - 27b^2x_2^3 - 18acx_2^3 + 54bcx_2^3 - 27c^2x_2^3 + 6adx_2^3 - 18bdx_2^3 + 18cdx_2^3 \\ - 3d^2x_2^3 - 3b^2c^2 + 4ac^3 + 4b^3d - 6abcd + a^2d^2 - 20b^3x_2 + 30abcx_2 - 42b^2cx_2 \\ + 84ac^2x_2 + 6bc^2x_2 + 28c^3x_2 - 10a^2dx_2 - 42abdx_2 - 12b^2dx_2 + 6acdx_2 \\ - 42bcdx_2 + 14ad^2x_2 - 5a^2x_2^2 - 6abx_2^2 - 57b^2x_2^2 + 102acx_2^2 - 42bcx_2^2 + 87c^2x_2^2 \\ - 14adx_2^2 - 54bdx_2^2 - 18cdx_2^2 + 7d^2x_2^2 + 4b^3 - 6abc + 6b^2c - 12ac^2 - 2bc^2 - 4c^3 \\ + 2a^2d + 6abd + 4b^2d - 2acd + 6bcd - 2ad^2 - a^2x_2 - 18abx_2 + 19b^2x_2 - 62acx_2 \\ - 22bcx_2 - 62c^2x_2 + 10adx_2 + 35bdx_2 - 2cdx_2 - 5d^2x_2 - 12ax_2^2 + 36bx_2^2 - 36cx_2^2 \\ + 12dx_2^2 + a^2 + 6ab + b^2 + 10ac + 10bc + 12c^2 - 2ad - 5bd + 2cd + d^2 + 16ax_2 \\ + 13bx_2 + 46cx_2 - 3dx_2 - 4a - 7b - 10c - 12x_2 + 3$$

We use Mathematica [8] to solve for the f = 0 and g = 0 together with the inequalities (1)–(6) and see there is no solution.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

- [1] Chang KC, Pearson K, Zhang T. Some variational principles of the Z-eigenvalues for nonnegative tensors. Linear Algebra Appl. 2013;438:4166-4182.
- [2] Chang KC, Zhang T. On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors. J. Math. Anal. Appl. 2013;408:525–540.
- [3] Hu S, Qi L. Convergence of a second order Markov chain. Appl. Math. Comput. 2014;241: 183-192.
- [4] Li W, Ng M. Existence and uniqueness of stationary probability vector of a transition probability tensor. Hong Kong: Department of Mathematics, The Hong Kong Baptist University; 2011.
- [5] Li W, Ng M. On linear convergence of power method for computing stationary probability vector of a transition probability tensor. Hong Kong: Department of Mathematics, The Hong Kong Baptist University; 2011.
- [6] Li W, Ng M. On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra. 2014;62:362-385.
- [7] Abbott J, Bigatti AM, Lagorio G. CoCoA-5: a system for doing Computations in Commutative Algebra; 2015. Available from: http://cocoa.dima.unige.it.
- [8] Wolfram Research, Inc. Mathematica 8.0. 2010. Available from: https://www.wolfram.com.
- [9] Qi L. Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 2005;40:1302–1324.
- [10] Lim LH. Singular values and eigenvalues of tensors, A variational approach. In: Proceeding 1st IEEE International workshop on computational advances of multi-tensor adaptive processing; 2005 Dec 13-15; Puerto Vallarto, Mexico. p. 129-132.
- [11] Chang KC, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 2008;6:507-520.