
Compositional Matrix-Space Models for Sentiment Analysis

Ainur Yessenalina
Dept. of Computer Science

Cornell University
Ithaca, NY, 14853

ainur@cs.cornell.edu

Claire Cardie
Dept. of Computer Science

Cornell University
Ithaca, NY, 14853

cardie@cs.cornell.edu

Abstract

We present a general learning-based approach
for phrase-level sentiment analysis that adopts
an ordinal sentiment scale and is explicitly
compositional in nature. Thus, we can model
the compositional effects required for accu-
rate assignment of phrase-level sentiment. For
example, combining an adverb (e.g., “very”)
with a positive polar adjective (e.g., “good”)
produces a phrase (“very good”) with in-
creased polarity over the adjective alone. In-
spired by recent work on distributional ap-
proaches to compositionality, we model each
word as a matrix and combine words us-
ing iterated matrix multiplication, which al-
lows for the modeling of both additive and
multiplicative semantic effects. Although the
multiplication-based matrix-space framework
has been shown to be a theoretically ele-
gant way to model composition (Rudolph and
Giesbrecht, 2010), training such models has
to be done carefully: the optimization is non-
convex and requires a good initial starting
point. This paper presents the first such al-
gorithm for learning a matrix-space model for
semantic composition. In the context of the
phrase-level sentiment analysis task, our ex-
perimental results show statistically signifi-
cant improvements in performance over a bag-
of-words model.

1 Introduction

Sentiment analysis has been an active research area
in recent years. Work in the area ranges from iden-
tifying the sentiment of individual words to deter-
mining the sentiment of phrases, sentences and doc-

uments (see Pang and Lee (2008) for a survey). The
bulk of previous research, however, models just pos-
itive vs. negative sentiment, collapsing positive (or
negative) words, phrases and documents of differ-
ing intensities into just one positive (or negative)
class. For word-level sentiment, therefore, these
methods would not recognize a difference in senti-
ment between words like “good” and “great”, which
have the same direction of polarity (i.e., positive)
but different intensities. At the phrase level, the
methods will fail to register compositional effects in
sentiment brought about by intensifiers like “very”,
“absolutely”, “extremely”, etc. “Happy” and “very
happy”, for example, will both be considered sim-
ply “positive” in sentiment. In real-world settings,
on the other hand, sentiment values extend across a
polarity spectrum — from very negative, to neutral,
to very positive. Recent research has shown, in par-
ticular, that modeling intensity at the phrase level is
important for real-world natural language process-
ing tasks including question answering and textual
entailment (de Marneffe et al., 2010).

This paper describes a general approach for
phrase-level sentiment analysis that takes these real-
world requirements into account: we adopt a five-
level ordinal sentiment scale and present a learning-
based method that assigns ordinal sentiment scores
to phrases.

Importantly, our approach will also be explicitly
compositional1 in nature so that it can accurately ac-
count for critical interactions among the words in

1The Principle of Compositionality asserts that the meaning
of a complex expression is a function of the meanings of its
constituent expressions and the rules used to combine them.

each sentiment-bearing phrase. Consider, for exam-
ple, combining an adverb like “very” with a polar
adjective like “good”. “Good” has an a priori posi-
tive sentiment, so “very good” should be considered
more positive even though “very”, on its own, does
not bear sentiment. Combining “very” with a nega-
tive adjective, like “bad”, produces a phrase (“very
bad”) that should be characterized as more negative
than the original adjective. Thus, it is convenient
to think of the effect of combining an intensifying
adverb with a polar adjective as being multiplica-
tive in nature, if we assume the adjectives (“good”
and “bad”) to have positive and a negative sentiment
scores, respectively.

Next, let us consider adverbial negators like “not”
combined with polar adjectives. When model-
ing only positive and negative labels for sentiment,
negators are generally treated as flipping the polar-
ity of the adjective it modifies (Choi and Cardie,
2008; Nakagawa et al., 2010). However, recent work
(Taboada et al., 2011; Liu and Seneff, 2009) sug-
gests that the effect of the negator when ordinal sen-
timent scores are employed is more akin to damp-
ening the adjective’s polarity rather than flipping it.
For example, if “perfect” has a strong positive sen-
timent, then the phrase “not perfect” is still positive,
though to a lesser degree. And while “not terrible” is
still negative, it is less negative than “terrible”. For
these cases, it is convenient to view “not” as shift-
ing polarity to the opposite side of polarity scale by
some value.

There are, of course, more interesting examples of
compositional semantic effects on sentiment: e.g.,
prevent cancer, ease the burden. Here, the verbs
prevent and ease act as content-word negators (Choi
and Cardie, 2008) in that they modify the negative
sentiment of their direct object arguments so that the
phrase as a whole is perceived as somewhat positive.

Nonetheless, the vast majority of methods for
phrase- and sentence-level sentiment analysis do not
tackle the task compositionally: they, instead, em-
ploy a bag-of-words representation and, at best, in-
corporate additional features to account for nega-
tors, intensifiers, and for contextual valence shifters,
which can change the sentiment over neighboring
words (e.g., Polanyi and Zaenen (2004), Wilson et
al. (2005) , Kennedy and Inkpen (2006), Shaikh et
al. (2007)).

One notable exception is Moilanen and Pulman
(2007), who propose a compositional semantic ap-
proach to assign a positive or negative sentiment to
newspaper article titles. However, their knowledge-
based approach presupposes the existence of a sen-
timent lexicon and a set of symbolic compositional
rules.

But learning-based compositional approaches
for sentiment analyis also exist. Choi and
Cardie (2008), for example, propose an algo-
rithm for phrase-based sentiment analysis that learns
proper assignments of intermediate sentiment anal-
ysis decision variables given the a priori (i.e., out
of context) polarity of the words in the phrase and
the (correct) phrase-level polarity. As in Moilianen
and Pulman (2007), semantic inference is based on
(a small set of) hand-written compositional rules. In
contrast, Nakagawa et. al (2010) use a dependency
parse tree to guide the learning of compositional ef-
fects. Each of the above, however, uses a binary
rather than an ordinal sentiment scale.

In contrast, our proposed method for phrase-
level sentiment analysis is inspired by recent work
on distributional approaches to compositionality.
In particular, Baroni and Zamparelli (2010) tackle
adjective-noun compositions using a vector repre-
sentation for nouns and learning a matrix represen-
tation for each adjective. The adjective matrices are
then applied as functions over the meanings of nouns
— via matrix-vector multiplication — to derive the
meaning of adjective-noun combinations. Rudolph
and Giesbrecht (2010) show theoretically, that mul-
tiplicative matrix-space models are a general case
of vector-space models and furthermore exhibit de-
sirable properties for semantic analysis: they take
into account word order and are algebraically, neuro-
logically and psychologically plausible. This work,
however, does not present an algorithm for learning
such models; nor does it provide empirical evidence
in favor of matrix-space models over vector-space
models.

In the sections below, we propose a learning-
based approach to assign ordinal sentiment scores to
sentiment-bearing phrases using a general composi-
tional matrix-space model of language. In contrast
to previous work, all words are modeled as matri-
ces, independent of their part-of-speech, and com-
positional inference is uniformly modeled as ma-

trix multiplication. To predict an ordinal scale sen-
timent value, we employ Ordered Logistic Regres-
sion, introducing a novel training algorithm to ac-
commodate our compositional matrix-space repre-
sentations (Section 2). To our knowledge, this is the
first such algorithm for learning matrix-space mod-
els for semantic composition. We evaluate the ap-
proach on a standard sentiment corpus (Wiebe et al.,
2005) (Section 3), making use of its manually anno-
tated phrase-level annotations for polarity and inten-
sity, and compare our approach to the more com-
monly employed bag-of-words model. We show
(Section 4) that our matrix-space model significantly
outperforms a bag-of-words model for the ordinal
scale sentiment prediction task.

2 The Model for Ordinal Scale Sentiment
Prediction

As described above, our task is to predict an ordi-
nal scale sentiment value for a phrase. To this end,
we employ a sentiment scale with five ordinal val-
ues: VERY NEGATIVE, NEGATIVE, NEUTRAL, POS-
ITIVE and VERY POSITIVE. Given a set of phrase-
level training examples with their gold-standard or-
dinal sentiment value, we then use an Ordered Lo-
gistic Regression (OLogReg) model for prediction.
Unfortunately, our matrix-space representation pre-
cludes doing this directly.

We have chosen OLogReg, as opposed to say
PRanking (Crammer and Singer, 2001), because op-
timization of the former is more attractive: the ob-
jective (likelihood) is smooth and the gradients are
continuous. As will become clear shortly, learn-
ing our models is not trivial and it is important to
use sophisticated off-the-shelf optimizers such as L-
BFGS.

For a bag-of-words model, OLogReg learns one
weight for each word and a set of thresholds by max-
imizing the likelihood of the training data. Typically,
this is accomplished by using an optimizer like L-
BFGS whose interface needs the value and gradient
of the likelihood with respect to the parameters at
their current values. In the next subsections, we in-
stantiate OLogReg for our sentiment prediction task
using a matrix-space word model (2.1 and 2.2) and
a bag-of-words model (2.3). The learning formula-
tion of bag-of-words OLogReg is convex therefore

we will get the global optimum; in contrast, the op-
timization problem for matrix-space model is non-
convex, it is important to initialize the model well.
Initialization of the matrix-space model is discussed
in Section 2.4.

2.1 Notation
In the subsequent subsections we will use the
following notation. Let n be the number of phrases
in the training set and let d be the number of words
in the dictionary. Let xi be the i-th phrase and yi

would be the label of xi, where yi takes r different
values yi ∈ {0, . . . , r − 1}. Then |xi| will denote
the length of the phrase xi, and the words in i-th
phrase are: xi = xi

1, x
i
2, . . . , x

i
|xi|; xi

j , 1 ≤ j ≤ |xi|
is the j-th word of i-th phrase; where xi

j is from the
dictionary: 1 ≤ xi

j ≤ d.

In the case of the bag-of-words model, Φ(xi) ∈
Rd is the representation of the i-th phrase. Φj(xi)
counts the number of times the j-th word from the
dictionary appears in the i-th phrase. Given a w ∈
Rd it assigns a score ξi to a phrase xi by

ξi = wT Φ(xi) =
|xi|∑
j=1

wxi
j

(1)

In the case of the matrix-space model the Φ(xi) ∈
R|xi|×d is the representation of the i-th phrase.
Φjk(xi) is 1, if xi

j is the k-th word in the dictionary,
and zero otherwise. Given u, v ∈ Rm and a set of
matrices {Wp ∈ Rm×m}d

p=1, one for each word, it
assigns a score ξi to a phrase xi by

ξi = uT

 |xi|∏
j=1

d∑
k=1

WkΦjk(xi)

 v

= uT

 |xi|∏
j=1

Wxi
j

 v (2)

where
∏|xi|

j=1 Wxi
j

= Wxi
1
Wxi

2
· · ·Wxi

|xi|
in exactly

this order. We choose to map matrices to the real
numbers by using vectors u and v from Rm×1; so
that ξ = uT Mv, where M ∈ Rm×m, which is sen-
sitive to the order of matrices2 , i.e. uT M1M2v 6=

2Care must be taken in choosing way to map matrix to a real

uT M2M1v.
Modeling composition. A m×m matrix, represent-
ing a word, can be considered as a linear function,
mapping from Rm to Rm. Composition of words is
modeled by function composition, in our case com-
position of linear functions, i.e. matrix multipli-
cation. Note, that unlike bag-of-words model, the
matrix-space model takes word order into account,
since matrix multiplication is not commutative op-
eration.

2.2 Ordered Logistic Regression

Now we will describe our objective function for
OLogReg and its derivatives. OLogReg has r −
1 thresholds (κ0, . . . κr−2), so introducing κ−1 =
−∞ and κr−1 = ∞ leads to the unified expression
for posterior probabilities for all values of k:

P (yi = k|x) = P (κk−1 < ξi ≤ κk)
= F (κk − ξi)− F (κk−1 − ξi)

F (x) is an inverse-logit function

F (x) =
ex

1 + ex

this is its derivative:

dF (x)
dx

= F (x)(1− F (x))

Therefore the negative loglikelihood of the training
data will look like the following (Hardin and Hilbe,
2007):

L = −
n∑

i=1

r−1∑
k=0

ln(F (κk − ξi)− F (κk−1 − ξi))I(yi = k)

where r is the number of ordinal classes, ξi is the
score of i-th phrase, I is the indicator function that
is equal to 1 – when yi = k, and zero otherwise. We
need to minimize the objective L with respect to the
following constraints:

κk−1 ≤ κk, 1 ≤ k ≤ r − 2 (3)

number. For example, one other way to map matrices to the
real numbers is to use the determinant of a matrix; however, the
determinant is not sensitive to the word order: det(M1M2) =
det(M1)det(M2) = det(M2M1); which is not desirable for a
model that needs to account for word order.

(The constraints are similar to the ones in PRank al-
gorithm). For ease of optimization we parametrize
our model via κ0, and τj , 1 ≤ j ≤ r − 2:

κ−1 = −∞,
κ0,
κ1 = κ0 + τ1,
κ2 = κ0 +

∑2
j=1 τj ,

. . . ,
κr−2 = κ0 +

∑r−2
j=1 τj

κr−1 = ∞,
where τ1, . . ., τr−2 are non-negative values, that rep-
resent how far the corresponding thresholds are from
each other. Then the constraints (3) would be:

τj ≥ 0, 1 ≤ j ≤ r − 2 (4)

To simplify the equations we can rewrite the nega-
tive loglikelihood as follows:

L = −
n∑

i=1

r−1∑
k=0

ln(Aik −Bik)I(yi = k) (5)

where

Aik =

{
F (κ0 +

∑k
j=1 τj − ξi), if k = 0, . . . , r − 2

1, if k = r − 1

Bik =

{
0, if k = 0
F (κ0 +

∑k−1
j=1 τj − ξi), if k = 1, . . . , r − 1

Let’s introduce Lik = − ln(Aik − Bik)I(yi = k)
and then the derivative of Lik with respect to κ0 will
be:

∂Lik

∂κ0
=

−[Aik(1−Aik)−Bik(1−Bik)]
Aik −Bik

I(yi = k)

= (Aik + Bik − 1)I(yi = k)

For j = yi:

∂Lik

∂τj
=

−Aik(1−Aik)
Aik −Bik

I(yi = k)

For all j < yi:

∂Lik

∂τj
= (Aik + Bik − 1)I(yi = k)

For all j > yi: ∂Lik
∂τj

= 0.
The derivative with respect to the score ξi is:

∂Lik

∂ξi
= (−Aik −Bik + 1)I(yi = k) (6)

2.2.1 Matrix-Space Word Model
Here we show the derivatives with respect to a

word. For the OLogReg model with matrix-space
word representations, we have:

∂L

∂Wxi
j

=
∂L

∂ξi
· ∂ξi

∂Wxi
j

The expression for ∂L
∂ξi

is given in (6); we will derive
∂ξi

∂W
xi

j

from (2). In the case of the Matrix-Space word

model each word is represented as an m×m affine
matrix W :

W =
(

A b
0 1

)
(7)

We choose the class of affine matrices since for
affine matrices matrix multiplication represents both
operations: linear transformation and translation.
Linear transformation is important for modeling
changes in sentiment - translation is also useful (we
make use of a translation vector during initialization,
see Section 2.4). In this work we consider m ≥ 3
since we want the matrix A from (7) to represent
rotation and scaling. Applying the affine transfor-
mation W to vector [x, 1]T is equivalent to applying
linear transformation A and translation b to x. 3

Though vectors u and v can be learned together
with word matrices Wj , we choose to fix u and v.
The main intuition behind fixing u and v is to re-
duce the degrees of freedom of the model: differ-
ent assignments of u, v and Wj-s can lead to the
same score ξ, i.e. there exist û v̂ and Ŵj-s dif-
ferent from u, v and Wj-s respectively, such that
ξ(u, v, W) would be equal to ξ(û, v̂, Ŵ). 4

3 „
A b
0 1

« „
x
1

«
=

„
Ax + b

1

«
where A is a linear transformation, b is a translation vector.
Also the product of affine matrices is an affine matrix.

4The specific choice of u and v leads to an equivalent model
for all û and v̂ such that û = MT u, v̂ = M−1v, where M is
any invertible transformation (i.e. û, v̂ are derived from u,v by
applying linear transformations MT , M−1 respectively):

uT W1W2v = (uT M)(M−1W1M)(M−1W2M)(M−1v)

= ûT Ŵ1Ŵ2v̂

The derivative of the phrase ξi with respect to j-th
word Wj would be (for brevity we drop the phrase
index and Wj refers to Wxi

j
and p refers to |xi|):

∂ξi

∂Wj
=

(
∂uT W1W2 . . .Wpv

∂Wj

)
=

[
(uT W1 . . .Wj−1)T (Wj+1 . . .Wpv)T

]
=

[
(W T

j−1 . . .W T
1)(uvT)(W T

p . . .W T
j+1)

]
(see Peterson and Pederson(2008)).
In case if a certain word appears multiple times in
the phrase, the derivative with respect to that word
would be a sum of derivatives with respect to each
appearance of a word, while all other appearances
are fixed. For example,(

∂uT WW1Wv

∂W

)
= u(W1Wv)T + (uT WW1)T vT

where W is a representation of a word that is re-
peated.

So given the expression (6) for ∂L
∂ξi

, the derivative
with respect to each word can be computed. Notice
that the update for the j-th word in a sentence de-
pends on the order words, which is in line with our
desire to account for word order.

2.2.2 Optimization
The goal of training procedure is for the i-th

phrase with p words x1x2 . . . xp to learn word ma-
trices W1, W2, . . . , Wp such that resulting ξi-s will
lead to the lowest negative loglikelihood. The goal
of training procedure is to find word matrices W1,
W2, . . . Wp and thresholds κ0, τ1, . . . τr−2 such
that the negative loglikelihood is minimized. So,
given the negative loglikelihood and the derivatives
with respect κ0 and τj-s and word matrices W , we
optimize objective (5) subject to τj ≥ 0. We use L-
BFGS-B (Large-scale Bound-constrained Optimiza-
tion) by Byrd et al. (1995) as an optimizer.

2.2.3 Regularization in Matrix-Space Model
In order to make sure that the L-BFGS-B updates

do not cause numerical issues we perform the fol-
lowing regularization to the resulting matrices. An
m by m matrix Wj that can be represented as:

Wj =
(

A11 a12

aT
21 a22

)

where A11 ∈ Rm−1×m−1, a12, a21 ∈ Rm−1×1,
a22 ∈ R. First make the matrix affine by updating
the last row, then the updated matrix will look like:

Ŵj =
(

A11 a12

0 1

)
It can be proven that such a projection returns the
closest affine matrix in Frobenius norm.

However, we also want to regularize the model to
avoid ill-conditioned matrices. Ill-conditioned ma-
trices represent transformations whose output is very
sensitive to small changes in the input and therefore
they have a similar effect to having large weights
in a bag-of-words model. To perform such a reg-
ularization we ”shrink” the singular values of A11

towards one. More specifically, we first use the
Singular Value Decomposition (SVD) of the A11:
UΣV T = A11, where U and V are orthogonal ma-
trices, Σ is a matrix with singular values on the diag-
onal. Then we update singular values in the follow-
ing way to get Σ̃: Σ̃ii = Σh

ii, where h is a parameter
between 0 and 1. If h = 1 then Σii remains the
same. In the extreme case h = 0 then Σh

ii = 1. For
intermediate values of h the singular values of A11

would be brought closer to one. Finally, we recom-
pute Ã11: Ã11 = U Σ̃V T . So, Wj would be :

W̃j =
(

Ã11 a12

0 1

)
2.2.4 Learning in the Matrix-Space Model

We use Algorithm 1 to learn the matrix-space
model. What essentially happens is that we iter-
ate two steps: optimizing the W matrices using L-
BFGS-B and the projection step. L-BFGS-B returns
a solution that is not necessarily an affine matrix.
After projecting to the space of affine matrices we
start L-BFGS-B from a better initial point. In prac-
tice, the first few iterations lead to large decrease in
negative loglikelihood.

2.3 Bag-Of-Words Model
In the bag-of-words model the score of the i-th
phrase is given in (1). Therefore, the partial deriva-
tive with respect to j-th word in i-th phrase ∂ξi

∂w
xi

j

is

equal to the number cj of times xj
i appears in xi, so:

∂L

∂wxi
j

=
∂L

∂ξi
· cj

Algorithm 1 Training Algorithm for Matrix-Space
OLogReg

1: Input: {(x1, y1), . . . , (xn, yn)} //training data
2: Input: h //projection parameter
3: Input: T //number of iterations
4: Input: W , κ0 and τj //initial values
5: for t = 1, . . . , T do
6: (W , κ0, τj)=minimize L using L-BFGS-B
7: for i = 1, . . . , d do
8: Wi=Project(Wi, h)
9: end for

10: end for
11: Return W , κ0, τj

Optimization. We minimize negative loglikelihood
using L-BFGS-B subject to τj ≥ 0.
Regularization. To prevent overfitting for bag-of-
words model we regularize w. The L2-regularized
negative loglikelihood will consist of the expression
in (5) and an additional term λ

2 ||w||
2
2, where || · ||2

is the L2-norm of a vector. The derivative of the
additional term with respect to w will be:

∂ λ
2 ||w||

2
2

∂w
= λw

Hence the partial derivative with respect to wxi
j

will
have an additional term λwxi

j
.

2.4 Initialization

Initialization of bag-of-words OLogReg. We ini-
tialize the weight for each word with zero and κ0

with a random number and τj-s with non-negative
random numbers. Since the learning problem for
bag-of-words OLogReg is convex, we will get the
global optimum.
Better Initialization of Matrix-Space Model. Pre-
liminary experiments showed that the Matrix-Space
model needs a good initialization. Initializing with
different random matrices reaches different local
minima and the quality of local minima depends on
initialization. Therefore, it is important to initialize
the model with a good initial point. One way to ini-
tialize the Matrix-Space model is to use the weights
learned by the bag-of-words model. We use the
following intuition for initializing the Matrix-Space
model. As noted in Section 2.2.1 applying trans-
formation A of affine matrix W can model a linear

transformation, while vector b represents a transla-
tion. Since matrix-space model can encode a vector-
space model (Rudolph and Giesbrecht, 2010), we
can initialize the matrices to exactly mimic the bag-
of-words model. In order to do that we place the
weight, learned by the bag-of-words model in the
first component of b. Let’s assume that wx1 and wx2

are the weights learned for two distinct words x1 and
x2 respectively. To compute the polarity score of
a phrase x1, x2 the bag-of-words model sums the
weights of these two words: wx1 and wx2 . Now we
want to have the same effect in matrix-space model.
Here we assume m = 3.

Z =

 1 0 wx1

0 1 0
0 0 1

 1 0 wx2

0 1 0
0 0 1

=

 1 0 wx1 + wx2

0 1 0
0 0 1

Finally, there is a step of mapping matrix Z to a
number using u and v, such that ξ(Z) = wx1 +
wx2 .We also want vector u and v to be such that:

uT

 1 0 wx1 + wx2

0 1 0
0 0 1

 v = wx1 + wx2 (8)

The last equation can help us construct u and v.
We also set u and v to be orthogonal: uT v = 0.
So, we arbitrarily choose two orthogonal vectors for
which equation (8) holds: u = [1,

√
2, 1]T and v =

[1,−
√

2, 1]T .5

3 Experimental Methodology

For experimental evaluation of the proposed method
we use the publicly available Multi-Perspective
Question Answering (MPQA)6 corpus (Wiebe et al.,
2005) version 1.2, which contains 535 newswire
documents that are manually annotated with phrase-
level subjectivity and intensity. We use the
expression-level boundary markings in MPQA to
extract phrases. We evaluate on positive, negative
and neutral opinion expressions that have intensities

5If m > 3, u and v can be set using the same intuition.
6http://www.cs.pitt.edu/mpqa/

Polarity Intensity Ordinal
label

negative high, extreme 0
negative medium 1
neutral high, extreme, medium 2
positive medium 3
positive high, extreme 4

Table 1: Mapping of combination of polarities and inten-
sities from MPQA dataset to our ordinal sentiment scale.

“medium”, “high” or “extreme”.7 The schematic
mapping of phrase polarity and intensity values on
ordinal sentimental scale is shown in Table 1.

3.1 Training Details

We perform 10-fold cross-validation on phrases ex-
tracted from the MPQA corpus: eight folds for train-
ing; one as a validation set; and one as test set. In
total there were 8022 phrases. Before training, we
extract lemmas for each word. For evaluation we
use Ranking Loss: 1

n

∑
i |ŷi − yi|, where ŷi is the

prediction.
Choice of dimensionality m. The reported ex-

periments are done by setting m = 3. Preliminary
experiments with higher values of m (5, 20, 50), did
not lead to a better performance and increased the
training time; therefore we did not use those values
in our final experiments.

3.2 Methods

PRank. For each of the folds, we run 500 iterations
of PRank and choose an early stopping iteration us-
ing a model that led to the lowest ranking loss on the
validation set; afterwards report the average perfor-
mance of on a test set.
Bag-of-words OLogReg. To prevent overfitting we
search for the best regularization parameter among
the following values of λ: 10i, from 10−4 to 104.
The lowest negative log-likelihood value on the val-
idation set is attained for8 λ = 0.1. With this value
of λ fixed, the final model is the one with the lowest
negative loglikelihood on the training set.

7We ignored low-intensity phrases similar to (Choi and
Cardie, 2008; Nakagawa et al., 2010).

8We pick single λ that gives best average validation set per-
formance, and then use it to compute the average test set perfor-
mance.

Method Ranking loss
PRank 0.7808
Bag-of-words OLogReg 0.6665
Matrix-space OLogReg+RandInit 0.7417
Matrix-space OLogReg+BowInit 0.6375†

Table 2: Ranking loss for vector-space Ordered Logistic
Regression and Matrix-Space Logistic Regression.
† Stands for a significant difference w.r.t. the Bag-Of-
Words OLogReg model with p-value less than 0.001
(p < 0.001)

Matrix-space OLogReg+RandInit. First, we ini-
tialized matrices with with random numbers from
normal distribution N(0, 0.1) and set u and v as in
section 2.4, T is set to 25. We run with two different
random seeds and three different values for the pa-
rameter h: [0.1, 0.5, 0.9] and report the performance
of the model that had the lowest likelihood on the
validation set. The setting of h that lead to the best
model was 0.9.
Matrix-space OLogReg+BowInit. For the matrix-
space models we initialize the model with the out-
put of the regularized Bag-of-words OLogReg as de-
scribed in Section 2.4, T is set to 25. Then we use
the training procedure of Algorithm 1. We consider
three different values for the parameter h [0.1, 0.5,
0.9] and choose as the model with the lowest valida-
tion set negative log-likelihood. The best setting of
h was 0.1.

4 Results and Discussion

We report Ranking Loss for the four models in Ta-
ble 2. The worst performance (denoted by the high-
est ranking loss value) is obtained by PRank, fol-
lowed by matrix-space OLogReg with random ini-
tialization. Bag-of-words OLogReg obtains quite
good performance, and matrix-space OLogReg, ini-
tialized using the bag-of-words model performs the
best, showing statistically significant improvements
over the bag-of-words OLogReg model according to
a paired t-test. .

To see what the bag-of-word and matrix-space
models are learning we performed inference on a
few examples. In Table 3 we show the sentiment
scores of the best performing bag-of-words OLo-
gReg model and the best performing model based

Phrase Matrix-space Bag-of-words
OLogReg+BowInit OLogReg

not -0.83 -0.42
very 0.23 0.04
good 2.81 1.51
very good 3.53 1.55
not good -0.16 1.09
not very good 0.66 1.13
bad -1.67 -1.42
very bad -2.01 -1.38
not bad -0.54 -1.85
not very bad -1.36 -1.80

Table 3: Phrase and the sentiment scores of the phrase for
2 models Matrix-space OLogReg+BowInit and Bag-of-
words OLogReg respectively. Notice that relative rank-
ing order what matters

on matrices Matrix-space OLogReg+BowInit. By
sentiment score, we mean equation (1) of Bag-of-
words OLogReg and equation (2) of Matrix-space
OLogReg+BowInit.

Here we choose two popular adjectives like
‘good’ and ‘bad’ that appeared in the training data,
and examine the effect of applying the intensifier
‘very’ on the sentiment score. As we can see,
the matrix-space model learns a matrix that inten-
sifies both ‘bad’ and ‘good’ in the correct sentiment
scale, i.e., ξ(good) < ξ(very good) and ξ(bad) <
ξ(very bad), while the bag-of-words model gets the
sentiment of ‘very bad’ wrong: it is more positive
than ‘bad’. We also looked at the effect of combin-
ing ‘not’ with these adjectives. The matrix-space
model correctly encodes the effect of the negator
for both positive and negative adjectives, such that
ξ(not good) < ξ(good) and ξ(bad) < ξ(not bad).
For the interesting case of applying a negator to a
phrase with an intensifier, ξ(not good) should be
less than ξ(not very good) and ξ(not very bad)
should be less than ξ(not bad).9 As shown in Ta-
ble 3, these are predicted correctly by the matrix-
space model, which the matrix-space model gets
right, but the bag-of-words model misses in the case
of “bad”.

Also notice that since in the matrix-space model

9See the detailed discussion in Taboada et al. (2011) and Liu
and Seneff (2009).

each word is represented as a function, more specif-
ically a linear operator, and the function composi-
tion defined as matrix multiplication, we can think
of ”not very” being an operator itself, that is a com-
position of operator ”not” and operator ”very”.

5 Related Work

Sentiment Analysis. There has been a lot of
research in determining the sentiment of words
and constructing polarity dictionaries (Hatzivas-
siloglou and McKeown, 1997; Wiebe, 2000; Rao
and Ravichandran, 2009; Mohammad et al., 2009;
Velikovich et al., 2010). Some recent work is try-
ing to identify the degree of sentiment of adjectives
and adverbs from text using co-occurrence statistics.
Work by Taboada et. al (2011) and Liu and Sen-
eff (2009), suggest ways of computing the sentiment
of adjectives from data, and computing the effect
of combining adjective with adverb as multiplica-
tive effect and combining adjective with negation as
additive effect. However these models require the
knowledge of a part of speech of given words and
the list of negators (since the negator is an adjective
as well). In our work we propose a single unified
model for handling all words of any part of speech.

On the other hand, there has been some research
in trying to model compositional effects for senti-
ment at the phrase- and sentence-level. Choi and
Cardie (2008) hand-code compositional rules in or-
der to model compositional effects of combining dif-
ferent words in the phrase. The hand-coded rules
are based on domain knowledge and used to learn
the effects of combining words in the phrase. An-
other recent work that tries to model the compo-
sitional semantics of combining different words is
Nakagawa et. al. (2010), which proposes a model
that learns the effects of combining different words
using phrase/sentence dependency parse trees and an
initial polarity dictionary. They present a learning
method that employs hidden variables for sentiment
classification: given the polarity of a sentence and
the a priori polarities of its words, they learn how
to model the interactions between words with head-
modifier relations in the dependency tree.

Some of the previous work looked at MPQA
phrase-level classification. Wilson et al. (2004) tack-
les the problem of classifying clauses according to

their subjective strength but not polarity; Wilson et
al. (2005) classifies phrases according to their po-
larity/sentiment but not strength. Our task is differ-
ent: we classify phrases according to a single ordinal
scale that combines both polarity and strength.

Task of predicting document-level star ratings was
considered in (Pang and Lee, 2005; Goldberg and
Zhu, 2006). In the current work we look at fine-
grained sentiment analysis, more specifically we
study word representations for use in true compo-
sitional semantic settings.

Distributional Semantics and Compositional-
ity. Research in the area of distributional seman-
tics in NLP and Cognitive Science has looked at
different word representations and different ways of
combining words. Mitchell and Lapata (2010) pro-
pose a framework for vector-based semantic com-
position. They define composition as an additive
or multiplicative function of two vectors and show
that compositional approaches generally outperform
non-compositional approaches that treat the phrase
as the union of single lexical items.

Work by Baroni and Zamparelli (2010) models
nouns as vectors in some semantic space and ad-
jectives as matrices. It shows that modeling adjec-
tives as linear transformations and applying those
linear transformations to nouns results in final vec-
tors for adjective-noun compositions that are close
in semantic space to other similar phrases. The
authors argue that modeling adjectives as a linear
transformation is a better idea than using additive
vector-space models. In this work, a separate ma-
trix for each adjective is learned using the Par-
tial Least Squares method in a completely unsuper-
vised way. The recent paper by Rudolph and Gies-
brecht (2010), described in the introduction, argues
for multiplicative matrix-space models. In contrast
to other work in this area, our work is concerned
with a specific dimension of word meaning — sen-
timent. Our techniques, however, are quite general
and should be applicable to other problems in lexical
semantics.

6 Conclusions and Future work

In the current work we present a novel matrix-space
model for ordinal scale sentiment prediction and an
algorithm for learning such a model. The proposed

model learns a matrix for each word; the composi-
tion of words is modeled as iterated matrix multi-
plication. The matrix-space framework with iterated
matrix multiplication defines an elegant framework
for modeling composition; it is also quite general.
We use the matrix-space framework in the context
of sentiment prediction, a domain where interesting
compositional effects can be observed. The main fo-
cus of this work was to study word representations
(represent as a single weight vs. as a matrix) for use
in true compositional semantic settings. One of the
benefits of the proposed approach is that by learn-
ing matrices for words, the model can handle unseen
word compositions (e.g. unseen bigrams) when the
unigrams involved have been seen.

However, it is not trivial to learn a matrix-space
model. Since the final optimization problem is non-
convex, the initialization has to be done carefully.
Here the weights learned in bag-of-words model
come to rescue and provide good initial point for op-
timization procedure. The final model outperforms
the bag-of-words based model, which suggests that
this research direction is very promising.

Though in our model the order of composition is
the same as the word order, we believe that a linguis-
tically informed order of composition can give us
further performance gains. For example, one can use
the output of a dependency parser to guide the order
of composition, similar to Nakagawa et al. (2010).
Another possibility for improvement is to use the in-
formation about the scope of negation. In the current
work we assume the scope of negation to be the ex-
pression following the negation; in reality, however,
determining the scope of negation is a complex lin-
guistic phenomenon (Moilanen and Pulman, 2007).
So the proposed model can benefit from identify-
ing the scope of negation, similar to (Councill et al.,
2010).

Also we plan to consider other ways to initialize
the matrix-space model. One interesting direction to
explore might be to use non-negative matrix factor-
ization (Lee and Seung, 2001), co-clustering tech-
niques (Dhillon, 2001) to better initialize words that
share similar contexts. The other possible direction
is to use existing sentiment lexicons and employ-
ing a “curriculum learning” strategy (Bengio et al.,
2009; Kumar et al., 2010) for our learning problem.

Acknowledgments
This work was supported in part by National Science
Foundation Grants BCS-0904822, BCS-0624277,
IIS-0968450; and by a gift from Google. We thank
the anonymous reviewers, and David Bindel, Nikos
Karampatziakis, Lillian Lee and Cornell NLP group
for useful suggestions and insightful discussions.

References
Marco Baroni and Roberto Zamparelli. 2010. Nouns

are vectors, adjectives are matrices: representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP
’10, pages 1183–1193, Morristown, NJ, USA. Asso-
ciation for Computational Linguistics.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. 2009. Curriculum learning. In Pro-
ceedings of the 26th Annual International Conference
on Machine Learning, ICML ’09. ACM.

R. H. Byrd, P. Lu, and J. Nocedal. 1995. A limited
memory algorithm for bound constrained optimiza-
tion. SIAM Journal on Scientific and Statistical Com-
puting, pages 1190–1208.

Yejin Choi and Claire Cardie. 2008. Learning with com-
positional semantics as structural inference for subsen-
tential sentiment analysis. In Empirical Methods in
Natural Language Processing (EMNLP).

Isaac G. Councill, Ryan McDonald, and Leonid Ve-
likovich. 2010. What’s great and what’s not: learn-
ing to classify the scope of negation for improved sen-
timent analysis. In Proceedings of the Workshop on
Negation and Speculation in Natural Language Pro-
cessing, NeSp-NLP ’10, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Koby Crammer and Yoram Singer. 2001. Pranking with
ranking. In Advances in Neural Information Process-
ing Systems 14, pages 641–647. MIT Press.

Marie-Catherine de Marneffe, Christopher D. Manning,
and Christopher Potts. 2010. Was it good? It was
provocative. learning the meaning of scalar adjectives.
In Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, Uppsala, Swe-
den, July 11–16. ACL.

I. S. Dhillon. 2001. Co-clustering documents and words
using bipartite spectral graph partitioning. In KDD.

Andrew B. Goldberg and Jerry Zhu. 2006. Seeing
stars when there aren’t many stars: Graph-based semi-
supervised learning for sentiment categorization. In
HLT-NAACL Workshop on Textgraphs: Graph-based
Algorithms for Natural Language Processing.

James W. Hardin and Joseph Hilbe. 2007. Generalized
Linear Models and Extensions. Stata Press.

Vasileios Hatzivassiloglou and Kathleen R. McKeown.
1997. Predicting the semantic orientation of adjec-
tives. In EACL, pages 174–181.

Alistair Kennedy and Diana Inkpen. 2006. Sentiment
classification of movie reviews using contextual va-
lence shifters. Computational Intelligence, 22(2, Spe-
cial Issue on Sentiment Analysis)):110–125.

M. Pawan Kumar, Benjamin Packer, and Daphne Koller.
2010. Self-paced learning for latent variable models.
In Advances in Neural Information Processing Sys-
tems 23. NIPS.

D. Lee and H. Seung. 2001. Algorithms for non-negative
matrix factorization. In NIPS.

Jingjing Liu and Stephanie Seneff. 2009. Review sen-
timent scoring via a parse-and-paraphrase paradigm.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
161–169, Singapore, August. Association for Compu-
tational Linguistics.

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive Science,
34(8):1388–1429.

Saif Mohammad, Cody Dunne, and Bonnie Dorr. 2009.
Generating high-coverage semantic orientation lexi-
cons from overtly marked words and a thesaurus.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
599–608, Singapore, August. Association for Compu-
tational Linguistics.

Karo Moilanen and Stephen Pulman. 2007. Sentiment
composition. In Proceedings of Recent Advances in
Natural Language Processing (RANLP 2007), pages
378–382, September 27-29.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi.
2010. Dependency tree-based sentiment classification
using crfs with hidden variables. In Conference of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL).

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the ACL,
pages 115–124.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends in Infor-
mation Retrieval, 2(1-2):1–135.

K. B. Petersen and M. S. Pedersen. ”2008”. The Matrix
Cookbook. ”Technical University of Denmark”, ”oct”.
”Version 20081110”.

Livia Polanyi and Annie Zaenen. 2004. Contextual
lexical valence shifters. In Proceedings of the AAAI
Spring Symposium on Exploring Attitude and Affect in
Text: Theories and Applications.

Delip Rao and Deepak Ravichandran. 2009. Semi-
supervised polarity lexicon induction. In Proceedings
of the 12th Conference of the European Chapter of the
ACL (EACL 2009), pages 675–682, Athens, Greece,
March. Association for Computational Linguistics.

Sebastian Rudolph and Eugenie Giesbrecht. 2010. Com-
positional matrix-space models of language. In Pro-
ceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, ACL ’10, pages 907–
916, Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Mostafa Shaikh, Helmut Prendinger, and Ishizuka Mit-
suru. 2007. Assessing sentiment of text by semantic
dependency and contextual valence analysis.

Maite Taboada, Julian Brooke, Milan Tofiloskiy, and
Kimberly Vollz. 2011). Lexicon-based methods for
sentiment analysis. In Computational Linguistics.

Leonid Velikovich, Sasha Blair-Goldensohn, Kerry Han-
nan, and Ryan McDonald. 2010. The viability of web-
derived polarity lexicons. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 777–785, Los Angeles, Cal-
ifornia, June. Association for Computational Linguis-
tics.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions in
language. Language Resources and Evaluation (for-
merly Computers and the Humanities), 39(2/3):164–
210.

Janyce M. Wiebe. 2000. Learning subjective adjectives
from corpora. In In AAAI, pages 735–740.

Theresa Wilson, Janyce Wiebe, and Rebecca Hwa. 2004.
Just how mad are you? In AAAI. AAAI.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Empirical Methods in Natural
Language Processing (EMNLP).

