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Abstract

Graph cuts method such as α-expansion [4] and fu-
sion moves [22] have been successful at solving many
optimization problems in computer vision. Higher-order
Markov Random Fields (MRF’s), which are important for
numerous applications, have proven to be very difficult, es-
pecially for multilabel MRF’s (i.e. more than 2 labels). In
this paper we propose a new primal-dual energy minimiza-
tion method for arbitrary higher-order multilabel MRF’s.
Primal-dual methods provide guaranteed approximation
bounds, and can exploit information in the dual variables to
improve their efficiency. Our algorithm generalizes the PD3
[19] technique for first-order MRFs, and relies on a variant
of max-flow that can exactly optimize certain higher-order
binary MRF’s [14]. We provide approximation bounds sim-
ilar to PD3 [19], and the method is fast in practice. It can
optimize non-submodular MRF’s, and additionally can in-
corporate problem-specific knowledge in the form of fusion
proposals. We compare experimentally against the exist-
ing approaches that can efficiently handle these difficult en-
ergy functions [6, 10, 11]. For higher-order denoising and
stereo MRF’s, we produce lower energy while running sig-
nificantly faster.

1. Higher-order MRFs
There is widespread interest in higher-order MRF’s for

problems like denoising [23]and stereo [30], yet the result-
ing energy functions have proven to be very difficult to min-
imize. The optimization problem for a higher-order MRF
is defined over a hypergraph with vertices V and cliques C
plus a label set L. We minimize the cost of the labeling
f : L|V| → < defined by

f(x) =
∑
i

fi(xi) +
∑
C∈C

fC(xC). (1)

fC is a function of just the variables xi with i ∈ C (a
subvector of x which we denote xC). We assume, without
loss of generality, that fi, fC ≥ 0 (we can just add a con-
stant to make this hold). Special cases include first-order

MRFs where |C| = 2, and binary MRFs where |L| = 2; we
are interested in the general case of higher-order multilabel
MRF’s, where we restrict neither |C| nor |L|.

Graph cut methods are a popular approach to first-order
MRF’s, and produce strong performance on standard bench-
marks such as [26]. The most widely used graph cut tech-
niques, including α-expansion [4] and its generalization
to fusion moves [22], repeatedly solve a first-order binary
MRF in order to minimize the original multilabel energy
function. If the first-order binary MRF satisfies a condition
known as submodularity (sometimes called regularity [16]),
then expansion move produces a solution that is guaranteed
to be within a known factor of the global minimum [4].

The connection between graph cuts and primal-dual
techniques was established by [19] who showed that α-
expansion could be interpreted as simultaneously optimiz-
ing primal and dual solutions. [19] proposed several primal-
dual algorithms that generalized α-expansion and provided
both theoretical and practical advantages. These methods
apply to much more general energy functions and extend
the approximation bounds of [12]. Empirically, keeping
track of the dual variables allows a number of implemen-
tation speedups compared to α-expansion, resulting in the
very efficient algorithm FastPD [21].

1.1. Summary of our method

In this paper, we provide an generalization of the primal-
dual algorithm PD3 of [19] that can efficiently minimize an
arbitrary higher-order multilabel energy function. Briefly:
PD3 relies on max-flow; the flow values update the dual
variables and the min-cut updates the primal variables. Our
method instead uses a variant of max-flow proposed by [14],
who demonstrates that it can exactly minimize an interest-
ing class of higher-order binary MRF’s.

Primal-dual methods rely on a condition called comple-
mentary slackness. Our algorithm begins with a common
linear programming relaxation to (1). This linear program
has two kinds of constraints, corresponding to the unary
terms and clique-based terms in equation (1). We refer to
the respective complementary slackness conditions as unary
and clique slackness conditions. We will keep track of a
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primal solution x and (not necessarily feasible) dual solu-
tion λ. We will ensure that x, λ always satisfy the clique
slackness conditions, and at each step of the algorithm, we
will try to move x to be closer to satisfying unary slackness.
The algorithm converges to a solution where both slackness
conditions hold, but we generally lose feasibility. However,
there exists some ρ such that λ/ρ is dual-feasible. This
gives us a ρ-approximation algorithm for a class of func-
tions we call weakly associative.

We review the related work in Section 2. Our algorithm
is presented in Section 3, and we conclude with an experi-
mental evaluation in Section 4.

2. Related Work
While our focus is on graph cut methods, which have

been very successful for first-order MRF’s [26], there are
also several interesting algorithms for higher-order MRF’s
that do not use graph cuts. [29] took the LP relaxation of
the energy function and generalized the max-sum diffusion
algorithm for high-order MRF’s. [17] extended the dual
decomposition scheme, which is reviewed in [18]. [27]
proposed a message passing algorithm for two important
classes of higher order energy functions. Other message-
passing schemes include the Generalized TRW-S algorithm
of [15], which also optimizes a dual linear program, using
max-product message passing on chains of cliques.

2.1. Graph Cut Methods and Higher-Order MRF’s

The most popular graph cut methods for multilabel first-
order MRF’s rely on move-making techniques. Those meth-
ods, which notably include α-expansion [4] and fusion
moves [22], reduce the multilabel problem to a series of
binary subproblems which are then solved by max-flow
[3, 16]. In α-expansion [4], the binary problem involves
each pixel deciding whether to keep its current label or
adopt a particular new label α. The expansion move al-
gorithm also provides a guaranteed approximation bound.

[19, 20] proposed a primal-dual framework that general-
izes α-expansion. They interpreted this algorithm as opti-
mizing the primal and dual problem of the LP-relaxation of
the MRF energy function simultaneously. In addition, the
general primal-dual algorithm overcomes the most impor-
tant limitation of the α-expansion algorithm, which is the
requirement that the pairwise energy must be a metric [4].
The same approximation ratio still holds for a much broader
class of energy functions. Furthermore, by tracking the dual
variables to speedup the optimization, it can be 3-9 times
faster in practice [21].

Graph cut methods for higher order priors [6, 8, 10, 11,
24] take a reduction-based approach. When a move-making
algorithm, such as α-expansion or fusion moves, is used to
solve a higher-order MRF, the optimal move is computed
by solving a higher-order binary MRF. [10] and [6] propose

methods for turning an arbitrary binary higher-order MRF
into a binary first-order MRF.

Recall that a function f defined on subsets of a base
set is submodular if for all subsets S, T we have f(S ∪
T ) + f(S ∩ T ) ≤ f(S) + f(T ). If the binary first-order
MRF is submodular it can be solved exactly via graph cuts
[3, 16]; otherwise the solution can be approximated [3].
Certain higher-order binary MRF’s have efficient reductions
[13, 24]. There are also methods that find the best reduction
within a particular class of reductions [8, 11].

2.2. Linear programming and duality for MRFs

Much of the theory of MRF optimization algorithms
revolves around a specific linear programming relaxation
of (1) known as the Local Marginal Polytope formulation
[25], which was extended to higher-order MRFs in [28].
Every linear program (LP) has a corresponding dual, and
the dual program has resulted in efficient algorithms such
as [18, 19, 21]. We will omit the primal program, and pro-
ceed straight to the dual program, which is a higher-order
version of the dual program from [19].

The dual program has variables for each clique C, i ∈ C
and label xi, denoted λC,i(xi); and is given by

max
λ

∑
i

min
xi

hi(xi) (2a)

hi(xi) = fi(xi) +
∑
C

λC,i(xi) ∀i (2b)∑
i∈C

λC,i(xi) ≤ fC(xC) ∀C, xC (2c)

We can informally think of the dual variable λC,i(xi) as
taking part of the cost fC(xC), and redistributing it to the
unary terms. Following [19], the functions hi(xi) will be
called the “height” of label xi at variable i, and semanti-
cally can be thought of as the original cost fi(xi), plus any
redistribution λC,i from the cliques to the unary terms at
i. The dual is always a lower bound on the value f(x) of
any labeling. Throughout, when there is a distinguished la-
beling (such as the current labeling in α-expansion) we’ll
denote it x, while generic labels will simply be x.

2.3. Sum-of-submodular (SoS) flow

[14] introduced SoS minimization via SoS flow, and de-
scribed an SoS flow algorithm. Alternative SoS flow al-
gorithm were described by [1, 7], with the method of [7]
specifically designed for typical computer vision problems.

The sum-of-submodular flow problem of [14] is similar
to max flow. We have a set of vertices V plus the source s
and sink t, and arcs (s, i) and (i, t) for each i ∈ V . We are
also given a sum-of-submodular function:

g(S) =
∑
C∈C

gC(S ∩ C) +
∑
i∈S

ci,t +
∑
i/∈S

cs,i (3)



Algorithm 1 Our SoSPD algorithm.
Initialize x arbitrarily.
Initialize λC,i(xi) = 1

|C|fC(xC), and λC,i(xi) = 0 for
xi 6= xi.
while unary slackness condititions are not satisfied do
y ← result of proposal generator
PRE-EDIT-DUALS(x, y, λ)
x′, λ′ ← UPDATE-DUALS-PRIMALS(x, y, λ)
POST-EDIT-DUALS(x′, λ′)

end while
return x

where C ∈ C are called cliques in V , and each gC is a
submodular function, called a clique function, with

gC(∅) = gC(C) = min
S
gC(S ∩ C) = 0. (4)

Intuitively, the difference between max flow and sum-of-
submodular flow is that in addition to capacity and conser-
vation constraints, we will also require that the flow out of
any set S is at most gC(S ∩ C). To be precise, a sum-of-
submodular flow has flow values φs,i and φi,t on the source
and sink edges, as well as flow values φC,i for each clique
C and i ∈ C. Then, a maximum sum-of-submodular flow
is a solution to the following LP:

max
φ

∑
i

φs,i (5a)

s.t. φs,i ≤ cs,i, φi,t ≤ ci,t ∀i (5b)

φs,i − φi,t −
∑
C3i

φC,i = 0 ∀i (5c)∑
i∈S

φC,i ≤ gC(S) ∀C, S ⊆ C (5d)

Here, (5b) are the capacity constraints for source and
sink edges, with capacities given by the unary terms
cs,i, ci,t, (5c) are the flow-conservation constraints at i
and (5d) are the additional constraints that the φC in a set S
are at most gC(S). [14] shows that this LP can be solved by
a generalized flow algorithm.

Finally, [14] provides a sum-of-submodular version of
the min-cut max-flow theorem. If φ maximizes (5), and S
minimizes (3), then the objective value (5a) of φ is equal to
g(S). Furthermore, the notion of saturated edges extends to
the clique function: (1) if i ∈ S then φi,t = ci,t (2) if i /∈ S
then φs,i = cs,i, and most importantly (3) for every clique
C, gC(S ∩ C) =

∑
i∈S φC,i.

3. The SoS Primal Dual Algorithm
Our algorithm, which we will call SoSPD, is designed

around ensuring that two main conditions are satisfied re-
garding the primal and dual solutions. These conditions

give us our approximation bound, as well as help design the
rest of the algorithm. The conditions are complementary
slackness conditions, in which the inequalities in the dual
that correspond to a particular primal solution are actually
satisfied with equality.

Definition 1. Given a labeling x and dual solution λ, we
say that x, λ satisfy the clique slackness conditions if the
constraints in (2c) corresponding to xC are satisfied with
equality. That is, we have∑

i∈C
λC,i(xi) = fC(xC) ∀C (6)

Proposition 2. If x, λ satisfy the clique slackness condi-
tions, then f(x) =

∑
i hi(xi).

Proof. Remembering our redistribution argument, this
means we have exactly partitioned fC(xC) among the λ,
so the sum of the heights is the original cost f(x). I.e.,∑

i

hi(xi) =
(∑

i

fi(xi)
)
+
(∑
C

∑
i

λC,i(xi)
)

=
∑
i

fi(xi) +
∑
C

fC(xC) = f(x)

Definition 3. x, λ satisfy the unary slackness conditions if
for each i we have hi(xi) = minxi

hi(xi).

Corollary 4. If x, λ satisfy both the clique and unary slack-
ness conditions, and λ is feasible, then x minimizes f .

Proof. From Proposition 2, the sum of heights
∑
i hi(xi)

is equal to f(x), and by the definition of unary slackness,
the sum of heights is also equal to the dual objective, the
lower-bound on all possible values f(x).

Since our original problem is NP-hard we can’t expect
both slackness conditions to hold for a feasible dual λ. We
instead apply dual scaling [19], and allow our duals to be-
come slightly infeasible. More specifically, the structure
of (2) always allows us to scale down λ by 1

ρ for some ρ ≥ 1
to get a feasible solution. This gives us approximate opti-
mality.

Lemma 5. If x and λ satisfy the unary and clique slackness
conditions, and λ/ρ is dual feasible, then f(x) ≤ ρf(x∗),
where x∗ is the true optimum.

Proof. Since x, λ satisfy both slackness conditions, we
know that f(x) =

∑
iminxi

hi(xi), hence

f(x) = ρ
∑
i

min
xi

1

ρ

[
fi(xi) +

∑
C

λC,i(xi)
]

≤ ρ
∑
i

min
xi

[
fi(xi) +

∑
C

1

ρ
λC,i(xi)

]
≤ ρf(x∗)

where the first inequality is because fi ≥ 0, and the second
from λ/ρ being dual-feasible.



Lemma 5 gives the basic motivation behind our algo-
rithm. Between iterations, x, λwill always satisfy the clique
slackness conditions, and the goal of each iteration is to
change x to move to lower height labels. At the end of the
algorithm, all the xi will be the lowest height labels for each
i, and the unary slackness conditions are satisfied. Then,
we’ll prove that there exists some ρ such that λ/ρ is dual-
feasible, and hence we have a ρ-approximation algorithm.

The difficult step in this algorithm is that when we
change the labeling x to decrease the height, we must still
maintain the clique slackness conditions. We cannot simply
set each xi to the lowest height label, lest the clique slack-
ness conditions cease to hold. Instead we simultaneously
pick a set of labels to change, and adjust the dual variables
such that the new clique slackness conditions are tight. For
the higher order case, we can show that sum-of-submodular
flow is exactly the tool we need to ensure the clique slack-
ness conditions still hold when changing labels.

At a high-level, the algorithm works as follows. At each
iteration, much like the α-expansion or fusion move algo-
rithms, we have a current labeling x and a proposed labeling
y. We use sum-of-submodular flow to pick a set S of vari-
ables that switch labels, and the max-flow min-cut theorem
for sum-of-submodular flow will ensure that the new vari-
ables x′, λ′ also satisfy the clique slackness conditions.

Our SoSPD technique is summarized in Algorithm 1,
and each iteration has 3 subroutines. The main work of
the algorithm occurs in UPDATE-DUALS-PRIMALS, which
sets up the sum-of-submodular flow problem, and picks a
set of variables to swap. We will describe this subroutine
first, in Section 3.1, making some assumptions about x, λ
which may not hold in general. Then, it is the job of the
other two subroutines, PRE-EDIT-DUALS and POST-EDIT-
DUALS (Sections 3.2 and 3.3) to make sure these assump-
tions do hold, and that therefore the algorithm functions cor-
rectly.

3.1. Update-Duals-Primals

To begin with, we need notation for fusion moves [22].
If we have current and proposed labelings x and y, and S is
the set of variables that change label, we’ll denote the fused
labeling by x′ = x[S ← y], which has x′i = yi if i ∈ S,
and x′i = xi if i /∈ S.

Given our current state x, λ, we’re going to construct
a sum-of-submodular flow network. The values φC,i will
be the amount we add or subtract from λC,i(yi), and the
source-sink flow φs,i, φi,t will give the change in height of
hi(yi). We will only ever adjust the dual variables λC,i(yi)
corresponding to the proposed labeling y.1

1Note that if xi = yi, we do not change λC,i(xi). We could accom-
plish this by simply removing such i from the flow network. However such
vertices i will have, by construction, no outgoing capacity in the network,
so φC,i must always be 0.

The easy part is defining the source-sink capacities.
If hi(yi) < hi(xi) then we can raise the height of la-
bel yi by the difference, and still prefer to switch la-
bels. Similarly, if hi(yi) > hi(xi), we can lower the
height of yi by the difference without creating a new la-
bel we’d prefer to swap to. We define source-sink capaci-
ties by cs,i = hi(xi)− hi(yi), ci,t = 0 in the first case, and
cs,i = 0, ci,t = hi(yi)− hi(xi) in the second case.

In addition to decreasing the heights of the variables, our
other main concern is making sure that the clique slackness
conditions continue to hold. Consider an individual clique
C for now, and let us examine what our labeling x′C could
look like after a fusion step. The possibile labelings are
xC [S ← yC ] for each subset S of C. We want to make
sure that after the swap,

∑
i λC,i(x

′
i) = fC(x

′
C), so define

a function gC equal to the difference:

gC(S) := fC(xC [S ← yC ])−
∑
i∈S

λC,i(yi)−
∑
i/∈S

λC,i(xi)

(7)
For now, we’ll assume that (1) gC is a submodular func-

tion and (2) gC(∅) = gC(C) = 0, gC(S) ≥ 0. These
assumptions will end up being enforced by PRE-EDIT-
DUALS, which we describe below.

Under these assumptions the capacities c and functions
gC define a sum-of-submodular flow network, so we can
find a flow φ and cut S such that gC(S ∩ C) =

∑
i∈S φC,i

(by the sum-of-submodular version of the max-flow min-cut
theorem [14], paraphrased at the end of Section 2.3). Then,
we set x′ = x[S ← y], and λ′C,i(yi) = λC,i(yi) + φC,i. By
definition of gC , we have

fC(x
′
C) = gC(S ∩ C) +

∑
i∈S

λC,i(yi) +
∑
i/∈S

λC,i(xi)

=
∑
i∈S

[λC,i(yi) + φC,i] +
∑
i/∈S

λC,i(xi) =
∑
i

λ′C,i(x
′
i).

Therefore, the primal and dual solutions satisfy the
clique slackness conditions, and our source-sink capacities
were chosen so that h′i(x

′
i) ≤ hi(xi). Finally, unless every

edge out of s gets saturated (and hence S = ∅) then at least
one height has strictly decreased.

3.2. Pre-Edit-Duals

The job of PRE-EDIT-DUALS is to ensure that the as-
sumptions we made in UPDATE-DUALS-PRIMALS are ac-
tually true. Namely, we need (1) the function gC must be
submodular and (2) gC(∅) = gC(C) = 0 and gC(S) ≥ 0.

For (1), first note that if fC(xC [S ← yC ]) is submod-
ular, then so is gC , since a submodular function plus a lin-
ear function is still submodular. Such functions were called
expansion-submodular in [7]. To handle general energy
functions, we need an approach for the case where the fu-
sion move is not submodular.



We take a similar approach to the PD3 variant PD3a [19],
which finds an overestimate of the original energy function.
For pairwise energies finding a submodular overestimate
simply consists of truncating negative capacities to 0. In
our case, we must find a submodular upper bound, f̃C(S),
such that f̃C(S) ≥ fC(xC [S ← yC ]). Our only other re-
quirements are that f̃C(∅) = fC(xC), f̃C(C) = fC(yC),
and that f̃({i}) ≤ maxxC

fC(xC) for i ∈ C.
The problem of finding a submodular upper bound of a

function is underspecified. In our experiments we use a sim-
ple heuristic, which we describe in the supplementary ma-
terial. We leave as an open-question finding the “best” sub-
modular upper-bound (as well as what the metric for “what
is best” should even be).

Having computed f̃C , we then substitute it for fC , just
for this iteration. To simplify the notation we will write
f̃C(x

′
C) to mean f̃C(S) wherever x′C = xC [S ← yC ].

To establish assumption (2), we make use of the follow-
ing fact (which follows from the greedy algorithm of Ed-
monds [5], and is used for a similar purpose in [14]). For
any submodular function g with g(∅) = 0, there is a vector
ψ such that g(S)+ψ(S) ≥ 0 and g(C) = ψ(C) (where we
are using the standard notation ψ(S) :=

∑
i∈S ψi). In fact,

the vector defined by ψi = g({1, . . . , i−1})−g({1, . . . , i})
will suffice.

To ensure (2) holds, we start with gC(S) defined
as in (7). Note that we have gC(∅) = fC(xC) −∑
i∈C λC,i(xi), which by the clique slackness condition,

we know is 0. We can therefore compute a ψ as just de-
scribed, and update λC,i(yi) ← λC,i(yi) − ψi. Since
gC(S) + ψ(S) ≥ 0 and gC(C) + ψ(C) = 0, when we
update gC ← gC + ψ with the new values of λ, we satisfy
gC(S) ≥ 0 and gC(C) = 0.

3.3. Post-Edit-Duals

Having run UPDATE-DUALS-PRIMALS, we know that
f̃C(x

′
C) =

∑
i λ
′
C,i(x

′
i). However, from PRE-EDIT-

DUALS, f̃ might be an overestimate of f .
The subroutine POST-EDIT-DUALS enforces the clique

slackness conditions, by setting λ′C,i(x
′
i) =

1
|C|fC(x

′
C) for

each clique C. Note that if f̃ is an overestimate, this can
only ever decrease the sum of heights hi(x′i) (since we first
average, and then subtract the overestimate from λ).

One final property of POST-EDIT-DUALS: since
fC(x

′
C) ≥ 0, we always know that λC,i(x′i) ≥ 0. We will

use this in the proof of approximation ratio, momentarily.

3.4. Convergence and approximation bound

Much like the pairwise algorithms α-expansion and fu-
sion move, we have monotonically decreasing energy.

Lemma 6. The objective value f(x) is non-increasing.

Proof. First, recall that x, λ satisfy the clique slackness
conditions, so f(x) =

∑
i hi(xi). We also know that PRE-

EDIT-DUALS doesn’t change any of the heights hi(xi),
UPDATE-PRIMALS-DUALS can only decrease hi(xi) (by
definition of the source-sink capacities) and POST-EDIT-
DUALS also doesn’t increase the sum of heights.

The convergence of our method is not guaranteed for ar-
bitrarily bad fusion moves (for instance, we could have a
bad proposal generator which always suggests labels which
have greater height than xi). For α-expansion proposals,
however, convergence is guaranteed.

Proposition 7. With the proposal yi = α for each i, at the
end of the iteration either f(x′) < f(x) or hi(xi) ≤ hi(α)
for all i.

Proof. From the discussion of UPDATE-DUALS-PRIMALS,
one of two things happens: (1) the height of at least one
variable is strictly decreased, or (2) the minimum cut is
S = ∅. If (1), then neither of the other subroutines in-
creases the sum of heights, so by Proposition 2 we have
f(x′) < f(x). If (2) then all edges out of s are satu-
rated, so UPDATE-DUALS-PRIMALS increased hi(α) to be
at least hi(xi). Furthermore, x′ = x and so neither PRE-
EDIT-DUALS nor POST-EDIT-DUALS changes any of the
λC,i(xi), and therefore hi(xi) ≤ hi(α) holds at the end of
the iteration.

Lemma 8. If after running through iterations of α-
expansion for every label α, f(x) does not strictly decrease,
then the unary slackness conditions must hold, and the al-
gorithm terminates.

Proof. Since every α-expansion iteration didn’t change the
objective f(x), by Proposition 7 each such iteration ensures
that hi(α) ≥ hi(xi). Also note that a β-expansion for β 6=
α doesn’t change any of the hi(α). Therefore, the xi are all
minimum height labels, and the unary slackness conditions
are satisfied.

Overall, with integer costs, the objective decreases by at
least 1 each outer-iteration and therefore eventually halts.
The running time of each iteration is dominated by the SoS
flow computation — we use SoS-IBFS [7] which has run-
time O(|V|2|C| 2k), where k = max |C|. It is difficult to
provide a non-trivial bound on the number of α-expansion
iterations, but in practice we always observe convergence
after 4 passes through the label set. Note that this is ex-
ponential in the clique size, since we represent submodular
functions as tables of 2k values. However, this is also true of
other state of the art methods for higher-order MRF’s such
as [6, 10, 17].

Let fmax = max fC(xC), fmin = min fC(xC), where
the max and min are over all cliques C and all non-constant



labelings xC . There is a natural class of MRF’s where
fmin > 0 (i.e. all non-constant labelings have positive
costs), and where constant labelings have zero cost. We
call such MRF’s weakly associative; they encourage all
variables in a clique to have the same label, but are oth-
erwise unrestricted on non-constant labelings. This gener-
alizes what [19] calls non-metric energies.

Our approximation ratio will be ρ = k f
max

fmin . Note that ρ
is finite only for a weakly associative MRF. This generalizes
the approximation ratio for PD3, which is 2 f

max

fmin .

Theorem 9. SoSPD with α-expansion for a weakly associa-
tive MRF f is a ρ-approximation algorithm, i.e., the primal
solution x at the end will have f(x) ≤ ρf(x∗).

Proof. The first task is to show that λ doesn’t get too big.
In particular, after any iteration, λC,i(xi) ≤ fmax for all xi.
Note that after UPDATE-DUALS-PRIMALS, we have

φC,i ≤ gC({i}) := f̃C({i})−
∑
j 6=i

λC,i(xi)− λC,i(yi)

Since we constructed f̃ to have f̃({i}) ≤ fmax and POST-
EDIT-DUALS from the previous iteration makes sure
λC,i(xi) ≥ 0, we get λ′C,i(yi) = λC,i(yi) + φC,i ≤ fmax

C .
If POST-EDIT-DUALS in the present iteration changes
λC,i(yi), it sets it to 1

|C|fC(x
′) ≤ fmax

C . Therefore,
λ′C,i(yi) ≤ fmax

C , and we don’t change λC,i(xi) for any
xi 6= yi in this iteration, so inductively, at the end of the
algorithm λC,i(xi) ≤ fmax

C for all labels xi.
For feasibility, we need to show that (2c) holds for each

clique C and labeling xC . For non-constant xC we have∑
i

1

ρ
λC,i(xi) ≤

|C|fmax
C

ρ
≤ fmin

C ≤ fC(xC)

For constant labeling xC = α, note that in the last
α-expansion, PRE-EDIT-DUALS enforces that f̃C(C) −∑
i λC,i(α) = gC(C) = 0, and neither of the other sub-

routines violate this. Therefore
∑
i
1
ρλC,i(α) =

1
ρ f̃C(C) =

1
ρfC(α) = 0, where the second equality is because we con-

structed f̃C with f̃C(C) = f̃(yC), and the last is since f is
weakly associative.

Finally, Lemma 5 says that at convergence, f(x) is no
more than ρf(x∗).

4. Experimental Evaluation
To evaluate the experimental performance of our al-

gorithm, we considered two different higher-order multil-
abel problems: stereo reconstruction, using the curvature-
regularizing prior of [30], and Field of Experts denoising
[23]. All data and experiments can be found at the author’s
website, www.cs.cornell.edu/˜afix. The code is
in C++, and is available under an open source license.

“Teddy” Pixels within ±1 Final energy Time
FGBZ-Fusion 83.3% 9.320× 109 468s
HOCR-Fusion 83.8% 9.298× 109 210s
GRD-Fusion 84.9% 9.256× 109 1116s
SoSPD-Fusion 84.8% 9.172× 109 129s
“Cones” Pixels within ±1 Final energy Time
FGBZ-Fusion 74.9% 1.1765× 1010 340s
HOCR-Fusion 74.2% 1.1789× 1010 172s
GRD-Fusion 75.2% 1.1690× 1010 1138s
SoSPD-Fusion 75.2% 1.1664× 1010 133s

Table 1. Numerical results for stereo reconstruction, for the two
images in Figure 1.

Energy @ 10s Final energy Time
FGBZ-Gradient 4.17× 108 2.353× 108 86s
HOCR-Gradient 4.35× 108 2.368× 108 78s
GRD-Gradient 6.72× 108 2.348× 108 776s
SoSPD-Gradient 2.87× 108 2.347× 108 42s

Table 2. Numerical results for denoising, averaged over the 100
images in the test set. For the second column, we stop both meth-
ods after 10 seconds, and compare energy values.

(a) (b) (c) (d)

Figure 1. (a) Ground truth disparities, with results from (b)
FGBZ-Fusion (c) SoSPD-Fusion and (d) SoSPD-Best-Fusion.
Top row is the “teddy” image, bottom row is “cones”. Results
for SoSPD have slightly more correct pixels, and converged much
faster — see Table 1 for details.

For experimental comparisons, the method of [17] does
not currently have publicly available code, so we are left
with the class of fusion-reduction methods [6, 10, 11].
While the Generalized Roof Duality method of [11] can
produce good solutions, it is typically much slower than [6,
10], and is restricted to cliques of size at most 4. We ob-
served that it obtains similar or slightly-worse energy values
to SoSPD, while taking at least 10x more time, even for the
heuristic version of GRD. We therefore focus on FGBZ [6]
and HOCR [10] due to their speed and generality. Addi-
tional experimental data is provided in the supplementary
material.

www.cs.cornell.edu/~afix
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Figure 2. Energy reduction over time for the stereo images (top)
“teddy” (center) “cones”. (bottom) Energy reduction over time for
the denoising image “penguin”. Note that, in addition to converg-
ing faster, for a fixed time budget we achieve much better energy
than the baseline.

4.1. Stereo reconstruction

The stereo reconstruction algorithm of [30] encourages
the disparity map to be piecewise smooth using a 2nd order
prior, composed of all 1× 3 and 3× 1 patches in the image,
which each penalize a robust function of the curvature.

A number of optimization methods are proposed in [30],
which are composed to get the final result. The most impor-
tant step consists of pre-generating a set of 14 piecewise-
planar proposed disparity maps, and then using these as pro-
posals to the fusion move algorithm to improve the current
disparity until convergence. This is called SEGPLN in [30].

We solve this using SoSPD by setting up a multilabel en-
ergy, where we have 14 labels, one for each pre-generated

Figure 3. Denoising results. (top left) noisy image (top
right) SoSPD-α (center left) FGBZ-Gradient, 10 sec (center right)
SoSPD-Gradient, 10 sec (bottom left) FGBZ-Gradient at conver-
gence (bottom right) SoSPD-Gradient at convergence.

proposal. Note that this allows estimating sub-pixel dispar-
ities (since the proposals can take any floating point value)
using only 14 labels. We omit the binary visibility variables
and edges from the original paper [30] to get a simpler prob-
lem, mainly so that all variables have the same number of la-
bels (though in principle this could be handled by SoSPD).
Note that this is the same experimental setup as [17]. Data
was obtained by running the code2 for [30] and recording
the proposed fusion moves and corresponding unary terms.

We have two variants of SoSPD for this experiment,
which only differ in the choice of proposed moves. The
first, SoSPD-Fusion, rotates through the 14 labels, and suc-
cessively chooses each to be an α-expansion proposal for
that iteration. The second, SoSPD-Best-Fusion, uses an
idea from [2] to pick the best α for each iteration. More
specifically, we choose the α which will have the greatest
total capacity leaving the source, in order to encourage as
many nodes to switch to lower height labels as possible.
We compared with the baselines, FGBZ-Fusion using the
reduction [6], and HOCR-Fusion using the reduction [10].
Both methods cycle through the pre-generated proposals
and perform fusion move.

Numerical results are in Table 1 and images in Figure 1.
Overall, the SoSPD variants and reduction methods reach
similar energy and visual results; however, SoSPD is fastest
overall (2.5x-3.5x vs FGBZ, 1.3x-1.5x vs HOCR).

2http://www.robots.ox.ac.uk/˜ojw/software.htm.

http://www.robots.ox.ac.uk/~ojw/software.htm


4.2. Field of Experts denoising

Field of Experts (FoE) for image denoising has been
used as a benchmark in several higher-order optimization
papers [10, 6, 11]. FoE is a patch-based natural image prior,
with cliques for each 2× 2 patch in the image.

SoSPD with α-expansion decreases the energy quickly
initially, but gets stuck in poor local optima, with flat images
as seen in Figure 3. Fortunately, gradient descent propos-
als [9] have been shown to be very effective at optimizing
FoE priors. We call the combination of SoSPD with these
fusion proposals SoSPD-Gradient.

We compare against fusion move with the same propos-
als, and the reductions of [6] and [10]. Overall, when com-
paring SoSPD vs. [6] for the same proposal method, SoSPD
is significantly faster, and achieves slightly lower energy at
convergence. Additionally, given a fixed time budget of 10
seconds, both the energy and visual results of SoSPD are
significantly better, as seen in Figure 3 and Table 2.
Acknowledgments: This research has been funded by NSF
grant IIS-1161282.
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