The Self-Normalized Estimator for Counterfactual Learning

Adith Swaminathan, Thorsten Joachims
Cornell University
210 C #59

This estimator dominates the Horvitz-Thompson estimator when learning from bandit feedback because it avoids *propensity overfitting*.

Software: http://www.cs.cornell.edu/~adith/POEM/
Setting: Batch Learning from Bandit Feedback

Use \((x_i, y_i, \delta_i) \) logs to find good policy \(h(y|x) \)

Click \(x \): Context

\(y \): Action

\(\delta \): Feedback

Easier

Supervised learning

Harder

Off-policy RL

Not

Online Contextual Bandit
(explore-exploit)
Approach: Counterfactual Risk Minimization

Risk estimation via Importance Sampling:

\[
\hat{R}(h) = \frac{1}{n} \sum_{i} \delta_i \frac{1}{\Pr(y_i|x_i)} h(y_i|x_i)
\]

Learning via ERM:

\[
\arg\min_h \hat{R}(h) + \lambda \text{Reg}(h)
\]

Change the estimator, stop ERM cheating!

To learn more, drop by 210 C #59