Outline

- Learning from logged bandit feedback
- Learning via Reward Prediction
- Empirical Risk Minimization
 - 1. With IPS Estimator
 - 2. With Slates Estimator
- Counterfactual Risk Minimization
- Case Study & Demo
- Summary

Slates Estimator: Recap

$$\exists \Phi_{\chi} \text{ s.t. } \delta(\chi, y \coloneqq | \chi) = 0$$

$$\Phi_{\chi}(| \chi) = 0$$

Define:
$$\Gamma_{\pi_0(x)}[d,j;d',k] = \pi_0(y[j] = d,y[k] = d'|x)$$

 $\mathbb{1}_{y}[d,j] = \mathbb{I}\{y[j] = d\}$

Idea: $\Gamma_{\pi_0(x_i)}^{\dagger} \mathbb{1}_{y_i} \delta_i$ gives a good estimate of $\Phi_x(d;j)$

ERM with Slates Estimator

Set $\widehat{\Phi}_{x_i} \equiv \Gamma^{\dagger}_{\pi_0(x_i)} \mathbb{1}_{y_i} \delta_i$ as regression target for pointwise scorer

$$\underset{f}{\operatorname{argmin}} \sum_{i} \left\| f[d, j] - \widehat{\Phi}_{x_i} \right\|^2$$

Construct rankings greedily using learnt *f*

Pointwise learning-to-rank directly for online metrics (no relevances)

Empirical Results

Approach	Revenue	
Production Ranker	224.00	
π_0	217.06	
Reward Prediction	182.44	
VW* (10% data)	177.93	
Slates	226.35	

ERM with Slates

• How to estimate $\widehat{U}(\pi)$?

Slates Estimator

• How to regularize $Reg(\pi)$?

Standard (overfitting)

Deterministic OR Stochastic π?

Deterministic

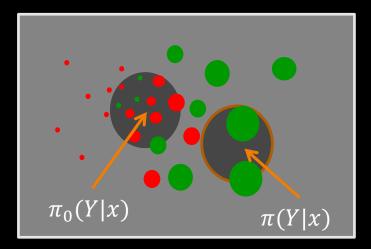
How to compute argmax ?

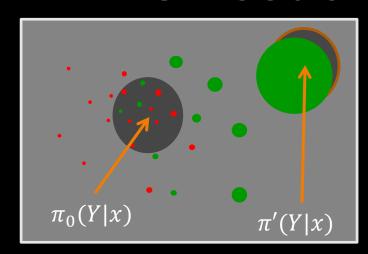
Use simple regression

Outline

- Learning from logged bandit feedback
- Learning via Reward Prediction
- Empirical Risk Minimization
- Counterfactual Risk Minimization
 - 1. CRM with POEM
 - 2. CRM with Norm-POEM
- Case Study & Demo
- Summary

ERM with IPS: Issue





$$\underset{\pi}{\operatorname{argmax}} \, \widehat{\mathcal{U}}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)} \delta_i$$

Can we detect and avoid IPS failure when learning?

ERM: Generalization Error Bound

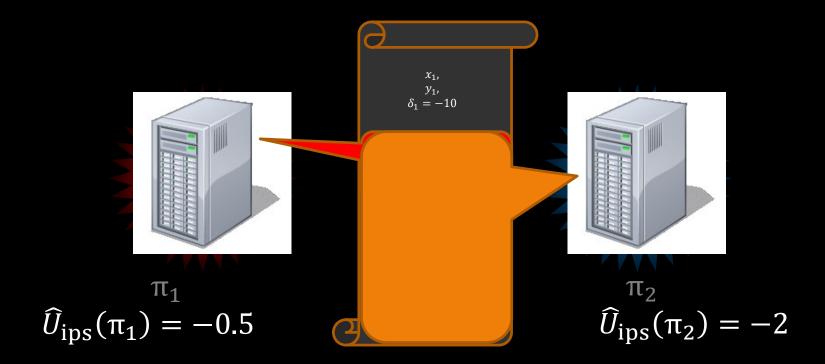
Classic ERM: $\underset{\pi \in H}{\operatorname{crgmax}} \widehat{U}(\pi) - \lambda \operatorname{Reg}(\pi)$

Train acc. Regularizer

Classic Risk Bound: $U(\pi) \ge \widehat{U}(\pi) - O(C[H])$

Data used to estimate $\widehat{U}(\pi)$ did not depend on π

Now: π influences its data



Counterfactual Learning

Risk Bound:
$$U(\pi) \ge \widehat{U}(\pi) - O\left(\sqrt{\frac{\widehat{Var}(\pi)}{n}}\right) - O(C[H])$$

Off-policy est. Emp. variance

Regularizer

Objective:
$$\underset{\pi \in H}{\operatorname{argmax}} \quad \widehat{U}(\pi) - \lambda_1 \sqrt{\frac{\widehat{Var}(\pi)}{n}} - \lambda_2 \operatorname{Reg}(\pi)$$

Counterfactual Risk Minimization

Accounts for different $\pi(y|x)/\pi_0(y|x)$ variability across H

CRM for Structured Prediction

Policy class, H:

Stochastic linear rules

$$\pi_w(y|x) = \frac{1}{\mathbb{Z}(x)} \exp\{w^T \psi(x, y)\}\$$

Same form as CRF or Structural SVM

Learning:

Use $\langle x_i, y_i, \delta_i, p_i \rangle$ to find good w

Policy Optimization for Exponential Models (POEM)

Define:

$$q_i(w) \equiv \frac{\pi_w(y_i|x_i)}{p_i}(-\delta_i)$$

$$w = \underset{w \in \Re^{N}}{\operatorname{argmin}} \left[\frac{1}{n} \sum_{i=1}^{n} q_{i}(w) + \lambda_{1} \sqrt{\left(\frac{1}{n} \sum_{i=1}^{n} q_{i}(w)^{2}\right) - \left(\frac{1}{n} \sum_{i=1}^{n} q_{i}(w)\right)^{2}} + \lambda_{2} ||w||^{2} \right]$$
Off-policy est. Emp. variance
Regularizer

http://www.cs.cornell.edu/~adith/POEM/

Does Variance Regularization Improve Generalization?

POEM vs. IPS($\lambda_1 = 0$) on Supervised \rightarrow Bandit semi-synthetic data

Hamming Loss	Scene	Yeast	TMC	LYRL
π_0	1.543	5.547	3.445	1.463
IPS	1.519	4.614	3.023	1.118
POEM	1.143	4.517	2.522	0.996
# examples	4 * 1211	4 * 1500	4 * 21519	4 * 23149
# features	294	103	30438	47236
# labels	6	14	22	4

CRM in POEM

• How to estimate $\widehat{U}(\pi)$?

IPS Estimator

• How to regularize $Reg(\pi)$?

Empirical variance

Deterministic OR Stochastic π?

Stochastic

How to compute argmax ?

SGD on Lower CB

CRM: Issue

$$\underset{\pi \in H}{\operatorname{argmax}} \quad \widehat{U}(\pi) \quad - \quad \lambda_1 \quad \sqrt{\frac{\widehat{Var}(\pi)}{n}} \quad - \quad \lambda_2 \quad \operatorname{Reg}(\pi)$$

For "expressive" policy class *H* and contexts *X*, suppose:

$$\delta \in [-10, -1]$$

 $\delta \in [1,10]$

π **that "avoids"** S is argmax

π that ignores δ and "mimics" S is argmax

Both give degenerate solutions to CRM Sensitive to $\delta \rightarrow \delta + C$

Solution: Equivariant Estimators

Want:

$$\hat{E}[\delta + Constant] = \hat{E}[\delta] + Constant$$

Remember:

Self-Normalized Estimator is equivariant

$$\widehat{U}_{\text{SNips}}(\pi) = \frac{\sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)} \delta_i}{\sqrt{\sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)}}}$$

$$E[s_i] = 1$$

Solution: Norm-POEM

$$w = \underset{w \in \Re^{N}}{\operatorname{argmax}} \left[\widehat{U}_{SNips}(w) - \lambda_{1} \sqrt{\widetilde{Var}(\widehat{U}_{SNips}(w))} - \lambda_{2} ||w||^{2} \right]$$

Self-Normalized est. Approx. variance control

Invariant to δ translation; Batch gradient but converges faster!

http://www.cs.cornell.edu/~adith/POEM/

Norm-POEM vs. POEM

Hamming Loss	Scene	Yeast	ТМС	LYRL	
π_0	1.511	5.577	3.442	1.459	
POEM	1.200	4.520	2.152	0.914	
Norm-POEM	1.045	3.876	2.072	0.799	
Control Variate $\hat{E}[s_i]$					
POEM	1.782	5.352	2.802	1.230	
Norm-POEM	0.981	0.840	0.941	0.945	

Self-Normalization generalizes better through equivariant optimization

CRM in Norm-POEM

• How to estimate $\widehat{U}(\pi)$?

Self-Normalization

• How to regularize $Reg(\pi)$?

Approx. emp. variance

Deterministic OR Stochastic π?

Stochastic

How to compute argmax ?

Batch GD on bound

Outline

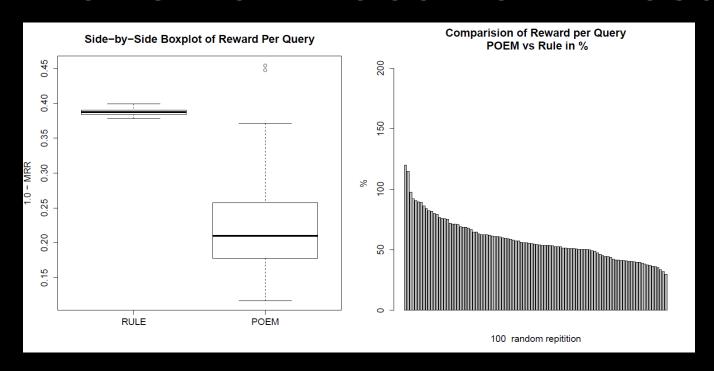
- Learning from logged bandit feedback
- Learning via Reward Prediction
- Empirical Risk Minimization
- Counterfactual Risk Minimization
- Case Study & Demo
- Summary

SERP News Box Placement

- Context x: Query, User, Ranked docs, Newsbox content features
- Action y: Position to place newsbox
- Reward δ: MRR of entire SERP

• Logger π_0 : Plackett-Luce using production position scorer

News Box Placement: Results



Across 50 datasets, Norm-POEM consistently beats production ranker

Outline

- Learning from logged bandit feedback
- Learning via Reward Prediction
- Empirical Risk Minimization
- Counterfactual Risk Minimization
- Case Study & Demo
- Summary

Learning: Summary

Extend counterfactual evaluation approaches to pick a policy

$$\widehat{\pi} = \underset{\pi \in H}{\operatorname{argmax}} \left[\widehat{U}(\pi) - Reg(\pi) \right]$$

Different learning approaches differ in their choices of

Estimator
$$\widehat{U}(\pi)$$

Regularizer $Reg(\pi)$

Policy class *H*

Summary: Learning Approaches

- Approach 1: "Model the world"
 Use Reward Prediction
 - Selection bias can be fixed, modeling bias uncontrollable
- Approach 2: "Model the bias"
 ERM via IPS
 - Reduce to weighted multi-class classification
 - Efficient implementation in Vowpal Wabbit
- Revisiting the variance issue
 - For combinatorial actions
 ERM via Slates
 - Counterfactual risk minimization
 CRM via POEM
 - Self-normalization for equivariance CRM via Norm-POEM

Further Research Questions

- How to deal with large treatment spaces Y?
 - Ads, movies >> medical treatments
 - Combinatorial spaces like rankings
- How to deal with complex policy spaces H?
 - Ranking functions, ad placement policies, recommendation policies, etc.
- Methods for large-scale propensity estimation?
 - Not a typical ML prediction problem
- General strategies for translating learning methods to counterfactual setting?
 - CRF and NN feasible, but how about other methods
- Designing good exploration policies?
 - Online vs. Batch and the spectrum in between
- Many other questions...

Connections

- Importance sampling & "What-if" simulation
- Domain adaptation & Covariate shift
- Off-policy reinforcement learning
- Causal inference & Missing data imputation
- Online contextual bandit algorithms
- Online evaluation and learning
 - See Chapter 4 of [Hofmann, Li, Radlinski; 2016]

Entry Points into Literature

- Causal Inference
 - G. Imbens & D. Rubin, Causal Inference for Statistics, Social, and Biomedical Sciences, 2015.
- Policy Evaluation and Learning in ML/IR
 - Lihong Li, Tutorial on Offline Evaluation and Optimization for Interactive Systems, WSDM 2015.
 http://research.microsoft.com/pubs/240388/tutorial.pdf
 - L. Bottou et al., Counterfactual Reasoning and Learning Systems, JMLR, 2013. http://leon.bottou.org/publications/pdf/tr-2012-09-12.pdf
 - A. Swaminathan, T. Joachims, Batch Learning from Logged Bandit Feedback through Counterfactual Risk Minimization, JMLR, 2015.
 http://www.cs.cornell.edu/people/tj/publications/swaminathan joachims 15c.pdf
 - Katja Hofmann, Lihong Li, Filip Radlinski, Online Evaluation for Information Retrieval; 2016.
 https://www.microsoft.com/en-us/research/publication/online-evaluation-information-retrieval-2/
- Monte Carlo Estimation
 - Art Owen, Monte Carlo theory, methods and examples, 2013 [chapter 8,9,10]

Demo: Code Samples

Visit http://www.cs.cornell.edu/~adith/CfactSIGIR2016/

Download Code_Data.zip

Install Vowpal Wabbit http://hunch.net/~vw/

Run experiment:

python OptExperiment.py

After, for Vowpal Wabbit results:

```
vw -d vw_train.dat --cb_adf -f cb.model --passes 20 -cache_file cb.cache
vw -t -d vw_test.dat -i cb.model -p test.predict
python vw_helper.py -d vw_test2.dat -p test.predict
```

QUESTIONS?