Counterfactual Evaluation and Learning

Part 2

Adith Swaminathan, Thorsten Joachims

Department of Computer Science & Department of Information Science
Cornell University

Funded in part through NSF Awards IIS-1247637, IIS-1217686, IIS-1513692.
User Interactive Systems

Examples
- Search engines
- Entertainment media
- E-commerce
- Smart homes, robots, etc.

Logs of User Behavior for
- Evaluating system performance
- Learning improved systems and gathering knowledge
- Personalization
Log Data from Interactive Systems

- Data
 \[S = \left((x_1, y_1, \delta_1, p_1), \ldots, (x_n, y_n, \delta_n, p_n) \right) \]
 → Partial Information (aka “Contextual Bandit”) Feedback

- Properties
 - Contexts \(x_i \) drawn i.i.d. from unknown \(P(X) \)
 - Actions \(y_i \) selected by existing system \(\pi_0(Y|X) \)
 - Feedback \(\delta_i \) from unknown function \(\delta: X \times Y \rightarrow \mathbb{R} \)

[Zadrozny et al., 2003] [Strehl et al., 2010], [Bottou et al., 2014]
Goals for this Tutorial

• Use interaction log data

\[S = ((x_1, y_1, \delta_1, p_1), \ldots, (x_n, y_n, \delta_n, p_n)) \]

for

✓ – Evaluation:
 • Estimate online measures of some system \(\pi \) offline.
 • System \(\pi \) is typically different from \(\pi_0 \) that generated log.

→ – Learning:
 • Find new system \(\pi \) that improves performance.
 • Do not rely on interactive experiments like in online learning.
PART 2: LEARNING
Learning: Outline

• Optimizing online metrics offline
 • Approach 1: “Model the world”
 – Derive policy from predicted rewards
 • Approach 2: “Model the bias”
 – ERM via IPS: Reduction to weighted multi-class classification
• Revisiting the variance issue
 – ERM via Slates: Modeling feedback for combinatorial actions
 – CRM via POEM: Variance regularized ERM for stochastic rules
 – CRM via Norm-POEM: Self-normalized IPS for equivariance
• Case study
• Summary & Code samples
Goal of Learning

• Given:
 – Log data $S = ((x_1, y_1, \delta_1, p_1), \ldots, (x_n, y_n, \delta_n, p_n))$
 – Hypothesis space H of possible policies π

• Find: Policy $\pi \in H$ that has maximum utility

$$U(\pi) = \int \int \delta(x, y)\pi(y|x)P(x) \, dx \, dy$$
Approach "Model the World"
Reward Predictor

• Given:
 – Log $S = \{(x_1, y_1, \delta_1, p_1), \ldots, (x_n, y_n, \delta_n, p_n)\}$ from π_0
 – Assumptions about reward model $\hat{\delta}: x \times y \rightarrow \mathbb{R}$ (e.g., regression, click model)

• Algorithm:
 – Train reward predictor $\hat{\delta}: x \times y \rightarrow \mathbb{R}$ using S
 – Derive policy $\hat{\pi}(x) \equiv \arg\max_y \{\hat{\delta}(x, y)\}$

\[
\begin{bmatrix}
 0 & 1 & 2 \\
 0 & 1 & 2 \\
 0 & 1 & 3 \\
 1 & 3 & 0 \\
\end{bmatrix}
\]
News Recommender: Exp Setup

• Context x: User profile

• Action y: Ranking
 – Pick from 7 candidates to place into 3 slots

• Reward δ: “Revenue”
 – Complicated hidden function

• Logging policy π_0: Non-uniform randomized logging system
 – Placket-Luce “explore around current production ranker” (see case study)
News Recommender: Results

• Reward Predictor:
 – Features: Stacked features of three articles
 – Regression method: selected best via CV from {Ridge, Lasso, Least Squares, Decision Trees}

<table>
<thead>
<tr>
<th>Approach</th>
<th>True Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production ranker</td>
<td>224.00</td>
</tr>
<tr>
<td>Randomized π_0</td>
<td>214.00</td>
</tr>
<tr>
<td>Reward predictor</td>
<td>175.71</td>
</tr>
</tbody>
</table>
Issues with Reward Predictor

Issue 1:
- Model bias + selection bias = biased and not consistent

Issue 2:
- First solves hard problem (reward prediction) in order to solve easier problem (find good policy)
 - Predict correct rewards → optimal policy
 - Optimal policy ← predict correct rewards

Can be remedied via propensity weighting → e.g. [Li et al., 2014] [Schnabel et al., 2016a].
Learning: Outline

• Optimizing online metrics offline
 • Approach 1: “Model the world”
 – Derive policy from predicted rewards
 • Approach 2: “Model the bias”
 – ERM via IPS: Reduction to weighted multi-class classification
• Revisiting the variance issue
 – ERM via Slates: Modeling feedback for combinatorial actions
 – CRM via POEM: Variance regularized ERM for stochastic rules
 – CRM via Norm-POEM: Self-normalized IPS for equivariance
• Case studies
• Summary & Code samples
Empirical Risk Minimization (ERM) with Regularization:

Given hypothesis space H of rules (or policies) $\pi: X \rightarrow Y$

$$\hat{\pi} = \arg\max_{\pi \in H} \left[\hat{U}(\pi) - Reg(\pi) \right]$$

\rightarrow SVMs, Neural Nets, Boosted Trees, etc

Questions for learning from log data:

– What estimator to use for $\hat{U}(\pi)$?
– What regularizer $Reg(\pi)$ to use?
– Deterministic vs. Stochastic policies π?
– How to solve argmax?
ERM with IPS Estimator

• Given:
 – Log S = \left((x_1, y_1, \delta_1, p_1), \ldots, (x_n, y_n, \delta_n, p_n) \right) \text{ from } \pi_0
 – Deterministic prediction rules \pi \in H: y = \pi(x)

• Training:
 \hat{\pi} := \arg\max_{\pi \in H} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\frac{I\{y_i = \pi(x_i)\}}{p_i} \right) \delta_i \right\}

[Zadrozny et al., 2003] [Dudik et al., 2011], [Bottou, et al., 2014]
Deterministic $\pi \rightarrow$ Multi-class ERM

- Treat π as a classifier with weighted loss
 \[(x, y, \delta, p) \rightarrow (x, y, w); w = \delta/p\]
- Policy utility is same as weighted accuracy!
 \[U(\pi) = E_{x,y}[wI\{\pi(x) = y\}]\]

Use weighted multi-class algorithms to pick π. Implemented in Vowpal Wabbit

https://github.com/JohnLangford/vowpal_wabbit/wiki

[Zadrozny et al., 2003]
Summary: ERM via IPS

• Empirical Risk Minimization (ERM) with Regularization:
 – What estimator to use for $\hat{U}(\pi)$?
 • VW: IPS or Doubly Robust
 – What regularizer $\text{Reg}(\pi)$ to use?
 • Standard regularizers to prevent overfitting
 – Deterministic vs. stochastic π?
 • Deterministic
 – How to solve argmax?
 • Reduce to multi-class classification, use off-the-shelf algos
News Recommender: Results

- VW: Reduce to multi-class filter tree, doubly robust estimator with ridge regression, default parameters, 4 epochs via CV

<table>
<thead>
<tr>
<th>Approach</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production ranker</td>
<td>224.00</td>
</tr>
<tr>
<td>Randomized π_0</td>
<td>214.00</td>
</tr>
<tr>
<td>Reward predictor</td>
<td>175.71</td>
</tr>
<tr>
<td>ERM via IPS (VW)</td>
<td>177.93</td>
</tr>
</tbody>
</table>
Adith takes over