SIGIR 2016 Tutorial

Counterfactual Evaluation and Learning

Adith Swaminathan, Thorsten Joachims

Department of Computer Science & Department of Information Science
Cornell University

Website: http://www.cs.cornell.edu/~adith/CfactSIGIR2016/

Funded in part through NSF Awards IIS-1247637, IIS-1217686, IIS-1513692.
User Interactive Systems

Examples
- Search engines
- Entertainment media
- E-commerce
- Smart homes, robots, etc.

→ Logs of User Behavior for
- Evaluating system performance
- Learning improved systems and gathering knowledge
- Personalization
Interactive System Schematic

Utility: $U(\pi_0)$

Context x → Action y for x → Feedback $\delta(x, y)$
Ad Placement

• Context x:
 – User and page
• Action y:
 – Ad that is placed
• Feedback $\delta(x, y)$:
 – Click / no-click
News Recommender

• **Context** x:
 – User

• **Action** y:
 – Portfolio of news articles

• **Feedback** $\delta(x, y)$:
 – Reading time in minutes
• Context \(x \):
 – Query

• Action \(y \):
 – Ranking

• Feedback \(\delta(x, y) \):
 – win/loss against baseline in interleaving
Log Data from Interactive Systems

• Data

\[S = ((x_1, y_1, \delta_1), \ldots, (x_n, y_n, \delta_n)) \]

→ Partial Information (aka “Contextual Bandit”) Feedback

• Properties

- Contexts \(x_i \) drawn i.i.d. from unknown \(P(X) \)
- Actions \(y_i \) selected by existing system \(\pi_0 : X \rightarrow Y \)
- Feedback \(\delta_i \) from unknown function \(\delta : X \times Y \rightarrow \mathbb{R} \)

[Zadrozny et al., 2003] [Langford & Li], [Bottou et al., 2014]
Goals for this Tutorial

• Use interaction log data
 \[S = ((x_1, y_1, \delta_1), \ldots, (x_n, y_n, \delta_n)) \]
 for
– Evaluation:
 • Estimate online measures of some system \(\pi \) offline.
 • System \(\pi \) is typically different from \(\pi_0 \) that generated log.
– Learning:
 • Find new system \(\pi \) that improves performance over \(\pi_0 \).
 • Do not rely on interactive experiments like in online learning.
PART 1: EVALUATION

SIGIR 2016 Tutorial
Counterfactual Evaluation and Learning
Evaluation: Outline

• Evaluating Online Metrics Offline
 – A/B Testing (on-policy) → Counterfactual estimation from logs (off-policy)
• Approach 1: “Model the world”
 – Estimation via reward prediction
• Approach 2: “Model the bias”
 – Counterfactual Model
 – Inverse propensity scoring (IPS) estimator
• Advanced Estimators
 – Self-normalized IPS estimator
 – Doubly robust estimator
 – Slates estimator
• Case Studies
• Summary & Demonstration with code samples
Online Performance Metrics

Example metrics
- CTR
- Revenue
- Time-to-success
- Interleaving
- Etc.

→ Correct choice depends on application and is not the focus of this tutorial.

This tutorial:
Metric encoded as $\delta(x, y)$ [click/payoff/time for (x,y) pair]
• Definition [Deterministic Policy]: Function

\[y = \pi(x) \]

that picks action \(y \) for context \(x \).

• Definition [Stochastic Policy]: Distribution

\[\pi(y| x) \]

that samples action \(y \) given context \(x \).
System Performance

Definition [Utility of Policy]:

The expected reward / utility $U(\pi)$ of policy π is

$$U(\pi) = \int \int \delta(x, y)\pi(y|x)P(x) \, dx \, dy$$

- e.g. reading time of user x for portfolio y
Online Evaluation: A/B Testing

Given $S = ((x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n))$ collected under π_0,

$$\hat{U}(\pi_0) = \frac{1}{n} \sum_{i=1}^{n} \delta_i$$

→ A/B Testing

Deploy π_1: Draw $x \sim P(X)$, predict $y \sim \pi_1(Y|x)$, get $\delta(x, y)$

Deploy π_2: Draw $x \sim P(X)$, predict $y \sim \pi_2(Y|x)$, get $\delta(x, y)$

⋮

Deploy $\pi_{|H|}$: Draw $x \sim P(X)$, predict $y \sim \pi_{|H|}(Y|x)$, get $\delta(x, y)$
Pros and Cons of A/B Testing

• Pro
 – User centric measure
 – No need for manual ratings
 – No user/expert mismatch

• Cons
 – Requires interactive experimental control
 – Risk of fielding a bad or buggy π_i
 – Number of A/B Tests limited
 – Long turnaround time
Evaluating Online Metrics Offline

- **Online**: On-policy A/B Test
 - Draw S_1 from $\pi_1 \rightarrow \hat{U}(\pi_1)$
 - Draw S_2 from $\pi_2 \rightarrow \hat{U}(\pi_2)$
 - Draw S_3 from $\pi_3 \rightarrow \hat{U}(\pi_3)$
 - Draw S_4 from $\pi_4 \rightarrow \hat{U}(\pi_4)$
 - Draw S_5 from $\pi_5 \rightarrow \hat{U}(\pi_5)$
 - Draw S_6 from $\pi_6 \rightarrow \hat{U}(\pi_6)$
 - Draw S_7 from $\pi_7 \rightarrow \hat{U}(\pi_7)$

- **Offline**: Off-policy Counterfactual Estimates
 - Draw S from $\pi_0 \rightarrow \hat{U}(\pi_0)$
Evaluation: Outline

- Evaluating Online Metrics Offline
 - A/B Testing (on-policy) → Counterfactual estimation from logs (off-policy)
- Approach 1: “Model the world”
 - Estimation via reward prediction
- Approach 2: “Model the bias”
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator
- Advanced Estimators
 - Self-normalized IPS estimator
 - Doubly robust estimator
 - Slates estimator
- Case Studies
- Summary & Demonstration with code samples
Approach 1: Reward Predictor

• Idea:
 – Use $S = ((x_1, y_1, \delta_1), \ldots, (x_n, y_n, \delta_n))$ from π_0 to estimate reward predictor $\hat{\delta}(x, y)$

• Deterministic π: Simulated A/B Testing with predicted $\hat{\delta}(x, y)$
 – For actions $y'_i = \pi(x_i)$ from new policy π, generate predicted log $S' = \left((x_1, y'_1, \hat{\delta}(x_1, y'_1)), \ldots, (x_n, y'_n, \hat{\delta}(x_n, y'_n)) \right)$
 – Estimate performance of π via $\hat{U}_{rp}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \hat{\delta}(x_i, y'_i)$

• Stochastic π: $\hat{U}_{rp}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \sum_{y} \hat{\delta}(x_i, y) \pi(y|x_i)$
Regression for Reward Prediction

Learn $\hat{\delta}: x \times y \rightarrow \mathbb{R}$

1. Represent via features $\Psi(x, y)$
2. Learn regression based on $\Psi(x, y)$ from S collected under π_0
3. Predict $\hat{\delta}(x, y')$ for $y' = \pi(x)$ of new policy π
News Recommender: Exp Setup

• **Context x:** User profile
• **Action y:** Ranking
 – Pick from 7 candidates to place into 3 slots
• **Reward** δ: “Revenue”
 – Complicated hidden function
• **Logging policy** π_0: Non-uniform randomized logging system
 – Placket-Luce “explore around current production ranker” (see case study)
News Recommender: Results

RP is inaccurate even with more training and logged data
Problems of Reward Predictor

• Modeling bias
 – choice of features and model

• Selection bias
 – π_0’s actions are over-represented

$\hat{U}_{rp}(\pi) = \frac{1}{n} \sum_i \hat{\delta}(x_i, \pi(x_i))$

Can be unreliable and biased
Evaluation: Outline

• Evaluating Online Metrics Offline
 – A/B Testing (on-policy) → Counterfactual estimation from logs (off-policy)
• Approach 1: “Model the world”
 – Estimation via reward prediction
• Approach 2: “Model the bias”
 – Counterfactual Model
 – Inverse propensity scoring (IPS) estimator
• Advanced Estimators
 – Self-normalized IPS estimator
 – Doubly robust estimator
 – Slates estimator
• Case Studies
• Summary & Demonstration with code samples
Approach “Model the Bias”

• Idea:

Fix the mismatch between the distribution $\pi_0(Y|x)$ that generated the data and the distribution $\pi(Y|x)$ we aim to evaluate.

$$U(\pi_0) = \int \int \delta(x, y)\pi_0(y|x)P(x) \, dx \, dy$$
Counterfactual Model

- Example: Treating Heart Attacks
 - Treatments: Y
 - Bypass / Stent / Drugs
 - Chosen treatment for patient x_i: y_i
 - Outcomes: δ_i
 - 5-year survival: 0 / 1
 - Which treatment is best?
Counterfactual Model

• Example: Treating Heart Attacks
 – Treatments: Y
 • Bypass / Stent / Drugs
 – Chosen treatment for patient x_i: y_i
 – Outcomes: δ_i
 • 5-year survival: 0 / 1

• Placing Vertical

– Which treatment is best?
Counterfactual Model

• Example: Treating Heart Attacks
 – Treatments: \(Y \)
 • Bypass / Stent / Drugs
 – Chosen treatment for patient \(x_i : y_i \)
 – Outcomes: \(\delta_i \)
 • 5-year survival: 0 / 1
 – Which treatment is best?
 • Everybody Drugs
 • Everybody Stent
 • Everybody Bypass
 \(\rightarrow \) Drugs 3/4, Stent 2/3, Bypass 2/4 – really?
Treatment Effects

• Average Treatment Effect of Treatment y
 \[U(y) = \frac{1}{n} \sum_i \delta(x_i, y) \]

• Example
 \[- U(bypass) = \frac{5}{11} \]
 \[- U(stent) = \frac{7}{11} \]
 \[- U(drugs) = \frac{4}{11} \]
Assignment Mechanism

• Probabilistic Treatment Assignment
 – For patient i: $\pi_0(Y_i = y|x_i)$
 – Selection Bias

• Inverse Propensity Score Estimator
 – $\hat{U}_{ips}(y) = \frac{1}{n} \sum_i \frac{\mathbb{I}\{y_i = y\}}{p_i} \delta(x_i, y_i)$
 – Propensity: $p_i = \pi_0(Y_i = y_i|x_i)$
 – Unbiased: $E[\hat{U}(y)] = U(y)$, if $\pi_0(Y_i = y|x_i) > 0$ for all i

• Example
 – $\hat{U}(drugs) = \frac{1}{11} \left(\frac{1}{0.8} + \frac{1}{0.7} + \frac{1}{0.8} + \frac{0}{0.1} \right)$
 $= 0.36 < 0.75$

$$
\begin{array}{c|ccc}
\pi_0(Y_i = y|x_i) & 0.3 & 0.6 & 0.1 \\
0.5 & 0.4 & 0.1 \\
0.1 & 0.1 & 0.8 \\
0.6 & 0.3 & 0.1 \\
0.2 & 0.5 & 0.7 \\
0.7 & 0.2 & 0.1 \\
0.1 & 0.1 & 0.8 \\
0.1 & 0.8 & 0.1 \\
0.3 & 0.3 & 0.4 \\
0.3 & 0.6 & 0.1 \\
0.4 & 0.4 & 0.2 \\
\end{array}
$$

<table>
<thead>
<tr>
<th>Patients</th>
<th>Bypass</th>
<th>Stent</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Experimental vs Observational

- **Controlled Experiment**
 - Assignment Mechanism under our control
 - Propensities \(p_i = \pi_0(Y_i = y_i|x_i) \) are known by design
 - Requirement: \(\forall y: \pi_0(Y_i = y|x_i) > 0 \) (probabilistic)

- **Observational Study**
 - Assignment Mechanism not under our control
 - Propensities \(p_i \) need to be estimated
 - Estimate \(\hat{\pi}_0(Y_i|z_i) = \pi_0(Y_i|x_i) \) based on features \(z_i \)
 - Requirement: \(\hat{\pi}_0(Y_i|z_i) = \hat{\pi}_0(Y_i|\delta_i, z_i) \) (unconfounded)
Conditional Treatment Policies

• Policy (deterministic)
 – Context x_i describing patient
 – Pick treatment y_i based on x_i: $y_i = \pi(x_i)$
 – Example policy:
 • $\pi(A) = \text{drugs}, \pi(B) = \text{stent}, \pi(C) = \text{bypass}$

• Average Treatment Effect
 – $U(\pi) = \frac{1}{n} \sum_i \delta(x_i, \pi(x_i))$

• IPS Estimator
 – $\hat{U}_{ips}(\pi) = \frac{1}{n} \sum_i \frac{\mathbb{1}\{y_i = \pi(x_i)\}}{p_i} \delta(x_i, y_i)$

\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]
Stochastic Treatment Policies

- Policy (stochastic)
 - Context x_i describing patient
 - Pick treatment y based on x_i: $\pi(Y|x_i)$
- Note
 - Assignment Mechanism is a stochastic policy as well!
- Average Treatment Effect
 - $U(\pi) = \frac{1}{n} \sum_i \sum_y \delta(x_i, y) \pi(y|x_i)$
- IPS Estimator
 - $\hat{U}(\pi) = \frac{1}{n} \sum_i \frac{\pi(y_i|x_i)}{p_i} \delta(x_i, y_i)$
Counterfactual Model = Logs

<table>
<thead>
<tr>
<th>Context x_i</th>
<th>Recorded in Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment y_i</td>
<td>Recorded in Log</td>
</tr>
<tr>
<td>Outcome δ_i</td>
<td>Recorded in Log</td>
</tr>
<tr>
<td>Propensities p_i</td>
<td>Recorded in Log</td>
</tr>
<tr>
<td>New Policy π</td>
<td>Recorded in Log</td>
</tr>
<tr>
<td>T-effect $U(\pi)$</td>
<td>Recorded in Log</td>
</tr>
</tbody>
</table>

Average quality of new policy.
Evaluation: Outline

• Evaluating Online Metrics Offline
 – A/B Testing (on-policy) → Counterfactual estimation from logs (off-policy)
• Approach 1: “Model the world”
 – Estimation via reward prediction
• Approach 2: “Model the bias”
 – Counterfactual Model
 – Inverse propensity scoring (IPS) estimator
• Advanced Estimators
 – Self-normalized IPS estimator
 – Doubly robust estimator
 – Slates estimator
• Case Studies
• Summary & Demonstration with code samples
System Evaluation via Inverse Propensity Scoring

Definition [IPS Utility Estimator]:

Given $S = ((x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n))$ collected under π_0,

$$\hat{U}_{ips}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \delta_i \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)}$$

→ Unbiased estimate of utility for any π, if propensity nonzero whenever $\pi(y_i|x_i) > 0$.

Note:

If $\pi = \pi_0$, then online A/B Test with $\hat{U}_{ips}(\pi_0) = \frac{1}{n} \sum_{i} \delta_i$

→ Off-policy vs. On-policy estimation.

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Li et al., 2011]
IPS Estimator:

\[\hat{U}_{IPS}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)} \delta_i \]
IPS Estimator is Unbiased

\[E[\hat{U}(\pi)] = \frac{1}{n} \sum_{x_1, y_1} \cdots \sum_{x_n, y_n} \left[\sum_i \frac{\pi(y_i | x_i)}{\pi_0(y_i | x_i)} \delta(x_i, y_i) \right] \pi_0(y_1 | x_1) \cdots \pi_0(y_n | x_n) P(x_1) \cdots P(x_n) \]

\[= \frac{1}{n} \sum_{x_1, y_1} \pi_0(y_1 | x_1) P(x_1) \cdots \sum_{x_n, y_n} \pi_0(y_n | x_n) P(x_n) \left[\sum_i \frac{\pi(y_i | x_i)}{\pi_0(y_i | x_i)} \delta(x_i, y_i) \right] \]

\[= \frac{1}{n} \sum_i \sum_{x_i, y_i} \pi_0(y_i | x_i) P(x_i) \left[\frac{\pi(y_i | x_i)}{\pi_0(y_i | x_i)} \delta(x_i, y_i) \right] \]

\[= \frac{1}{n} \sum_i \sum_{x_i, y_i} \pi(y_i | x_i) P(x_i) \delta(x_i, y_i) = \frac{1}{n} \sum_i U(\pi) = U(\pi) \]
IPS eventually beats RP; variance decays as $O \left(\frac{1}{\sqrt{n}} \right)$
Adith takes over