
Intro to your 2nd TA.
Using Coq for CS6110 assignments

Abhishek Anand (your 1st TA)

February 12, 2015

Abhishek Anand Intro to your 2nd TA.



Why use Proof Assistants (PA)?

doing Math (including PL Theory) requires

Creativity

Extreme Carefulness

Mechanical Work

Good Memory

Abhishek Anand Intro to your 2nd TA.



Why use Proof Assistants (PA)?

With Proof Assistants, doing Math (including PL Theory) mostly
requires

Creativity

Extreme Carefulness

Mechanical Work

Good Memory

Abhishek Anand Intro to your 2nd TA.



Why use Proof Assistants (PA)?

With Proof Assistants, doing Math (including PL Theory) mostly
requires

Creativity

Extreme Carefulness

Mechanical Work

Good Memory

As a 2nd TA, a PA give immediate feedback often forces you to have a
deeper understanding of your proofs.

Abhishek Anand Intro to your 2nd TA.



PAs are already sufficiently mature

2 PL-oriented books on Coq, written in Coq : SF, CPDT

Already captured a vast amount of human knowledge 1 C compiler,
variable bindings, real analysis, abstract algebra . . .

Vibrant mailing lists (coq-club, agda); Your question might get
answered by a field medalist!

1For a more comprehensive list, visit http://www.lix.polytechnique.fr/coq/
pylons/coq/pylons/contribs/bycat/v8.4?cat1=None&cat2=None

Abhishek Anand Intro to your 2nd TA.

http://www.cis.upenn.edu/~bcpierce/sf/current/index.html
http://adam.chlipala.net/cpdt/
http://compcert.inria.fr/
http://www.nuprl.org/html/CFGVLFMTP2014/
http://corn.cs.ru.nl/
https://github.com/math-classes/math-classes
http://www.lix.polytechnique.fr/coq/pylons/coq/pylons/contribs/bycat/v8.4?cat1=None&cat2=None
http://www.lix.polytechnique.fr/coq/pylons/coq/pylons/contribs/bycat/v8.4?cat1=None&cat2=None


How Proof Assistants work

Most proofs are composed of a few primitive axioms (e.g. Peano Arith).

0 is a number

∀ number n, (S n) is a number.

S is injective

∀ number n, n = n. Also, = is symmetric and transitive

(0 + m) = m

((S n) + m) = S (n + m)

. . .

Natural Induction

Inductive nat : Type :=
| O
| S (n : nat).

Fixpoint plus (n m : nat) : nat :=
match n with

| O ⇒ m
| S n’ ⇒ S (plus n’ m)
end.

Coq definitions are often quite close to ordinary mathematics

Abhishek Anand Intro to your 2nd TA.



How Proof Assistants work

Most proofs are composed of a few primitive axioms (e.g. Peano Arith).

0 is a number

∀ number n, (S n) is a number.

S is injective

∀ number n, n = n. Also, = is symmetric and transitive

(0 + m) = m

((S n) + m) = S (n + m)

. . .

Natural Induction

Inductive nat : Type :=
| O
| S (n : nat).

Fixpoint plus (n m : nat) : nat :=
match n with

| O ⇒ m
| S n’ ⇒ S (plus n’ m)
end.

Coq definitions are often quite close to ordinary mathematics

Abhishek Anand Intro to your 2nd TA.



How Proof Assistants work

Most proofs are composed of a few primitive axioms (e.g. Peano Arith).

0 is a number

∀ number n, (S n) is a number.

S is injective

∀ number n, n = n. Also, = is symmetric and transitive

(0 + m) = m

((S n) + m) = S (n + m)

. . .

Natural Induction

Inductive nat : Type :=

| O
| S (n : nat).

Fixpoint plus (n m : nat) : nat :=
match n with

| O ⇒ m
| S n’ ⇒ S (plus n’ m)
end.

Coq definitions are often quite close to ordinary mathematics

Abhishek Anand Intro to your 2nd TA.



How Proof Assistants work

Most proofs are composed of a few primitive axioms (e.g. Peano Arith).

0 is a number

∀ number n, (S n) is a number .

S is injective

∀ number n, n = n. Also, = is symmetric and transitive

(0 + m) = m

((S n) + m) = S (n + m)

. . .

Natural Induction

Inductive nat : Type :=
| O

| S (n : nat) .

Fixpoint plus (n m : nat) : nat :=
match n with

| O ⇒ m
| S n’ ⇒ S (plus n’ m)
end.

Coq definitions are often quite close to ordinary mathematics

Abhishek Anand Intro to your 2nd TA.



How Proof Assistants work

Most proofs are composed of a few primitive axioms (e.g. Peano Arith).

0 is a number

∀ number n, (S n) is a number.

S is injective

∀ number n, n = n. Also, = is symmetric and transitive

(0 + m) = m

((S n) + m) = S (n + m)

. . .

Natural Induction

Inductive nat : Type :=
| O
| S (n : nat).

Fixpoint plus (n m : nat) : nat :=
match n with

| O ⇒ m
| S n’ ⇒ S (plus n’ m)
end.

Coq definitions are often quite close to ordinary mathematics

Abhishek Anand Intro to your 2nd TA.



How Proof Assistants work

Most proofs are composed of a few primitive axioms (e.g. Peano Arith).

0 is a number

∀ number n, (S n) is a number.

S is injective

∀ number n, n = n. Also, = is symmetric and transitive

(0 + m) = m

((S n) + m) = S (n + m)

. . .

Natural Induction

Inductive nat : Type :=
| O
| S (n : nat).

Fixpoint plus (n m : nat) : nat :=
match n with

| O ⇒ m

| S n’ ⇒ S (plus n’ m)
end.

Coq definitions are often quite close to ordinary mathematics

Abhishek Anand Intro to your 2nd TA.



Quiz

Inductive nat : Type :=
| O
| S (n : nat).

Fixpoint plus (n m : nat) : nat :=
match n with

| O ⇒ m
| S n’ ⇒ S (plus n’ m)
end.

Which of these is not a number

O

S (S O)

O (S O)

Which of these is NOT in a normal form

O

plus (S O) (S (S O))

S (S O)

Abhishek Anand Intro to your 2nd TA.



Quiz

Inductive nat : Type :=
| O
| S (n : nat).

Fixpoint plus (n m : nat) : nat :=
match n with

| O ⇒ m
| S n’ ⇒ S (plus n’ m)
end.

Which of these is not a number

O

S (S O)

O (S O)

Which of these is NOT in a normal form

O

plus (S O) (S (S O))

S (S O)

Abhishek Anand Intro to your 2nd TA.



Quiz

Inductive nat : Type :=
| O
| S (n : nat).

Fixpoint plus (n m : nat) : nat :=
match n with

| O ⇒ m
| S n’ ⇒ S (plus n’ m)
end.

Which of these is not a number

O

S (S O)

O (S O)

Which of these is NOT in a normal form

O

plus (S O) (S (S O))

S (S O)

Abhishek Anand Intro to your 2nd TA.



Demo

www.cs.cornell.edu/~aa755/CS6110/CoqLecDemo.v

Reccommended Tutorials:

http:

//www.cis.upenn.edu/~bcpierce/sf/current/Basics.html

http://www.cis.upenn.edu/~bcpierce/sf/current/

Induction.html

Abhishek Anand Intro to your 2nd TA.

www.cs.cornell.edu/~aa755/CS6110/CoqLecDemo.v
http://www.cis.upenn.edu/~bcpierce/sf/current/Basics.html
http://www.cis.upenn.edu/~bcpierce/sf/current/Basics.html
http://www.cis.upenn.edu/~bcpierce/sf/current/Induction.html
http://www.cis.upenn.edu/~bcpierce/sf/current/Induction.html


PAs can often makes proofs easier

omega, lia, lra, nia . . .
∀(n m k : nat), n + m ≤ m + k + n.

congruence
∀(n m k : nat), n = m⇒ m = k ⇒ (n ∗m) = (m ∗ k)

Proofs by computation

Ω reduces to Ω
. . . [. . ./x] is equal to . . .√

(cos 1
2
) < exp(cos(sin(arctan(Π))))

tauto, ring, field . . .

Custom Hint databases

Custom Proof Search Algorithms

If you get stuck while doing CS6110 related work in Coq, feel free to ask
on Piazza

Abhishek Anand Intro to your 2nd TA.

https://coq.inria.fr/distrib/current/refman/Reference-Manual023.html
https://coq.inria.fr/distrib/current/refman/Reference-Manual010.html#hevea_tactic153
https://coq.inria.fr/distrib/current/refman/Reference-Manual010.html#hevea_tactic146
https://coq.inria.fr/distrib/current/refman/Reference-Manual027.html#ring


PAs can often makes proofs easier

omega, lia, lra, nia . . .
∀(n m k : nat), n + m ≤ m + k + n.

congruence
∀(n m k : nat), n = m⇒ m = k ⇒ (n ∗m) = (m ∗ k)

Proofs by computation

Ω reduces to Ω
. . . [. . ./x] is equal to . . .√

(cos 1
2
) < exp(cos(sin(arctan(Π))))

tauto, ring, field . . .

Custom Hint databases

Custom Proof Search Algorithms

If you get stuck while doing CS6110 related work in Coq, feel free to ask
on Piazza

Abhishek Anand Intro to your 2nd TA.

https://coq.inria.fr/distrib/current/refman/Reference-Manual023.html
https://coq.inria.fr/distrib/current/refman/Reference-Manual010.html#hevea_tactic153
https://coq.inria.fr/distrib/current/refman/Reference-Manual010.html#hevea_tactic146
https://coq.inria.fr/distrib/current/refman/Reference-Manual027.html#ring

