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Why use Proof Assistants (PA)?

doing Math (including PL Theory) requires

Creativity

Extreme Carefulness

Mechanical Work

Good Memory
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Extreme Carefulness

Mechanical Work
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As a 2nd TA, a PA give immediate feedback often forces you to have a
deeper understanding of your proofs.
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PAs are already sufficiently mature

2 PL-oriented books on Coq, written in Coq : SF, CPDT

Already captured a vast amount of human knowledge 1 C compiler,
variable bindings, real analysis, abstract algebra . . .

Vibrant mailing lists (coq-club, agda); Your question might get
answered by a field medalist!

1For a more comprehensive list, visit http://www.lix.polytechnique.fr/coq/
pylons/coq/pylons/contribs/bycat/v8.4?cat1=None&cat2=None
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How Proof Assistants work

Most proofs are composed of a few primitive axioms (e.g. Peano Arith).

0 is a number

∀ number n, (S n) is a number.

S is injective

∀ number n, n = n. Also, = is symmetric and transitive

(0 + m) = m

((S n) + m) = S (n + m)

. . .

Natural Induction

Inductive nat : Type :=
| O
| S (n : nat).

Fixpoint plus (n m : nat) : nat :=
match n with

| O ⇒ m
| S n’ ⇒ S (plus n’ m)
end.

Coq definitions are often quite close to ordinary mathematics
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Quiz

Inductive nat : Type :=
| O
| S (n : nat).

Fixpoint plus (n m : nat) : nat :=
match n with

| O ⇒ m
| S n’ ⇒ S (plus n’ m)
end.

Which of these is not a number

O

S (S O)

O (S O)

Which of these is NOT in a normal form

O

plus (S O) (S (S O))

S (S O)
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Demo

www.cs.cornell.edu/~aa755/CS6110/CoqLecDemo.v

Reccommended Tutorials:

http:

//www.cis.upenn.edu/~bcpierce/sf/current/Basics.html

http://www.cis.upenn.edu/~bcpierce/sf/current/

Induction.html
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PAs can often makes proofs easier

omega, lia, lra, nia . . .
∀(n m k : nat), n + m ≤ m + k + n.

congruence
∀(n m k : nat), n = m⇒ m = k ⇒ (n ∗m) = (m ∗ k)

Proofs by computation

Ω reduces to Ω
. . . [. . ./x] is equal to . . .√

(cos 1
2
) < exp(cos(sin(arctan(Π))))

tauto, ring, field . . .

Custom Hint databases

Custom Proof Search Algorithms

If you get stuck while doing CS6110 related work in Coq, feel free to ask
on Piazza
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