
1

Redesigning Tcl-DP

Mike Perham
Brian C. Smith
Tibor Jánosi

Ioi Lam
Department of Computer Science

Cornell University
Ithaca, New York 14853

{mperham, bsmith,janosi,ioi}@cs.cornell.edu

Abstract

Tcl-DP is a loadable module for Tcl that adds advanced communication features to
Tcl/Tk. Tcl-DP supports communication by serial links, IP-multicast, TCP, UDP, and
email, contains a remote procedure call (RPC) mechanism, and supports the design of
new protocols using modules called filters. Tcl-DP 1.0 [Smi93] was released four years
ago and has since been used for numerous commercial and academic projects. With age,
however, the code became so brittle that adding new features and porting to new versions
of Tcl was nearly impossible. Furthermore, many of Tcl-DP’s original features were
incorporated in the Tcl core, making them redundant in Tcl-DP. Hence, we decided to
write the latest version of Tcl-DP (version 4.0) from scratch. In this paper, we describe
the new features of Tcl-DP 4.0, its architecture and implementation, and problems we
encountered with Tcl’s new I/O system.

The Tcl-DP API

The Tcl-DP API contains two main parts: commands for general communication and
command for remote procedure call (RPC). Figure 1 demonstrates Tcl-DP’s RPC
mechanism by showing how to implement a network-wide server for generating unique
identifiers. The left side of the figure shows the code that is executed on the server, the
right side shows the code that is executed on the client.

Figure 1 -- A Simple ID server

On the server machine:

% package require dp
4.0
% dp_MakeRPCServer 1944
tcp0
% set i 4
% proc getID {} {

global i
incr i

}
%

On the client machine:

% package require dp
4.0
% dp_MakeRPCClient host.foo.com 1944
tcp0
% set id [dp_RPC tcp0 getID]
5
%

2

The first command executed on both client and server is the Tcl package command,
which makes Tcl-DP library functions and commands available in the current Tcl
interpreter. The server executes the dp_MakeRPCServer 1 command, which creates a
socket that is waiting for a client to connect. Finally, the server defines the getID
command, which generates and returns a unique identifier.

The client connects to the server using the dp_MakeRPCClient command, which
returns a handle that can be used to communicate to the server. Finally, the client
invokes the getID command on the server using the dp_RPC command. This causes a
message containing the command to be evaluated to be sent to the server, where it is
evaluated and the results returned2.

Tcl-DP also contains commands to support basic network communication. Figure
2 shows how to use Tcl-DP’s communication facilities to transfer the file /etc/motd
from a client machine to the server (alvin.cs.cornell.edu).

Figure 2 – Simple network communication

After loading Tcl-DP using the package command, the server uses Tcl-DP’s
dp_connect command to create a TCP socket that is waiting for a connection on port
1944. The server then issues the dp_accept command, which blocks until a client
connects, and then returns a handle for the newly connected client. Once a client is
connected, the server opens /tmp/motd , copies the data sent over the channel into it,
and closes the file and socket.

The client connects to the server using dp_connect , giving the hostname and port
number of the waiting server. After connecting, the client opens /etc/motd , copies it
to the channel, and closes the file and socket.

1 All Tcl-DP commands begin with “dp_ ”
2 Tcl-DP also allows commands to be invoked on the server using dp_RDO, which sends the message to
the server but does not wait for a return value. Dp_RDO is useful for invoking commands solely for their
side effects.

On the client:

% package require dp
4.0
% set s [dp_connect tcp

 –host alvin.cs.cornell.edu
 –port 1944]

tcp0
% set f [open /etc/motd r]
file0
% while {![eof $f]} {

puts $s [gets $f]
}
% close $s
% close $f

On the server (alvin.cs.cornell.edu):

% package require dp
4.0
% set s1 [dp_connect tcp

 –server true
 –myport 1944]

tcp0
% set s [dp_accept $s]
tcp1
% set f [open /tmp/motd w]
file0
% while {![eof $s]} {

puts $f [gets $s]
}
% close $f
% close $s

3

Note that once a channel is opened, it is treated as any other file: it can be read from,
written to, or checked for the EOF condition (which, in the case of TCP, this means the
connection has been closed).

New Features

The features described above were available in earlier versions of Tcl-DP. In version
4.0, we added several new features. This section describes those features.

In addition to TCP, UDP and IP multicast, DP 4.0 supports communication via serial
ports and email. No matter what its type, a channel is opened using the dp_connect
command and supports the same input/output operations. The mechanism allows one
channel to be substituted for another in most programs – only the channel creation and
configuration options (issued through the Tcl fconfigure command) differ. For
example, by changing the parameters to dp_connect and deleting the call to
dp_accept in Figure 2, we can transfer the file over a serial line instead of a TCP
connection, as shown in Figure 3.

Figure 3 – Communication over a serial connection

The Tcl-DP RPC mechanism has also been changed and enhanced. Recursive and
out-of-order RPCs are now supported. This point will be covered in detail below.
Perhaps the most important new ability is that RPCs can now be performed over any Tcl
channel as long as it has been registered with the dp_admin command. More precisely,
once a channel is created, the program can call dp_admin register chanID ,
which creates a file handler so that an inbound RPC request is automatically processed.
Calling dp_admin delete chanID disables this behavior. The significance of this
feature is that dp_RPC and dp_RDO can be performed over any channel, although
dp_RPC should only be performed over reliable channels since packet loss can cause a
program to hang while waiting for a response from the server.

Another new feature in DP 4.0 is filters. Filters sit between the program and the
channel, transparently modifying data (e.g., encrypting/decrypting it). DP 4.0 has two
types of filters: plugin filters and filter channels.

A plugin filter is designed for the common case where the data is modified using a
functional interface. Encryption and decryption are examples of plugin filters. To create
a plugin filter, the programmer call dp_connect plugfilter, passing in three parameters:

On the client:

% package require dp
4.0
% set s [dp_connect serial

 –device serial1]
serial0
% set f [open /etc/motd r]
file0
% while {![eof $f]} {

puts $s [gets $f]
}
% close serial0

On the server:

% package require dp
4.0
% set s [dp_connect serial

 –device serial1]
serial0
% set f [open /tmp/motd w]
file0
% while {![eof $s]} {

puts $f [gets $s]
}
% close file0

4

the channel to use for input/output, and two filter functions, one for input and one for
output.

Figure 4 shows how to use a plugin filter. In this example, a server accepts a
connection from a client (the first three lines of code), and then attaches an exclusive-or
(xor) filter to that channel to weakly encrypt the data3. Any data written to the channel is
transparently filtered by exclusive-or’ing it with a key (the key can be changed using the
fconfigure command on the plugin channel). To decrypt the data, the user needs
another xor plugin filter on the receiving side.

DP 4.0 comes with a uuencode/decode filter, a xor excryption filter, a hex to binary
conversion filter, and a tclfilter plugin which allows any Tcl procedure to be used
as a filter. New filters are easy to write (they require two procedures), and are registered
using a C API.

The filter mechanism is general and powerful. For example, by using uuencode
filters, binary data can be read from, or written to, channels. We have used filters to
provide a simple command line interface to a video camera whose pan/zoom/tilt is
controlled by a binary protocol over an RS232 interface. We believe it is possible to use
plugin filters to provide APIs for secure communication, authentication, and gateways to
binary RPC mechanisms.

Figure 4 – Attaching a plugin filter

Certain tasks are difficult or impossible to perform using plugin filters. For these
cases, filter channels are appropriate. Filter channels are complete channels with
configurable options and I/O routines. A filter channel is created using the
dp_connect command, passing in the channel type as the first argument and a flag
indicating the channel to use for input/output.

To understand why filter channels are needed, consider the following scenario. A user
needs to transmit datagrams over a stream channel (e.g., TCP). Since the channel has
stream semantics, the datagram boundaries will be lost in transmission. In other words, if
the user sends two datagrams “message1” and “message2” over the channel, the receiver
might read “mess” on the first read, and “age1message2” on a second read.

A simple way to keep the datagram boundaries is to build packetizer, which attaches
a length field to each message. At the receiver, a depacketizer reads the length field and
returns either a whole packet or nothing (in the case of a partial read). It is difficult to
build a packetizer using plugin because they only provide functional filtering. In this
case, a filter channel is used.

With filter channels, it is possible to build protocol stacks that provide, for example,
flow control and guaranteed transmission over unreliable channels (any takers?).

3 The bit pattern used for the xor can be changed using fconfigure command on the plugin filter.

package require dp
set server [dp_connect tcp -server true -myport 1944]
set toclient [dp_accept $server]
set crypt [dp_connect plugfilter -channel $toclient -infilter xor

-outfilter xor
puts $crypt “Boris to Natasha, we get moose and squirrel soon!”

5

Implementation

Channels

Since version 7.5, Tcl has performed all I/O via
Tcl_Channels. Figure 5 shows a block diagram of Tcl-
DP’s I/O system. The Tcl_Channel abstraction pushes all
I/O operations into a channel driver, so that a generic set
of operations can be performed on any communications
method. For instance, to read data from a channel, one
calls the Tcl_Read() function, which will invoke the
channel driver’s input method to retrieve data available on
that channel. DP 4.0 provides drivers for 5 channel types:
TCP, UDP, IP multicast, serial ports and email. The
dp_RPC and dp_RDO commands sit above the Tcl I/O layer, which allows us to use any
channel for RPC communication.

RPC

The implementation of RPCs changed significantly in DP 4.0. The new mechanism
allows RPCs to be issued over any Tcl channel, and handles duplicate or out of order
return of RPCs. In addition, the protocol contains no binary data (unlike previous
versions), which allows a Tcl-only implementation of RPC handlers using Tcl’s socket
command. These changes make the new protocol incompatible with previous versions,
but we felt the new features and bug fixes justified the incompatibility.

Figure 6 shows the layout of an RPC/RDO packet. Length is a six digit decimal
string that gives the size of the entire packet, including the length field itself. Space is a
delimiter between fields and is simply the space character. Type is a one byte token
character that denotes the type of this packet. For types of packets are defined: RPC
(‘e’), RDO (‘d’), error (‘x’), or return value (‘r’). ID is a six digit decimal string that
specifies an identifier for the RPC message (and its return value). It is used in processing
out-of-order RPCs, as explained below. Finally, msg is the Tcl command to be evaluated.

For example, the command dp_RPC tcp0 puts hi generates in the packet
“ 23 e 1 puts hi ”

Length
[6]

Space
[1]

Type
[1]

Space
[1]

ID
[6]

Space
[1]

Msg [len-16]

Figure 6 – RPC packet format

When a message arrives on an RPC channel, Tcl executes a file callback to process
the message. This callback reads the message, buffering partial reads if necessary. It then
processes the packet as follows:

• If the packet is an RPC (as determined by the type field), the command is evaluated.
If there is an error, interp->errorInfo is returned to the sender in msg. Otherwise,
interp->result is returned to the sender in msg.

Tcl I/O layer

Channel Driver

RPC

Figure 5 – Tcl-DP’s
I/O System

6

• If the packet is an RDO, the command is evaluated. Nothing is returned to the
sender.

• If the packet is an error code or a return value, the id field is used as an index into the
activation record for the RPC, which is described below. The RPC is marked as
received, the error condition set (if appropriate), and msg copied into the activation
record.

Whenever an RPC is sent, an identifier (id) is generated and an activation record is
created. This activation record tracks all currently executing RPCs, and allows for out-of-
order and recursive RPCs. It is stored in a table, using id as an index. To understand the
function of the activation record, consider the following example.

A Tcl-DP process sends an RPC (id=1) to host A. DP creates an activation record for
the RPC and waits in an event loop for the return message. While waiting, another event
(e.g., a timer event) triggers the issuance of a second RPC (id=2) to host B. Again, DP
DP creates an activation record for the RPC and waits in a new event loop for the return
message. If RPC #1 now returns, it can not be processed immediately, since the current
event loop, and associated call stack, is for RPC #2. Thus, DP simply records the RPC
return value in the activation record associated with RPC #1. When RPC #2 returns, it is
marked as received, breaking the event loop and return to the original loop. This loop
exits immediately, since the activation record indicates the RPC is received.

The surprising thing about the mechanism is that its expression in C is extremely
elegant. The callback for processing a return value or error message just marks the
appropriate activation record. The event loop simply processes one event until the
associated activation record indicates the return value has been received.

Open Issues

While designing DP 4.0, we ran into several problems, which we discuss in this
section.

Peeking and Tcl I/O

In previous versions of DP, peeking was allowed on socket reads. Peeking allows a
read function call to return a portion of the input available on a channel without
consuming the data. It is useful when processing input messages, since a message header
can be read to decide which routine should process the message.

The Tcl I/O subsystem buffers all channel input4. Unfortunately, this buffering also
makes peeking on a channel impossible. Consider the following example: a user wishes
to peek at the first 2 bytes of a 12-byte message on a UDP channel. Suppose the message
is “123456789abc”. Assume we fconfigure the socket for peeking, so that the
read() system call does not consume the available data on the socket. When Tcl calls
the channel’s input procedure to read the data on the socket; it reads 10 bytes, returning 2
bytes (“12”) to the caller and buffering the rest (“3456789a”). When the program

4 Tcl imposes a minimum buffer size of 10 bytes on all channels. If you try to use
fconfigure –buffersize to set the beffer siz to less than 10 bytes, Tcl will use a 10-byte buffer.

7

attempts to read the message out of the socket, Tcl will concatenate the 8 bytes of
buffered data with data available on the socket, resulting in a 20 byte message
(“3456789a123456789abc”).

We provide a work-around for this problem using the dp_recv command, which
allows direct, unbuffered access to a channel’s input procedure.

RPC over unreliable channels

The dp_RPC command blocks until a return value is received. In DP, the RPC
procedure waits in an event loop, repeatedly calling Tcl_DoOneEvent() until an
answer for the RPC is received. Unfortunately, this also means that when an RPC
message (or its return value) is lost, the dp_RPC call will never return. Since DP 4.0
allows RPC over unreliable (e.g., UDP) channels, such an event is possible. We see three
work-arounds for this case. First, one can always use dp_RDO to remotely invoke a
command. Since dp_RDO does not block, the program will lock up when a message is
lost. A second option is to use the –timeout flag of dp_RPC. This flag creates a timer
event that marks the RPC’s activation record as complete after a specified time, causing
the event loop to terminate and the dp_RPC call to return an error. The third option is to
provide a filter channel that implements retransmission for the unreliable channel, and
then issue RPCs over that channel. We have not yet written such a filter channel.

Status and Conclusion

In this paper, we described the new features and implementation of Tcl-DP 4.0. Tcl-
DP 4.0 is a dynamically loadable version of Tcl-DP which adds several new features
including new channel types, channel filters, and better RPC support. Tcl-DP is freely
available from http://www.cs.cornell.edu/Info/Projects/zeno/Tcl-DP/

References

[Smi93] Brian C. Smith, Lawrence Rowe, Stephen Yen. Tcl Distributed
Programming. In Proceedings of the 1st Tcl/Tk Workshop. June 1993.

