
1

Introduction

This document provides a tutorial introduction to Rivl, a Tcl/Tk extension for multimedia
processing. Rivl provides primitives for manipulating image, audio, and video objects.

A few examples will give you a feel for Rivl. In the following script, we implement and apply a
“picture-in-a-picture” effect:

proc pip {im1 im2} {
im_scale! im1 0.3
im_trans! im1 [expr 0.6*[im_width $im1]] [expr 0.15*[im_height $im1]]
im_overlay $im1 $im2

}

im_write [pip [im_read football.jpg] [im_read red.ppm]] new.jpg

The pip procedure takes two images,im1 and im2 . The first two lines ofpip reduceim1 and
translate it to the upper right corner of its box. The third line ofpip overlays the newim1 onto
im2 . Finally, theim_write line reads two images (a JPEG and a PPM), callspip to place one
inside the other, and writes the result as a new JPEG.

The following script is an example of video assembly editing:

set andre [seq_read andre.mpg]
set luxo [seq_read luxo.mpg]
set out [seq_concat [seq_crop $andre 0.0 10.0] $luxo]
seq_write $out new.mpg

The first two lines read MPEG files calledandre andluxo . The third line pastes together the first
ten seconds ofandre with luxo . Finally, theseq_write command writes the result as a new
MPEG.

Getting started

This tutorial is designed to be used interactively. That is, although you could just read the tutorial,
you will get more out of it by trying the commands as you read them.

To use the tutorial, create a temporary working directory:

% cd ~
% mkdir tutorial
% cd tutorial

Then, copy the image and video files used in this tutorial with the following command, replacing
RIVL with the root directory of your Rivl source distribution.For Cornell CS users,RIVL = /home/
sww/src/tcl+tk/tcl-rivl.

2

% cp RIVL /data/images/* RIVL /data/movies/* .

Finally, type the command

% wish-rivl

to invokewish-rivl , which behaves like an ordinarywish interpreter, reading commands from
standard input and writing the results to standard output. Your path must contain the directory in
which wish-rivl was installed. For Cornell CS users,wish-rivl is located in /home/sww/
arch/bin, wherearch is an architecture name like sun4, hpux, or solaris.

We assume that the reader is already familiar with Tcl/Tk. If not, the books by John Ousterhout
and Brent Welch [ref,ref] provide excellent introductions.

Other Rivl documentation

Besides this tutorial, there are several other sources of Rivl documentation. Rivl contains on-line
help on every built-in command and some general subjects. This help system is accessed using the
rivl_help command, followed by the command or topic name.Rivl_help topics returns a
list of available help topics. Rivl_usage prints a one-line description of any command.

The fileRIVL / doc/lang.doc is an organized compilation of the on-line help text.

Several conference papers about Rivl can be found on-line at

http://www.cs.cornell.edu/Info/Projects/zeno/rivl

Image Processing with Rivl

The simplest image processing task involves reading an image from a file, transforming it,
previewing the result, and writing it out to a file. The following command reads an image from a
file:

% im_read tiger.jpg
rivl_im3

The file tiger.jpg is in JPEG [ref] format, one of several file formats Rivl supports. (See
rivl_help File-types for more about file formats.) The return value ofim_read , rivl_im3
in this case, is a handle to the new image object. The exact name of the handle may differ on your
machine. This handle is used in subsequent commands to access the image, much like a file handle
is used to access an open file. The next two commands scale and rotate the image around its center:

3

% im_scaleC rivl_im2 0.5
rivl_im6

% im_rotateC rivl_im5 30
rivl_im14

These commands, like all Rivl image commands, are non-destructive: they return a handle to a new
image rather than modifying an existing image. We can display the original image using
im_display :

im_display brings up a display window like the one shown above, and returns the name of the
created window (.imwin1). Because we display images often in this section, we define a
procedure:

proc ? {im} {
im_display $im .imwin1

}

The second argument toim_display causes the existing window to be used rather than a new
one. To see the scaled and rotated image, we type

% ? rivl_im13

To save the new image permanently, useim_write :

% im_write rivl_im13 new-tiger.jpg

This command creates a new image file callednew-tiger.jpg .

Issuing commands interactively is a quick way to find out what Rivl commands do, but for
complex tasks, one normally writes procedures and refers to image handles through variables. The
following procedure scales and rotates an image as a function of a numeric parameter a numeric
parameterp:

% im_display rivl_im2
.imwin1

4

% proc whirlpool {im p} {
set im [im_rotateC $im [expr 360*$p]]
set im [im_scaleC $im $p]
return $im

}

The following commands read an image and show the effect of different values to whirlpool.

% set tiger [im_read tiger.jpg]

% ? [whirlpool $tiger 0.8]

% ? [whirlpool $tiger 0.6]

% ? [whirlpool $tiger 0.4]

The set im... notation used inwhirlpool is cumbersome. Most Rivl commands have a
destructive form, which is invoked by appending a ! to the command name. That is,

op! im ... is equivalent to set im [op $im ...]

Using this notation, we can rewrite the procedure whirlpool:

% proc whirlpool {im p} {
im_rotateC! im [expr 360*$p]
im_scaleC! im $p
return $im

}

This procedure is equivalent in behavior to the first one, but the notation is more compact. Note
that we omit the dollar sign for the first parameter of a destructive command so that its name, rather
than its value, is passed.

Size and ROI

Every image has asize that you can access withim_size :

5

% im_size $tiger
320.000000 240.000000

The size of an image is initialized when it is read from a file. You can change the size with
im_setsize :

% ? [im_setsize $tiger 480 360]

Notice that the displayed region is larger than before. When Rivl displays or writes an image, it
clips the data inside the image’sregion of interest (ROI), which is simply the rectangle from (0,0)
to (width,height). Because this rectangle is always anchored at the origin, the terms “ROI” and
“size” express the same information and are used interchangeably.

Forcing the ROI to anchor at (0,0) is not as restrictive as it seems. It simply means that rather than
moving the ROI around the image, you move the image in relation to the ROI. For example, to
effectively set the ROI around the rectangle 50,100 - 250,200, you shift the image -50,-100 and
then set the size to 200,100:

% ? [im_setsize [im_trans $tiger -50 -100] 200 100]

The ROI of this image is (0,0) to (200,100); there is no record of the upper corner’s original
location.

Image data and ROI are independent notions. You can see this by comparing the output of
im_setsize with im_scale :

% ? [im_setsize $tiger 480 360]

% ? [im_scale $tiger 1.5]

Im_setsize modifies the size without affecting the data in the image, whileim_scale modifies
the data without affecting the size. For modifying both size and data, Rivl provides several

6

shortcuts. First, you can scale both image and size by the same factor using the-scaleROI flag
to im_scale . Second, you can force the image data and ROI to fit an exact size using
im_conform . This command is especially useful for working with images of different aspect
ratios.

Overlays and mattes

The commands introduced so far operate on single images. To combine multiple images, one
normally usesim_overlay , which lays one image on top of another. To illustrate overlaying, let’s
implement a pip (picture-in-a-picture) effect.

% set fb [im_read football.jpg]

% set red [im_read red.jpg]

% im_scale! fb 0.3

% im_trans! fb [expr 0.6*[im_width $fb]] [expr 0.15*[im_height $fb]]

The last two lines reduce and shift overfb so that it resides in the upper right corner of its ROI.
Below the two images and their composition are shown.

% ? $fb

% ? $red

% ? [im_overlay $fb $red]

Red can be seen behindfb becausefb is transparent outside its box. When two images are
overlaid, the bottom image shows through where the top is transparent. An image’s transparency/
opacity is determined by itsmatte. A matte is a bi-level image that indicates, for every pixel in an
associated image, whether that pixel is opaque or transparent. An image’s matte can be extracted
usingim_matte :

7

% ? [im_matte $fb]

An image’s matte need not be rectangular, as the following example shows:

% ? [im_rotate $fb 20]

% ? [im_matte [im_rotate $fb 20]]

% ? [im_overlay [im_rotate $fb 20] $red]

When an image is displayed or output to a file, it is overlaid onto a solid black background. Thus,
transparent pixels inside the ROI appear as black, as in the first image above.

Rivl provides three primitives for clearing parts of an image (i.e., modifying its matte):
im_clear, im_clip, andim_crop . Each takes five parameters: an image and the corners of a
box. Im_clear clears everything inside the box, andim_clip clears everything outside the box:

% ? [im_clear $tiger 50 100 250 200]

% ? [im_clip $tiger 50 100 250 200]

im_crop is like im_clip , but also sets the ROI to the box. It is equivalent to:

8

proc im_crop {im x1 y1 x2 y2} {
im_clip! im $x1 $y1 $x2 $y2
im_setsize! im [expr $x2-$x1] [expr $y2-$y1]
im_trans! im [expr -$x1] [expr -$y1]

}

% ? [im_crop $tiger 50 100 250 200]

Transparency

The mattes described so far have been bi-level. In general, a matte is an arbitrary byte-valued image
representing a continuous range from opaque (255) to transparent (0). One way to achieve partial
transparency is withim_fade :

% set fb [im_read football.jpg]

% ? [im_fade $fb 0.7]

im_fade multiplies an image’s matte by the specified constant. Thus,im_fade with 1.0 has no
effect, andim_fade with 0.0 clears the image. When overlaying a partially transparent image onto
another image, the pixels are combined with a weighted sum according to the top matte:

% set house [im_read house.jpg]

% ? [im_overlay [im_fade $fb 0.7] $house]

% ? [im_overlay [im_fade $fb 0.5] $house]

% ? [im_overlay [im_fade $fb 0.2] $house]

9

im_fade andim_overlay are used to create cross-fade transitions in video, as shown in the next
section.

That concludes our introduction to image processing. In this section you saw a small but
representative set of image operations, enough to read the next section on video processing. In
section 3 you will see more built-in image operations and learn how to create your own.

If you still have an image display window open, type ‘q’ inside it to destroy the window.

Video Processing with Rivl

This section shows you how to read, manipulate, display, and write video sequences through a
simple example: assembling a short TV commercial. Before we begin, however, we have to
introduce a bit of terminology.

Preliminaries

A sequence is a one-dimensional array of images. All the images in a sequence are the same type
(e.g. RGB) and size (e.g. 320x240), and can be read from and written to several formats: MPEG
files, motion JPEG files in CMT clipfile [ref] format, and directories full of image files. The
following command reads a sequence from an MPEG file:

% set farmers [seq_read farmers.mpg]

You can preview a sequence withseq_display :

% seq_display $farmers
.strip1

This brings upfarmers in a sequence previewer. You may wish to expand the width of the
window to view more frames at a time. Because we display sequences often in this section, we
define a procedure:

% proc ? {seq} {
seq_display $seq .strip1

}

The second argument toseq_display causes the existing window to be used rather than a new
one.

0.0 6.0

10

As with images, sequences have a ROI, except that a sequence’s ROI is expressed in the time
dimension. When Rivl displays or writes a sequence, it clips the data inside the ROI. Sequence
ROIs are always anchored at 0.0 on the left. Thus, rather than describing an ROI with two
coordinates, we simply use thelength of a sequence. The sequence length is displayed in the lower
right corner of sequences in this document, as well as in the previewer. You can query the length
of a sequence withseq_length :

% seq_length $farmers
6.0

The effect of Rivl commands on ROIs is different for images and sequences. Most image
commands maintain the size of images despite geometric changes to the data (e.g. rotating). In
contrast, most sequence commands expand and contract the length of sequences as frames are
added or removed.

A commercial

Now that we have defined our vocabulary, we are ready to assemble the commercial. It consists of
three video clips and a still sequence of a corporate logo, all connected with fade transitions.
farmers (defined above) will be our first video clip, followed bychild andhouse :

% set child [seq_read child.mpg]

% set house [seq_read house.mpg]

The corporate logo is an image file in logo.jpg:

% set logo [im_read logo.jpg]

% im_display $logo

To combine the logo withchild , house , andfarmers , it needs to be made into a sequence. This
is accomplished withim_to_seq :

% set logoseq [im_to_seq $logo -length 3.0]
% ? $logoseq

im_to_seq constructs a video by repeating one still image for the specified length of time.

11

Now that we have the four pieces of the commercial, we connect them withseq_concat :

% ? [seq_concat $farmers $child $house $logoseq]

seq_concat is analogous to taping together pieces of film end to end. The resulting sequence
switches abruptly between clips (this is called acut). Suppose we want to joinfarmers andchild
with a one-secondcross-fade transition instead. This effect is created as follows:

1. Cut out the last second offarmers and the first second ofchild .
2. Fade the last second offarmers from opaque to transparent over time.
3. Overlay the result onto the first second ofchild .

To cut out the required pieces fromfarmers andchild , we useseq_crop :

% set farmers_end [seq_crop $farmers 5.0 6.0]
% set child_beg [seq_crop $child 0.0 1.0]

seq_crop is analogous to cutting out a piece of film with scissors: it returns a sequence containing
just the specified range, anchored at 0.0. Bothfarmers_end and child_beg are 1 second
sequences.

The next step is fadingfarmers_end to transparency over time. Recall theim_fade command,
which multiplies an image’s matte by a fraction. The idea is to applyim_fade to the images of
farmers_end with a parameter that decreases from 1 to 0 over time. To apply an image operation
over a sequence, we useseq_map:

% seq_map! farmers_end {im_fade %1 [expr 1-%p]}
% ? $farmers_end

seq_map applies the script{im_fade %1 [expr 1-%p]} to every image infarmers_end .
Each timeseq_map applies the script, it replaces%1 with the image and%p with the relative time
of the image, from 0.0 to 1.0. The results are collected into a new sequence and returned.

To overlay the newfarmers_end ontochild_beg , you can use anotherseq_map script:

12

% set transition [seq_map “$farmers_end $child_beg” {im_overlay %1 %2}]
% ? $transition

This time,seq_map maps over two sequences. It appliesim_overlay to corresponding pairs of
images fromfarmers_end andchild_beg , collecting the results into a new sequence. Since
overlaying sequences is a common operation, Rivl providesseq_overlay , defined as

proc seq_overlay {args} {seq_map $args “im_overlay %*”}

seq_overlay works for any number of sequences. The substitution character%* is equivalent to
%1 %2 ... %n , where n is the number of sequences given toseq_map.

The one-secondtransition is put into place withseq_concat :

% ? [seq_concat [seq_crop $farmers 0.0 5.0] $transition [seq_crop $child
1.0 6.0]]

To summarize, here is the code to connectfarmers to child with a one-second fade:

% set farmers_end [seq_crop $farmers 5.0 6.0]
% set child_beg [seq_crop $child 0.0 1.0]
% seq_map! farmers_end {im_fade %1 [expr 1-%p]}
% set transition [seq_map “$farmers_end $child_beg” {im_overlay %1 %2}]
% seq_concat [seq_crop $farmers 0.0 5.0] $transition [seq_crop $child 1.0
0 6.0]

The task of connecting two sequences with a transition is generalized in the following procedure,
which is included in the standard Rivl library:

13

rivl_proc! seq_connectWithTransition {movieA movieB script duration} {
set lengthA [seq_length $movieA]
set lengthB [seq_length $movieB]

set begin [seq_crop $movieA 0.0 [expr $lengthA-$duration]]
set end [seq_crop $movieB $duration $lengthB]

set mid1 [seq_crop $movieA [expr $lengthA-$duration] $lengthA]
set mid2 [seq_crop $movieB 0.0 $duration]
seq_map! mid1 $script
set transition [seq_overlay $mid1 $end]

seq_concat $begin $transition $end
}

seq_connectWithTransition takes two sequences, aseq_map script, and a duration. First, it
crops out the parts ofmovieA andmovieB that are outside the transition. Next, it maps the effect
over the end ofmovieA and overlays the result on the beginning ofmovieB . Finally, it
concatenates the three segments together.

Now, to assemble the commercial, applyseq_connectWithTransition three times:

% set fadeScript {im_fade %1 [expr 1-%p]}
% set comm [seq_connectWithTransition $farmers $child $fadeScript 1.5]
% set comm [seq_connectWithTransition $comm $house $fadeScript 1.5]
% set comm [seq_connectWithTransition $comm $logoseq $fadeScript 1.5]
% ? $comm

The clips are connected with 1.5 second fade transitions. You’ll have to zoom in, or make your
window longer, to see the transitions.

To save the commercial to an MPEG, useseq_write :

% seq_write $comm out.mpg

This command creates a new MPEG file called out.mpg. The movie can be played with an
application such as the Berkeley MPEG player:

% mpeg_play out.mpg

Temporal manipulation

Temporal manipulation involves changing the time position of frames without changing their
contents. Two examples of temporal commands areseq_speedup , which makes a sequence

14

faster or slower, andseq_reverse , which flips a sequence in time.

Suppose we want to stretch our 16.5 second commercial to the standard 30 second slot, without
adding new footage. One way to accomplish this task is to make everything slow-motion:

% set long-comm [seq_speedup $comm [expr 16.5/30.0]]

seq_speedup takes a sequence and a factor. If the factor is greater than 1, the sequence is sped
up and becomes shorter; otherwise it is slowed down and becomes longer, as in this case.

Access to frames

So far, seq_map has proved adequate for operating on the frames of a sequence. However,
seq_map is limited to applying image operations independently to each frame. For example, you
cannot useseq_map to compare pairs of adjacent frames, or to create a sequence whose images
are not in one-to-one correspondence with the input sequence.

Several Rivl commands provide low level access to a sequence’s frames.seq_sample samples a
sequence at a point in time, returning a single image.seq_to_ims samples a sequence repeatedly
at a fixedframe rate(see the next section) and returns a list of images.ims_to_seq performs the
reverse operation: it takes a list of images and returns a sequence.

If you look at our commercial closely, you’ll notice that one of the frames is damaged:

% im_display [seq_sample $comm [expr 8/24.0]]

The frame at 8/24 seconds is the ninth frame. The following command removes the frame from the
sequence:

% set imlist [seq_to_ims $comm]
% set comm [ims_to_seq [lreplace $imlist 8 8]]

This alters the length of the movie slightly. You could also uselreplace $imlist 8 8
[lindex $imlist 7] , which replaces the damaged frame with its predecessor.

In principle, some finite sequences could be represented and manipulated as lists of images.
However, the operations are many times slower, and the abstractions less powerful, than those of
the Rivl sequence type. You should use direct sequence commands (rather than converting a
sequence to a list of images) whenever possible. The above task, for example, could be
accomplished with theseq_replace command.

Frame rate

Every sequence has a defaultframe rate that you can access withseq_fps

15

% seq_fps $comm
24

and modify withseq_setfps . Its value is used by commands that sample a sequence at a fixed
rate, such asseq_write andseq_to_ims . For example, the call toseq_to_ims above returned
a list of 16.5 * 24 = 396 images, where 16.5 is the length and 24 the frame rate.

A sequence’s frame rate is independent from its other properties. For example, setting the frame
rate ofcomm to 12 does not affect its length or contents; it simply halves the number of images
written byseq_write or returned fromseq_to_ims .

