
ABSTRACT

As common as video processing is, programmers still
implement video programs as manipulations of arrays of
pixels. This paper presents a language extension called
Rivl (pronounced “rival”) where video is a first class data
type. Programs in Rivl use high level operators that are
independent of video resolution and format, increasing a
program’s portability, simplifying code reuse, and reduc-
ing development time. This paper also describes a Rivl
interpreter and the strategies the interpreter uses to opti-
mize Rivl programs. These optimizations include classical
programming language optimizations, such as common
subexpression elimination and out of order execution,
image and video specific optimizations, such as computing
only those images that will affect the output, and an opti-
mized memory manager.

1. INTRODUCTION

In order to support the development of multimedia appli-
cations, programming languages should include audio,
video, and images as true data types just as characters,
text, and numerical values are true data types in today’s
languages. The operators in a multimedia language should
be format independent, so that video and images of differ-
ent formats can be easily intermixed, like integers and
floating point numbers in most modern programming lan-
guages. The operators in a multimedia language should be
resolution independent, so that high or low resolution
input data produces better or worse results, just like single
and double precision floating point numbers produce more
or less accurate results in numeric computations. Platform

independence and code reuse will be a useful side effect of
multimedia programming languages, and just as optimizing
and parallel compilers can take existing programs and make
them run faster, so optimizing multimedia compilers will
speed up multimedia programs.

Rivl (pronounced “rival”) is a language extension and opti-
mizing system designed with these goals in mind. Rivl pro-
vides a video data type and video operators that are format
and resolution independent. Format independence means
that MPEG[5] video can be freely intermixed with JPEG[7],
Postscript[9], and uncompressed images. Resolution inde-
pendence means that operations in Rivl (e.g., “cut the first
five seconds of the video clip”) are well defined whether the
film resolution is 16 or 30 frames per second or the image
size is 100x75 or 4000x3000. These features relieve the pro-
grammer of tedious, low level details and allow a runtime
system to execute a Rivl program quickly on low resolution
data for crude output (e.g., for prototyping or debugging)
and slowly on high resolution data for more refined output.

Rivl’s approach to video manipulation has significant
advantages over current approaches:

• Rivl programs are easier to read, write, and maintain
than their low-level counterparts.

• Rivl code is platform independent.
• Rivl expresses video and image editing operations in a

format and resolution independent way.
• Rivl separates the description of video operations from

their implementation, allowing the Rivl runtime system
to improve the execution efficiency of Rivl programs.

We have implemented an interpreter for Rivl as an extension
to the Tcl language [11], an approach that allows us to easily
embed Rivl in other applications. This paper describes the
design and implementation of the Rivl language, the Rivl
interpreter, and its optimizer. The rest of the paper is orga-
nized as follows. Section 2 illustrates the Rivl language
through a series of examples. Section 3 discusses the Rivl
interpreter and how it optimizes image and video opera-
tions. Section 4 reviews related work, and concludes with

A Resolution Independent Video Language*

Jonathan Swartz
Brian C. Smith

Department of Computer Science
4130 Upson Hall

Cornell University
Ithaca, NY 14853-7501 USA

{swartz,bsmith}@cs.cornell.edu
http://www.cs.cornell.edu/Info/Projects/zeno/rivl/rivl.html

* This work was supported by a generous donation from
Xerox Corporation.

current status and future research directions.

2. THE RIVL LANGUAGE

This section illustrates Rivl programs through a series of
examples. Since Rivl is an extension of Tcl, Rivl programs
have access to all the primitives of the Tcl language. Rivl
extends Tcl with two data types:images1, which represent
still images, andsequences, which represent video seg-
ments (a timestamped set of images).

Table 1 lists some of the Rivl primitives for manipulating
images and sequences. The table is divided into five
classes:

• Input/output. Currently supported formats include
pgm/ppm[8], JPEG[7], MPEG[5], and Postscript[9].

• Geometric. The image operations in this class move
and resize the image; the sequence operations speed
up, slow down, and temporally shift the sequences.

• Assembly. This class provides “cut and paste” type

1. The Rivl image type is unrelated to the Tcl/
Tk[11] canvas image type.

operations on images and sequences.
• Conversion. This class provides functions to convert

between images and sequences, and to map image
operations over the frames of a sequence.

• Transforms. Image transforms used in this paper.

Sections 2.1 and 2.2 contain examples that clarify the use of
image primitives and sequence primitives, respectively.

2.1. Image Operations

Consider the following Rivl fragment:

set image2 [im_scaleC $image1 [expr 1 -
$p]]

set image3 [im_rotateC $image2 [expr 360
* $p]]

Program 1: “Whirlpool” effect

image1 is a Rivl image andp is a floating point value
between 0 and 1. The first line callsim_scaleC to shrink
image1 about its center by a factor of 1-p and assigns the
result toimage1 . The second line callsim_rotateC to
rotateimage1 about its center by 360*p and again stores

Type Image
operations

Sequence
operations

Description

Input/Output im_read seq_read Read image/sequence from disk

im_write seq_write Write image/sequence to disk

Geometric im_trans seq_shift Translate an image in space / shift a sequence in time

im_scale[C] seq_scale Scale an image in space / scale a sequence in time

im_rotate[C] Rotate an image [C = around its center]

Assembly im_crop seq_crop Crop the specified region to make a new image/sequence

im_concat seq_concat Concatenate multiple images/sequences end to end

im_overlay seq_overlay Overlay multiple images/sequences in place

Conversion ims_to_seq seq_to_ims Convert between a list of images and a sequence

seq_map Apply a script to each image in the sequence

Transforms im_fade Fade the image by a specified percentage

im_resample Resample the image at a specified size

im_blur Apply a blur filter to the image

im_mask Make transparent all pixels below a certain intensity

Table 1: Image and sequence primitives

the result inimage1 . Figure 1 shows the effect of this
fragment with several values ofp.

The repeated use ofset in this fragment is cumbersome.
To remedy this problem, we borrowed an idiom from
Scheme: any operator with the character “!” appended
destructively modifies its first argument. Taking advantage
of this notation, we can rewrite program 1 as:

im_scaleC! image1 [expr 1 - $p]]
im_rotateC! image1 [expr 360 * $p]

Notice that the destructive operation omits the “$” in front
of its first argument, whereas the non-destructive form
requires the “$”. This artifact is caused by the way Tcl
implements pass-by-reference, a point we discuss in a
related paper [14].

More complex effects can be constructed using Tcl con-
structs for looping, branching, procedure creation, and
recursion. The Rivl program in figure 2 creates a fractal
(Sierpinski’s Gasket) from an arbitrary image.

2.2. Sequence Operations

A sequence, the Rivl abstraction for video, can be thought
of as a set of time-stamped images. Like image commands,
sequence commands can be composed to express new
operations. For instance, a common video editing opera-
tion is assembly, when two sequences are connected and
written. The following Rivl fragment assembles the first
10 seconds of the sequence raiders.mpg and the sequence
bobo.mpg, writing the result to out.mpg (all files are
MPEG format):

set raiders [seq_read raiders.mpg]
set bobo [seq_read bobo.mpg]
seq_crop! raiders 0.0 10.0
seq_write [seq_concat $raiders $bobo]

out.mpg

An important primitive in Rivl isseq_map . seq_map
applies image effects to sequences, executing a given script
for each image of a sequence and combining the resulting
images into a new sequence.Seq_map is similar tomap in
Scheme. For example, consider the command

seq_map $clip {im_resample %1 100 75}

Seq_map evaluates the template command
(im_resample %1 100 75) on each image inclip ,
substituting the current image wherever%1 appears in the
template. The results are gathered and returned as a new
sequence. Thus, this command returns a new sequence con-
taining 100x75 (“thumbnail”) versions of the images in
clip .

Sometimes, rather than applying the same operation on each
image in a sequence, it is desirable to vary the operation
over time. For example, consider the operation of fading a
sequence to black. This effect can be achieved by calling
im_fade on each image in the sequence with a parameter
that decreases over time. In this case,seq_map must call a
procedure with a parameter that indicates the time of the
image being modified. To this end,seq_map performs the
following additional substitutions:

• %t: Substitute the time stamp of the current image,
in seconds

• %l : Substitute the length of the sequence in seconds
• %p: Substitute the relative time of the current image:

%t divided by%l

Figure 1: Output from program 1 for p = 0.1, 0.4, 0.7

Using this mechanism, fade-to-black can be expressed

seq_map $clip {im_fade %1 [expr 1-%p]}

When combined with sequence assembly operations,
seq_map simplifies the expression of effects that are
often used in transitions between two parts of a movie. For
example, the procedure in figure 3 connects two sequences
with a transition. The first parameter,transition , is a
script to be passed toseq_map . MovieA & movieB are
the two sequences to be joined, andduration is the time
(in seconds) to apply the transition effect. Thus,con-
nectWithTransition {im_fade %1 [expr 1-
%p]} $jack $jill 5 connects two sequencesjack
andjill with a five second fade.

The Rivl language extension thus provides a powerful
notation for programming with video. Rivl’s high level
semantic description of video operations also allows the
interpreter to optimize the execution of Rivl programs.
The next section describes these optimizations.

3. THE RIVL INTERPRETER

This section discusses the implementation of the Rivl inter-
preter. In the first two subsections we discuss the efficient
implementation of image and sequence operations. In the
third subsection we discuss memory allocation issues for
video computing and describe Rivl’s custom memory man-
agement system.

3.1 Implementation of Image Computing

There are two ways to optimize still image computing. First,
we must make sure that individual image operations, such as
scales, rotations, etc., are efficient. These issues have been
addressed at length in the graphics literature, and good algo-
rithms are readily available[3]. Second, we must be intelli-
gent about which operations we call, in what order, to
achieve our final result.

A feature of Rivl that allows us to exploit the second type of
optimization is lazy evaluation, also known asdemand-

Figure 2:Fractal program and output for n= 1,2,3

proc fractal {image n} {
set dx [expr 0.25 * [im_width $image]]
set dy [expr 0.25 * [im_height $image]]
for {set i 0} {$i < $n} {incr i} {

1. Shrink to half size.
im_scaleC! image 0.5

2. Create and move three duplicates.
set north [im_trans $image 0 -$dy]
set sw [im_trans $image -$dx $dy]
set se [im_trans $image $dx $dy]

3. Merge the three duplicates.
set image [im_overlay $north $sw $se]

}
return $image

}

driven execution[10]. Rivl only computes video data when
it is needed for output or display. The result is that at com-
putation time, Rivl can plan a more intelligent computing
strategy than if each command were executed immediately
and independently.

The Rivl interpreter alternates between two modes of
operation:graph-constructionmode andgraph-evaluation
mode. In graph-construction mode, the interpreter evalu-
ates Rivl programs, recording and storing operations in a
directed acyclic graph (DAG) whose edges correspond to
images and whose nodes correspond to primitive opera-
tions (e.g. scale or overlay). This process is typically very
fast, since image operations are recorded but not executed.
In effect, the DAG represents a dynamic instruction trace
of the Rivl program’s execution.

Consider the following program, which overlays a scaled
and rotated version of the image tiger.jpg onto the image
flowers.jpg:

set tiger [im_read tiger.jpg]
im_scaleC! tiger 0.8
im_rotateC! tiger 288.0
set flowers [im_read flowers.jpg]
im_blur! flowers 5.0
im_overlay $tiger $flowers
im_write out.jpg

Figure 4 shows the graph created by this program. Both
im_scaleC andim_rotateC are implemented with a
pair of translations surrounding anim_scale or
im_rotate ; the translations move the origin of the scale
and rotate operations to the center of the image.

A call to im_write triggers thegraph-evaluationmode. In
principle, the Rivl interpreter traverses the graph from
inputs to output, computing intermediate images until the
output image is computed. But before computing the
images, the interpreter perform several optimizations. Two
optimizations,graph restructuring andresult-region calcu-
lation, are described below.

Graph restructuring. The first optimization modifies the
graph so its output is equivalent, but the computation is
more efficient. Such modifications include combining or
swapping adjacent nodes. For example, figure 4 contains six
adjacent affine transformations. Rivl collapses these nodes
into a single affine transform (figure 5a). This optimization
improves both the computation speed and the quality of the
final image by reducing the number of times the image is
resampled.

Result-region calculation. The second optimization, intro-
duced by Shantzis[10], is to compute only those regions of
each intermediate image that affect the final result. In our
example program, only a small portion offlowers is visi-
ble in the final result (figure 5b, on right). It is sufficient to
read in and blur only this portion.

Rivl calculates 3 regions for intermediate images (i.e. for
every edge in the DAG): thehave region, theneed region,
and theresult region. Thehave region at an edge is the
region of pixels provided by the edge’s left node(s). The
need region at an edge is the region of pixels needed by the
edge’s right node(s). Finally, theresult region is the inter-
section of have and need. This intersection contains all the
pixels that both have defined values and affect the final out-
put image. Only the pixels inside the result region need to be

proc connectWithTransition {transition movieA movieB duration} {
set lengthA [seq_length $movieA]
set lengthB [seq_length $movieB]

Untouched parts of first and second movie
set begin [seq_crop $movieA 0.0 [expr $lengthA-$duration]]
set end [seq_crop $movieB $duration $lengthB]

Apply timed effect to end of first movie; overlay with
beginning of second movie
set mid1 [seq_crop $movieA [expr $lengthA-$duration] $lengthA]
set mid2 [seq_crop $movieB 0.0 $duration]
set middle [seq_overlay [seq_map $mid1 $transition] $mid2]

seq_concat $begin $middle $end
}

Figure 3: Procedure to connect two sequences with an arbitrary transition

computed. Figure 5b shows the regions computed for each
intermediate image in our example graph. In particular,
only a small region is calculated for each of the two lower
images.

Following these optimizations, the Rivl interpreter com-
putes the graph’s result image, writes the image to disk,
and returns to processing commands in graph-construction
mode.

3.2 Implementation of Sequences

Our implementation of sequences borrows many ideas
from our implementation of images, since many still-
image optimizations prove especially beneficial for
sequence computing.

We will use scrolling titles as a sample task to motivate
this section. The following program adds scrolling credits
to the last 40 seconds of a 240 second (4 minute) movie:

set credits [ims_to_seq [im_mask

[im_read credits.ps]]]
seq_map! credits {im_trans %1 0.0 [expr -

%p*8000]}
seq_scale! credits 40.0
seq_shift! credits [expr 200.0]
set raiders [seq_read raiders.mpg]
set outseq [seq_map “$credits $raiders”

{im_overlay %1 %2}]
seq_write $outseq out.mpg

Program 2: Adding scrolling credits to the end of a movie

The titles are stored as a Postscript program that generates a
long image (640x8000). Theim_mask function makes the
titles’ background transparent. The program converts the
image to a one-second sequence (credits), scrolls
credits upwards over time usingseq_map , and scales
and shiftscredits to the desired time range (200-240
sec). The finalseq_map overlays the titles onto the raiders
movie, and the result is written to the file out.mpg.

Like image commands, sequence commands are stored in a
graph (called thesequence graph) until the sequence is
computed (e.g. in response to aseq_write command).

Figure 4: Sample image graph

im_read im_trans
im_scale im_rotate

im_overlayim_read
im_blur

im_trans im_trans

im_trans(tiger.jpg)

(flowers.jpg)

im_scaleC
im_rotateC

Figure 5a: Restructured image graph

im_read

im_overlay

Affine

im_read
im_blur(flowers)

(tiger)

Figure 5b: Result regions

Figure 6 shows the sequence graph for program 2, in
which each node corresponds with one line of the pro-
gram. The sequence graph is used to generate a set of
image graphs that correspond to the sequence’s individual
frames.

Suppose we want to compute the frame in the output
sequence at timeT. We perform two passes over the
sequence graph, abackward pass and aforward pass. In
the backward pass, we compute atimestamp for each edge.
An edge’s timestamp indicates the time value at that edge
that influences output frameT. As we traverse the graph,
eachseq_scale andseq_shift node we encounter
potentially alters the timestamp. The top of figure 7 shows
the timestamps computed forT=220.0.

In the forward pass, we build an image graph corresponding
to output frame T. As we traverse the sequence graph, each
seq_read and seq_map node we encounter adds
node(s) to the image graph.seq_read uses the timestamp
to determine which frame to read;seq_map uses the times-
tamp when substituting values for%p and%t. The bottom
of figure 7 shows the image graph computed forT = 220.0.

To compute the whole sequence, we repeat the image graph
generation algorithm for all relevant output timesT, at
increment of 1/fps , wherefps is the desired frame rate (in
frames/sec) of the output sequence. For program 2, T
ranges from 0.0 to 240.0. The resulting graphs are merged
into a single compound image graph, as shown in figure 8.

Figure 6: Sequence graph for scrolling titles

ims_to_seq seq_scale seq_shift

()

seq_map
(im_overlay)

seq_map

(im_trans) (200.0)(40.0)

seq_read
(raiders.mpg)

im_read
im_mask(credits.ps)

Figure 7: Generating the image graph for t = 220.0

ims_to_seq seq_scale seq_shift

seq_map
(im_overlay)

seq_map

(im_trans) (200.0)(40.0)

seq_read
(raiders.mpg)

T=220.0

t=20.0t=0.5t=0.5

t=220.0

im_read

im_overlay

im_trans

im_read

im_mask

(raiders.mpg

(credits) (0,-4000)

[220.0])

()

Sequence Graph

Image Graph

im_read
im_trans

im_read
im_mask (raiders(credits.ps)

(0,0) [200.0])

im_read
(raiders

[0.0])

im_read
im_overlayim_trans im_readim_mask

(raiders
(credits.ps)

(0,-8000)
[240.0])

Figure 8: Image graph for entire sequence

im_overlay

OUT

OUT

OUT

im_read

im_trans
im_read

im_mask

(raiders

(credits.ps)

(0,0) [200.0])

im_overlayim_trans im_read
(raiders(0,-8000)
[240.0])

Figure 9: Image graph for entire sequence with shared subgraph

im_overlay

OUT

OUT

im_read
(raiders
[0.0])

OUT

The optimizations of section 3.1 are used to process the
compound image graph to produce the output images,
along with two additional optimizations:image subgraph
reuseand direct-transfer detection.

Image subgraph reuse. In figure 8 the subgraph containing
im_read(credits.ps) and im_mask is replicated
many times. It is more efficient to use a single subgraph
with multiple output edges, as shown in figure 9. In this
way the pixels of credit.ps are read and masked only once,
and the variousim_trans nodes share a common input.
In general, Rivl detects and merges redundant image sub-
graphs whenever possible, a form of common subexpres-
sion elimination[1].

Direct-transfer detection. In our example, the first 200 sec-
onds ofraiders.mpg appear unchanged in the output.
An obvious optimization is to avoid unnecessary decom-
pression and compression by copying the compressed data

directly to the output.

In formats such as MPEG, direct copying is not always pos-
sible on every frame, since MPEG sequences contain frames
that are encoded as differences from other frames and cannot
be decoded in isolation. However, MPEG streams are often
divided into groups of pictures (GOPs), usually 15 to 30
frames long, that are independent from other GOPs. When
reading and writing MPEG, Rivl transfers groups of pictures
directly whenever possible.

3.3 Memory Management

In addition to optimizing image and sequence calculation,
the Rivl interpreter contains a custom memory management
module to cache previously computed images and cope with
very large images.

To understand the utility of caching images, consider the

evaluation of the graph in figure 9. The output of the
im_mask node is used many times; it is advantageous to
cache this image. The Rivl memory manager detects this
case, freeing each image only when it is no longer needed
in the current graph evaluation.

Another issue is whether to store images after a graph
evaluation ends. Interactive applications of Rivl often
require repeated evaluations of a slightly changing graph.
Because the language restricts the way image graphs can
be modified, the image associated with an edge remains
accurate for the lifetime of the graph and can be cached.
Unfortunately, we have no special knowledge about which
images to cache for future graph evaluations. In principle,
the user can access any edge that was ever created. Mistak-
enly discarding data is nonfatal, since we can always
recompute the data, but such mistakes hurt performance.

To address this issue, Rivl provides anim_priority
command to allow applications to set thepriority of an
image. The memory manager discards low priority images
and keeps high priority images in memory. For instance, a
video editor built using Rivl callsim_priority to raise
the priority of displayed images, so that the results of spe-
cial effects can be quickly viewed. We are looking into
algorithms and heuristics for automatic priority adjust-
ment. For example, images generated by expensive opera-
tions, and images that have been referenced repeatedly in
the past, are candidates for high priority.

The initial implementation of Rivl treated images as indi-
visible memory buffers. Unfortunately, this representation
performed poorly for large images. The Rivl memory
manager divides large images into non-overlappingpages
of manageable size (figure 10a). Pages are handled as
independent entities by the memory manager, allowing an
image to be cached in parts. In addition, large images with
considerable blank space are efficiently represented by a
set of non-contiguous pages (figure 10b).

To illustrate the utility of Rivl’s memory management pol-
icy, we consider the execution of the scrolling titles program
(program 2) under a standard memory model in which the
entire image is read into a virtual memory buffer for the
duration of the program. Assuming a 256 color image, this
requires 5 MB of storage. In contrast, Rivl accomplishes the
task as follows:

1. The 640x8000 title region is divided into ten
equally sized pages (given Rivl’s current maxi-
mum page size.)

2. Rivl allocates, loads, and masks each page of data
only when necessary. The results of each call to
im_mask are cached for future requests.

3. Rivl discards pages as soon as they are no longer
needed.

The memory footprint is 1 MB, enough for Rivl to hold two
pages at once.

In summary, the Rivl interpreter uses a variety of strategies
to optimize execution of Rivl programs. They are:

• Graph restructuring: Combining or reordering nodes
in the graph for speed

• Result-region calculation: Computing only the parts of
an image that affect the output

• Direct transfer detection: Copying compressed data
directly to the output when possible

• Image subgraph reuse: Sharing common subexpres-
sions in the image graph

• Image caching: Caching images if they are needed later
in the graph evaluation

• Image subdivision: Dividing large images into manage-
able pieces

4. RELATED AND FUTURE WORK

Many commercial packages are available that provide soft-

800

800

1248

1095

Figure 10a: Dividing large image into pages Figure 10b: Representing sparse image with 3 pages

ware libraries of image manipulation functions. Some use
demand-driven execution to achieve similar optimizations
as those mentioned in section 3. These include the Pixar
system described by Shantzis[10], and Silicon Graphics’
ImageVisionLibrary[13]. Holzmann’s Popi[4] allows
image transformations to be specified with concise expres-
sions at run-time, a mechanism that permits rapid proto-
typing of new image primitives. We are adapting this idea
to Rivl. None of the above mentioned systems provide
language support for motion video.

Some systems (e.g., Data Explorer[2] or Khoros[12]) pro-
vide a graphical programming environment where image
“programs” are expressed as flowcharts. Although this
way of expressing image operations is an improvement
over pixel manipulation, the limitations of flowcharts for
expressing complex programs are well-known. Further-
more, the support for motion video operations in these
systems is limited or non-existent.

Matthews, Gloor, and Makedon’s VideoScheme [6] com-
bines Apple’s QuickTime movie player with a Scheme-
based video manipulation language. In VideoScheme the
user works with objects close to the underlying implemen-
tation of video data, such as pixel arrays and frames. This
low-level access gives users considerable flexibility in cre-
ating new image operations. For example, algorithms for
detecting “cuts” in video can be easily built out of pixel
array primitives. In contrast, Rivl’s high level of abstrac-
tion allows it to exploit delayed computation for improved
efficiency, and its resolution independence makes pro-
grams more portable.

Rivl is implemented with 4000 lines of C code and 500
lines of Tcl code. It has been ported to the Sun OS, HPUX,
and Linux operating systems. Rivl has been used to build a
simple video editor. Rivl and its editor can be found at
http://www.cs.cornell.edu/Info/Projects/zeno/rivl/
rivl.html.

The Rivl language is still evolving. We are extending the
core set of Rivl primitives to support other types of video
processing, such as image analysis, computer vision, and
morphing. With the right primitives, we hope to build a
rapid prototyping environment for exploring video content
processing.

We are also building a parallel implementation of the Rivl
interpreter using workstation clusters. In this implementa-
tion, a Rivl program will run quickly using low resolution
images on a small cluster, slowly using high resolution
images on a small cluster, and quickly using high resolu-
tion images on a large cluster. The interpreter will auto-
matically parallelize the Rivl program, using both coarse
grained parallelism (one image / one process) and fine

grained parallelism (one image / multiple processes).

5. REFERENCES
[1] Aho, Sethi and Ullman,Compilers: Principles, Tech-

niques, and Tools, Reading, Mass. Addison-Wesley,
1988, pp. 592-595

[2] Data Explorer software package. IBM.
[3] J. D. Foley, et. al.,Computer Graphics: Principles and

Practice, second edition, Reading, Mass. Addison-
Wesley, 1990.

[4] Holzmann, Gerald J. Popi. AT&T Bell Laboratories.
Murray Hill, NJ.

[5] D. Le Gall, MPEG: a video compression standard for
multimedia applications, Communications of the
ACM, April 1991, Vol. 34, Num.4, pp. 46-58.

[6] Matthews, James, Peter Gloor, and Fillia Makedon.
“VideoScheme: A Programmable Video Editing Sys-
tem for Automation and Media Recognition.” ACM
Multimedia ‘93 Proceedings, pp. 419-426.

[7] W. B. Pennebaker, JPEG still image data compression
standard, Van Nos and Reinhold, New York, 1992.

[8] Poskanzer, Jef.The Extended Portable Bitmap Toolkit
(PBMPLUS).

[9] Postscript. Adobe Systems Incorporated, Mountain
View, CA.

[10] Shantzis, Michael. “A Model for Efficient and Flexi-
ble Image Computing.” SIGGRAPH ‘94 Proceed-
ings, pp. 147-154.

[11] Ousterhout, John K.Tcl and the Tk Toolkit. Addison-
Wesley, Massachusetts, 1994.

[12] Rasure and Kubica, “The Khoros Application Devel-
opment Environment”, Experimental Environments
for Computer Vision and Image Processing, editor
H.I Christensen and J.L Crowley, World Scientific
1994.

[13] Silicon Graphics Inc. ImageVision Library. Silicon
Graphics Inc., Mountain View, CA.

[14] Swartz, Jonathan and Smith, Brian C.RIVL: A Reso-
lution Independent Video Language.Submitted to the
1995 Tcl/Tk Workshop, July 1995, Toronto, CA.
http://www.cs.cornell.edu/Info/Projects/multimedia/
rivl/tcl-tk-95.ps

